SPRITES & SOUND
ON THE

COMMODORE 64 4

Peter Gerrard

SPRITES & SOUND
ON THE 64

Peter Gerrard

| '
Duckworth

First published in 1984 by
Gerald Duckworth & Co. Ltd.
The Old Piano Factory
43 Gloucester Crescent, London NW1

©1984 by Peter Gerrard

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the
publisher.

ISBN 0 7156 1781 8

British Library Cataloguing in Publication Data

Gerrard, Peter
Sprites & Sound on the 64.
{Duckworth home computing)
1. Computer graphics 2. Commodore 64
(Computer)
I. Title
001.64'43 T385

ISBN 0-7156-1781-8

Typeset by The Electronic Village, Richmond
from text stored on a Commodore 64
Printed in Great Britain by
Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

Contents

Preface

—

. 64 Graphics and Sound

General Introduction to Graphics
Using the Existing Graphics Set
Sprites

User-Defined Graphics

High Resolution Graphics
General Introduction to Sound

Starting to Play with Sound

© o N o o W Db

Further Sound Techniques
10. Adding Commands to Basic
Appendix: An assembler/disassembler

Index

16
25

95
121
139
151
179
203
223
254

SPRITES & SOUND
ON THE 64

The 13 longest programs in
this book are available on one
cassette at £7.95.

They are available only
from the publisher.
Send your cheque/
postal order to:

DUCKWORTH
The Old Piano Factory
43 Gloucester Crescent
London NW1

and they will be sent to you
post-free.

Preface

Unlike many books on the Commodore 64, this one is concerned purely
with the use of graphics and sound. Only two diversions occur, and
these are a brief look at adding commands to the existing Commodore
Basic command set, in order to improve upon that Basic, and a
disassembly for a machine code assembler/disassembler which you
can use to speed up machine code program development time.

Although the longest chapter in this book is indeed concerned with
sprites, as the title would suggest, all aspects of using graphics on
the Commodore 64 are looked at in some detail, including producing
user defined characters and using and manipulating high resolution
graphics.

The sections on sound cover such advanced topics as ring modulation
and filtering, as well as taking more than a passing look at all the other
features that make the Commodore 64 such an excellent computer
to ‘have a play around with'.

By the end of the book, readers should be much more familiar, and
at home with, the use of both graphics and sound, and be much better
equipped to incorporate both of these outstanding features into their
own programs.

Throughout the book there are numerous example listings, illustrating
the topics under discussion in each section, and some of the programs
included cover such items as designing and creating data statements
for multi-coloured sprites, turning the keyboard into a synthesiser (and
introducing the reader to musical effects such as glissando and
synchronising notes), a delightful piece of animation using the existing
character set, and an extremely useful assembler/disassembler for the
Commodore 64.

All the lengthier programs have been gathered together on one cassette
for those who have neither the time nor the patience to type them
all in from the listings given. This cassette is available direct from the
publishers.

I'd like to thank everyone who has directly or indirectly contributed

7

anything to this book, but if any mistakes remain they are purely my
own: blame me!

Finally, thanks to mum and dad. | know you probably wouldn’t know
what a computer was if it fell on your head, but who cares ? Keep
up the editing, and keep up the gardening, and say hello to everyone
‘up north’. A'reet ?

P.G.

1
64 Graphics and Sound

The strengths and weaknesses of the 64

As a home computer, the Commodore 64 stands out from most of
the others currently available because of the quality of both its graphics
and its sound.

On the graphics side, the standard Commodore 64 can handle sprites
(both single colour and multi-colour), user defined characters, single
pixel addressing of the screen, and has built into it a total of 16 different
colours which can be displayed at any one time.

By the way, some of these terms may not mean to much to you at
present, but we'll come to them all in time!

With sound, the 64 has the ability to emulate many custom built musical
synthesisers, with three independent voices covering an eight octave
range, each voice capable of being played in any one of four different
wave forms: pulse, sawtooth, triangle, and noise.

With features such as these, you'd be readily forgiven for thinking that
the Commodore 64 has also got built into it a superb version of the
programming language Basic, in order to handle all these outstanding
capabilities.

Well, there the Commodore 64 and the rest of the world part company,
because the version of Basic installed in it is primitive to say the least.
There are no commands devoted to graphics, and there are no
commands devoted to sound, unlike most other computers that
attempt to compete, which come equipped with a weaith of commands
like FILL, PLOT, ENVELOPE, and so on.

Apart from these obvious criticisms of the version of Basic, there are
many others that could be levelled at it. Structuring is virtually
impossible, there is no PRINT USING, procedures cannot be defined,
and there are plenty more deficiencies where those come from.

Presumably the reasons behind the resignation in January 1984 of Jack
Tramiel, the company supremo who started the whole thing off in the
first place, were to do with things other than the level of Basic used
in his computers. However, if he’d been a programmer that would
have figured very highly indeed!

Back to basics

Despite this, given what we have got in the Commodore 64 there is
stili a lot that we can do simply from Basic. It's just that it isn‘t exactly
easy, since there are only two commands that we can use to affect
any of the registers in the Commodore 64, namely PEEK and POKE.

As you probably know, POKE is used to affect the content of a memory
location, be that location on the screen, in the Commodore 64's video
chip, or wherever. PEEK simply tells us what is stored at any location
at any one time, although please note that some locations are what
is termed ‘Read Only’, and will return misleading values if PEEKed.
Like all companies, Commodore can be a bit secretive about how their
machines do what they do.

Later on in this book we’ll be going into more detail about all the
technical terms encountered, explaining both what they mean, and
how they are used.

Since we can only use these two commands some of the operations
we'd like to perform - for example wiping out an area of memory in
order to use it to display a high resolution screen - can take quite some
time. However, this is only true if we remain with Basic, and in one
section of this book we'll be giving you a set of machine code routines
to perform some simple tasks with high resolution plotting and other
graphical functions.

As mentioned earlier, one of the reasons why using both graphics and
sound on the 64 is so difficult, is its version of the programming
language Basic that we have to come to grips with. There are a number
of packages already on the market that attempt to overcome these
difficuities by the straightforward process of simply adding more
commands to the repertoire that you already have.

But these packages cost money, in at least one case a great deal of

money, in order to correct something that should never have been
wrong in the first place.

10

How much better it would be if you, the person actually using the
machine, could correct these faults yourself. Commodore’s own
manuals are not at their best in this area, and so the last part of this
book is devoted to explaining just one way in which you could easily
add commands to the existing command set. There are a couple of
commands there to get you started, and after reading through the book
you should be in a position to add many more of your own.

The commands could be added as words (e.g. PLOT), symbols (e.g.
*} hut as we're generously given a set of function keys at the right-
hand side of the keyboard, why not use them? No one else seems
to, so one of the programs in the final chapter will redefine all the
function keys to be something useful, and in a couple of instances
something unusual as well.

A word of explanation

If all this seems to be taking us away from the aims expressed in the
title of the book, don’t panic (as they say). Sprites and sound on the
Commodore 64 are indeed well covered here, but we couldn’t write
a book about graphics and music without documenting all the other
wonderful features of the machine, such as high resolution plotting
and redefining the existing character set. Publishers just like alliterative
titles, that's allt

Similarly, as it is so difficult to do everything in Basic using only what
we're given with the 64, it makes sense to dive into machine code to
perform some of the tasks that would take an eternity in Basic. If you're
unfamiliar with machine code, well, there’s no great need to worry.
Everything is covered at a relatively gentle pace, and just to heip you
out the final chapter of the book is a disassembly of an assembler/
monitor for the 64, which should make machine code life a lot easier.

If the thought of typing it all in is a daunting one, that and all the other
major programs in this book are available on cassette from the
publishers at nominal cost. If you do type it in and can’t get it working,
and then insist that there’s something wrong with the listing, bear in
mind a simple fact: how do you think we're able to sell a working copy
of it on tape if it's incorrect? The program was used to list itself!

11

Some definitions

Before we enter into the nitty-gritty of it all and find ourselves merrily
altering characters and moving multi-coloured sprites about the screen
without understanding a word of what's going on, let's get a few
definitions out of the way first.

These are all terms that you'll encounter throughout the rest of the
book, so if we can assume a working knowledge of Commodore’s
version of Basic (although we don’t expect you to be the world’s
greatest programmerl!), let’s start with decimal and hexadecimal.

We're all used to the numerical system of counting as used in the
majority of the western world. This relies on the numeric symbois 0
to 9, and since this gives us ten symbols in all to play with, we describe
this system as having a numerical base of ten. Using those ten symbols
we can then group them together to express larger numbers: 567, 1938,
and so on.

What does the number 1938 really represent? Remembering that we're
using a base of ten, the number 1938 can be thought of as being 8
times 10 to the power zero (which is mathematically defined to be equal
to 1), plus 3 times 10 to the power 1, plus 9 times 10 to the power
2, plus 1 times 10 to the power 3. This is equal to 8, plus 30, plus 900,
plus 1000, or in other words 1938.

This is a convenient system for us humans to understand, but
unfortunately computers live in a world of their own where numbers
with a base of ten do not mean an awful lot.

Inside a computer everyting is stored as ‘bits’. A bit is simply the
smallest piece of information that a computer can handle, and a bit
can either be turned on, or off. Another way to think of that would
be to say that a bit can either equal one, or zero. In other words we
have just two numeric symbols to work with, and thus computers are
said to work with a binary system.

Representing numbers in binary is extremely tedious, as the number
of zeroes and ones required to represent, say, 1938, is a very large
number. In fact, it works out to be 11110010000, a ludicrous figure
to deal with for humans, albeit a convenient one for computers.

So the inevitable happens and we have to arrive at a compromise.

12

There are a number of systems available which have been introduced
over the years, but arguably the most popular, and certainly the easiest
to grasp, is the hexadecimal one.

This has 16 numeric symbols to play with {(hence the term
hexadecimal), but since our own decimal system has a mere 10, we
have to resort to using other things. The system in fact uses letters
of the alphabet, and in full the symbols used are
0,1,2,3,4,5,6,7,89,A,B,C,D,E,F.

Here the letter A in the hexadecimal system (let’s call it hex from now
on) is used to represent the number 10 in the decimal system, B
represents 11, and so on up to F, which is used to represent 15.

So, our earlier number 1938 if it is expressed in hex becomes $0790,
the dollar sign telling us that this is a hex number. To check it, it is
equal to 0 times 16 to the power zero, plus 9 times 16 to the power
one, plus 7 times 16 to the power 2, or 0 plus 146 plus 1792, which
is indeed equal to 1938.

Hex numbers can look a little confusing at first, but within a relatively
small space of time you’ll find them easy enough to use.

Bits and bytes

How does this help us and the computer? It's all a question of bits
and bytes. A bit, as we've seen, can be either on or off, and is the
smallest amount of information that a computer can handle.

Being a small amount of information, everybody likes to speed the
action up by handling more than just one bit at a time. On the
Commodore 64 bits are grouped together in units of 8, and this
grouping of 8 bits is called a byte. Incidentally, half a byte is called
a nibble!

So inside one byte we have 8 bits. This can be looked at as follows:

Bit 01234 5 6 7
Value 1 2 4 8 16 32 64 128

The values are arrived at using the binary system, and as you can see
are simply multiples of 2. Now we've seen that a bit can be either on
or off, so if every bit was turned on the value that would be held in
that byte would be equal to all those numbers added together. You

13

probably won't be too surprised to learn that 128 plus 64 plus ... etc.
is equal to 255, the maximum value that can be put (or POKEd) into
any particular byte.

Now you can see why POKEing about inside the computer manages
to produce such amazing results. We're not only affecting that memory
location, we're also affecting every bit in it as well. Thus POKEing 1024
with, say, 77, turns on the bits that add together to give a value of
77, and turns off all the others. In this case bits 6, 3, 2 and 0 will be
turned on, and bits 1, 4, 5 and 7 will be turned off.

If we want to alter bits 6, 3, 2 and 0, but keep the others as they were
regardless of whether they are on or off, we need to use the OR
command, in the form:

POKE LOCATION,PEEK(LOCATION) OR 77

This can be important in some cases, where we want various bits to
remain as they were, but to alter some of the others for a particular

purpose.

We'll be seeing a lot more of this later!

And now some graphics
Now that we know all about hex and decimal, PEEK and POKE, bits

and bytes, let’s start on the first major section of this book, which deals
with the powerful graphical capabilities of the Commodore 64.

14

2
General Introduction to Graphics

The concept of using graphics on home computers is relatively recent,
as indeed are home computers themselves. Only with the advent of
machines like the Commodore 64 could one seriously talk about
displaying in detail, sometimes incredible detail, any kind of graphical
information.

Going back in time a little, the earlier Commodore computers all
suffered when trying to display graphical characters. The Vic 20 had
the rather obvious limitation of its 22 character wide screen. As
mentioned in the introduction, the smallest item of information that
the computer can handle is a bit. Graphically a bit is referred to as
a pixel, which most people are inclined to think of as a small creature
that lives at the bottom of the garden. However, in the world of
graphics a pixel is the smallest thing that can be displayed on the
screen.

Screen resolution

The actual characters that you see on the television or monitor screen
are themselves made up of several pixels grouped together on a grid
eight pixels square. In chapter five we'll be giving you a program that
allows you to redraw these characters and create your own character
set (as well as showing you one intriguing POKE that instantly alters
the 64 character set if used in conjunction with colours 8 to 15).

Thus the maximum screen resolution that can be achieved is directly
linked to the number of characters across the screen that the computer
is capable of displaying. Since each character is 8 pixels across,
multiplying the number of characters by 8 gives you the maximum
resolution. So in the case of the Vic 20 we're limited to 22 times 8,
or 176 pixels: not very much.

Since the Commodore 64 displays a more acceptable 40 characters
across the screen, this gives us a resolution of 40 times 8, or 320,

15

horizontally. As it also displays 25 columns on the screen, this in turn
gives us a vertical resolution of 25 times 8, or 200 pixels.

Incidentally, you’ll recall that the maximum number that you can POKE
into any one register is 255. We've just mentioned that the horizontal
resolution is 320, so how can you alter the last (320-255) 65 lines on
the screen? In fact, you have to use two registers, as we’'ll see in chapter
four.

But it is worth mentioning it here, as it explains a fact or two about
another well known microcomputer, namely the Spectrum. Why has
that got a screen display of 32 characters across? Well, take 32 times
8, which equals 256, and the maximum number you can POKE into
a register is 266 (which is equal to 256 different values from 0 to 255),
and so graphics on the Spectrum are a whole lot easier to handle, as
we only have to worry about one register handling certain things, not
two! Easier both for the programmer and for the computer.

Early days

Before the Vic 20 Commodore had brought us the PET range of
computers, with a screen display ranging from 40 to 80 characters
across. However, the program to handle what would appear to be a
very high resolution display was not written into those earlier machines,
and had to be bought in from some other, independent suppilier.

Now it's all there if we want it, but they’ve still made it difficult to get
at! Oh well, we'll get there in the end.

Some of the things that we'll be covering later on include using the
existing character set (all those funny little symbols on the front of
the keys) to plot up histograms and bar charts, and to show just what
can be done I've included a superb piece of animated graphic
programming from one Don Denis. | take no credit for this: Don wrote
it for the original PET machines many years ago, and I've just updated
it to work on the 64,

After the existing character set we'll romp along into sprites, and give
you a few sprite generators for single colour ones and multi-colour
ones, as well as telling you how to handle many sprites on screen at
the same time.

Following on from there we'll be showing you how to redefine
characters, as well as giving you a program to make the whole job

16

an awful lot easier, and finally we'll end up with a look at high resolution
plotting covering every pixel on the screen.

But before we get there, why is it necessary to tell you any of this
at all? Shouldn't it be easy enough to do it all anyway?

With Commodore, nothing’s easy!

This statement is oh so true, as you'll probably have found out by now
if you've attempted to cover anything graphical on the Commodore 64.

To define sprites, for instance, requires a rather large sheet of graph
paper {or a pixel pad!), and some painstaking work with a set of
coloured felt-tip pens, before performing some rather complicated
mathematics and issuing a ridiculous string of POKE commands.

Don’t worry: we'll make the going easier before we've finished.

There are no commands to help in ordinary everyday graphics either,
unlike most of the other popular microcomputers around at the
moment. The Electron and the ever-present Spectrum both come
equipped with a fine set of commands to make life easier for us all,
but Commodore chose to disregard everything and make life very
difficult indeed.

True, once you do get a grasp of how everything works it can all
become a whole lot easier, but getting started is certainly a struggle.

The simple PRINT command, which you might reasonably expect
would help us along the way, is of no real help at all, since PRINTing
is slow, and you're very limited in what you can actually print onto
the screen. You can’t print sprites, for instance, or print onto a high
resolution screen, although you can {(with a bit of juggling) manage
to print out some user defined symbols.

Everything has to be handled by a whole series of POKEs, and to do
that we need to know where to POKE things to. At the very simplest
level, we need to know first of all where the screen starts in memory,
and although this is an old illustration it's well worth repeating here
for the sake of completeness.

17

COLUMN
0 10 20 30 39

A I

24

The top left-hand corner of the screen then is memory location 1024,
and POKEing a few numbers into that location will soon display
something on the screen.

As you can see, the screen covers 1,000 locations in all, and later on
we'll be moving things about the screen with abandon. What, you
mean you've tried POKEing things into location 1024 and nothing
seems to have happened?

Well, we said it wasn't going to be easy! There is yet another memory
map that you’re going to need, and this one is concerned with the
colour of objects as they appear on the screen.

Associated with every square on the screen is a corresponding memory

location in the colour memory map. This starts off life at memory
location 55296, and goes something like this:

18

"COLUMN
0 i0 20 30 39

55335

55296 — 1] o
55336
55376
55416
55456
55496 i
55536 .

55576
55616
55656 1

55696 . — 10
55736 1

55776 !

55816
55856
55896
55936

55976
56016
56056
56096

56136 X
56176
56216
56245 u

L]

4
56295

Altering colours on the screen
So in order to display something in any colour on the screen, we must
not only POKE that something onto the screen in the first place, but
we must also POKE a colour onto the same square.

Thus, in order to have, say, a black letter A in the top left hand corner
of the screen we need to:

POKE 1024,65 : POKE 55296,0

The complete list of colours is as follows:

0 BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 10 LIGHT RED

3 CYAN 11 GREY COLOUR 1
4 PURPLE 12 GREY COLOUR 2
5 GREEN 13 LIGHT GREEN

6 BLUE 14 LIGHT BLUE

7 YELLOW 156 GREY COLOUR 3

19

These can also be accessed from the keyboard, by pressing the key
marked CTRL and the key with the abbreviated colour word on it for
the appropriate colour, which gives us the left hand side of the table
listed above, or by pressing the key marked with the Commodore logo
{known affectionately as the chicken head, from its strong resemblance
thereto) and one of the colour keys for the right-hand side of the table.

To go back to the screen and colour locations for a while, keeping
track of something on the screen requires us to alter continually two
locations, staring at 1024 and 55296 respectively. A sensible idea when
POKEing anything onto the screen is to declare two variables at the
start of a program (say SS =1024 and CS =55296 for Screen Start
and Colour Start respectively), and update both of them all the time,
rather than trying to calculate new memory locations every time you
want to move something. It’s easier for you, the programmer, butit’s
also surprisingly quicker in execution time as well,

So, to bounce a little yellow blob up and down the screen, we need
a program something like:

5 S5S=1024:CS=55296

10 PRINT I[CLR1

20 FORI=0TOZ24

0 FOEE SS+1%40,.81:POKECS+I#40,7
40 FORE=1TOSO:NEXTHE

50 FOEE SS+1#40,32

S0 NEXTI

70 FORI=24TO0OSTEF-1

80 FOKE SS+1%40,81:FOKECS+I*40,7
PO FORK=1TOS0:NEXTE

100 FOEE SS+1%40,32

110 NEXTI

120 GOTO 20

Explaining this line by line:

5 Declare variables for start of screen & colour
10 Clear the screen

20 Start of loop

30 Update SS and CS (81 is our little blob!)

40 Delay loop

20

50 POKE a space onto screen for animation effect
60 Next part of loop

70-110 Repeat everything in reverse order

120 Start the whole thing off again!

Not terribly exciting | grant you, but at least we've got something
moving, in colour, on the screen! Altering the colour of our little biob
by changing the values POKEd into CS in lines 30 and 80 will soon
convince you which colours were meant to go together on the screen
- and which were not!

Two more locations which are of interest while handling ordinary screen
displays are memory locations 53280 and 53281.

These control the colour of the border and the background of your
screen display respectively, and by altering them using the colours listed
earlier you can get a combination of colours that you think looks best
on the screen. You'll notice later that a number of the listings given
prefer a black screen with mainly yellow text and a brown border. This
produces a fairly restful image on the eye.

To see the whole lot in action:

10 PRINT C[CLR]

20 FORI=0TO1S

30 FORJI=0TO1S

40 POKE 53280,J:POKE 53281,.1
S0 NEXTJ, I

You might like to insert a delay into this to slow the whole thing down
a little, otherwise it looks a mite horrendous.

A word of warning
Before we start on the lengthier listings, if you're going to attempt
the laborious task of typing them in there are a few things you need
to know before getting going.
These are concerned mainly with the idiosyncracies of the printer used

for the listings in this book. First and foremost, it refuses to print any
of the available Commodore 64 graphics keys, and where these have

21

been used, they've had to be replaced by an italicised version of the
letter on which the graphic symbol is to be found.

For instance, the Alpine Slopes program requires the use of the shifted
X character to represent something. In the listing, this has come out
as an italicised X. We'll give greater warnings in the write-up for each
listing, since some of the programs are designed to be run in lower
case, and thus letters which are meant to appear in capitals have also
come out in italics.

As if that wasn’t enough, the listings have also had to be annotated,
since the printer won't handle all the control codes used by the 64
to indicate cursor left, clear screen and so on, as well as changing
colours, and the graphics symbols obtained with the Commodore logo
key.

So here’s a rundown of the symbols used to replace them: you've
already seen one of them, [CLR] for clearing the screen. All you have
to do is press the appropriate key on the keyboard.

[CR] — Cursor Right [CL] — Cursor Left
[CU] — Cursor Up [CD] — Cursor Down
[CLR] — Clear Screen [HOME] — Cursor Home
[RVS] — Reverse On [OFF] — Reverse Off

Colours are indicated by the three letter abbreviations on the front of
the keys, so just press Control and 4 if the listing shows something
like [PUR].

Where keys are 1o be repeated, this is indicated in the following fashion:

[CLR,2CD,5CR]

for instance, means ‘clear the screen, press the cursor down key twice,
and the cursor right key five times’.

Finally, the graphics keys accessed with the Commodore logo key
(those on the left of the keys), are represented as [CBMC], or whatever,
which means press the logo key and the C key at the same time.

Conclusion

Using graphics on the Commodore 64 is not easy. Commodore seem
to have gone out of their way deliberately to make life difficult for all

22

of us, by not including any graphics commands in the Basic repertoire
supplied with the machine.

The 64 is capable of producing some very sophisticated displays indeed,
as we will see, but to produce these requires a good deal of effort on
the part of the programmer.

To work all the time in Basic is possible, although some of the results
thus achieved will take quite some time to actually appear on the
screen, and so a certain knowledge of machine code is desirable on
the part of the programmer. This we'll be covering throughout the
book, and in particular in chapters ten and eleven, where we'll be going
deeply into machine code and assembling/disassembling of programs.

The next four chapters will introduce you to some of the things that
can be achieved using the existing graphics character set, manipulating
single and multi-colour sprites, producing and using user-defined
characters, and finally covering the use of high resolution plotting on
the screen.

Throughout each chapter there’ll be a number of short example
programs that you can type in just to see what they do, and also in
each chapter there’ll be a number of lengthier listings of such things
as useful utilities for producing multi-coloured sprites or designing your
own character set.

Finally, most of the chapters will have a ‘non-utility’ listing so that you
can see what we've been talking about actually in action. The majority
of these listings are just simple games, illustrating some of the concepts
mentioned earlier on in the chapter. Each listing will have a full
explanation of how it is doing what it is doing, and you are, of course,
welcome to experiment with and expand on the listings as given.

Throughout the rest of the book it would probably be useful to have
some kind of reference guide with you that gives details of machine
code instruction sets, and other more technical data, since we're not
going to fill pages and pages with extremely long reference charts.
However, they are useful things to know, and some of the otherwise
unexplained POKEs and machine code instructions might lead you
astray.

Still, we'll try to explain everything as we get to it, so without further

ado, let’s take a look at the existing graphics set, and what you can
do with it (in the nicest possibie way, of coursel).

23

24

3
Using the Existing Graphics Set

Introduction

Before we can talk about using the existing character set, we need
to know where everything is on the keyboard. This is not as fatuous
a remark as it may sound, since some of the characters available to
us are only accessible under certain circumstances.

Could you, for instance, immediately produce the tick mark on the
screen? And before you start looking - no, it isn't marked on the
keyboard!

The tick mark is, in fact, a mere POKE away. POKEing somewhere
on the screen with a 122 brings the blighter up there, as long as you
give it a colour as well.

But before introducing a strange set of POKESs to you, let’s stick with
the Basic keyboard for a while and go on a tour.

The Commodore 64 keyboard

A AERRAAERERRRAERE

) B R ER L E R e

e 2 M P P R
-]

3]

You should by now be fairly familiar with the Return, Control and logo
keys, as well as all the cursor movement ones. The function keys we'll
leave out of it for now (we'll see them later in chapter ten), except
to say that they can be used most simply by detecting their presence
from within a program.

Keys can be detected in a variety of ways, but the simplest is probably
the old stand-by:

10 GETAF: IFAF=""THEN1G

In other words, if no key is being pressed, then loop back to line 10
again and wait until something is pressed. Alternatively, you can use
the fact that PEEK({197) or PEEK(203) both return a value which relates
to key being pressed, giving you 64 if nothing is currently being pressed.

So either way can be used to watch for various keys being used, and
the function keys can be used in the first instance by checking for CHR$
numbers 133 to 140, as in:

10 GETA$: IFAF< >CHR¥ (133) THENLO

which will sit there until you press function key 1. The other method
could be written something like:

10 IFFPEEE (197 =4THEN1D

which again will sit and wait until you press key F1. To find out what
the value stored in PEEK(197) is for every key on the keyboard, a simple
program will allow you to check for each one as pressed:

10 IFPEEK {(197)=464THENI1O
20 PRINT PEEK (197):607T0 10

Thus a whole host of keys could be checked for in a ‘menu’ situation,
and the program written to react accordingly.

The majority of the other keys available from the keyboard that we
haven’t yet mentioned are the set of graphics characters, which we'll
come to in a moment. The most interesting keys though are the ones
labelled BLK, WHT, and so on.

26

And on to colour

The use of colour is probably one of the greatest attributes of the
Commodore 64, although as we’ll see later the number of colours
available to us at any one time is very much dependent on what graphic
mode we happen to be in. The usual rule is that if we go for greater
resolution on the screen, we can use increasingly fewer colours, and
the opposite is also true: if we want to use more colours we must do
so at the cost of the available resolution.

For example, ordinary sprites can be shown in just one colour, and
in any position on the screen will appear to be in that colour, with the
screen background colour showing through.

However, a multi-colour sprite can have three different colours used
in it, as well as being able to show the screen background colour.
However, a multi-colour sprite is more ‘chunky’ than its ordinary
counterpart, since we have effectively to halve the horizontal resolution.

But on power-up we have immediate access to all the 16 available
colours, and these can be displayed in a number of ways. The simplest
is by using the control and logo keys in combination with an appropriate
colour key. The following program allows you to check through all
sixteen colours, and is, incidentally, a good check to see whether or
not you’ve tuned in your television set correctly.

5 §6=1024:C5=55294

10 FORI=0TO15

20 FORK=0TO39

30 PDKE SS+K+I#40,160:FOKE CS+K+1I%40,1
40 NEXTK

50 NEXTI

When run, this program will produce a set of coloured bars across
the screen. Using variations on a theme, a random checked pattern
can be produced as follows:

10 A$="CTRL1,CTRL2,CTRL3, LOGO&,LOGO7,L0BO8"
20 PRINTMIDS (As, INT(RND(.5)#15+1),1) "[RVS] "31:60TO
20

which defines the string A$ to contain all the colours available {(don‘t

27

type in the commas when you run the program!), and then picks out
one of them at random and prints it out followed by a reverse space
s0 you can see the colour. It then loops back and repeats the process

ad infinitum until you press the STOP key.

Some of these colours (though not all) are also available using the

CHR$ command, as the following table shows:

28

PRINTS CHRS PRINTS CHRS$ PRINTS CHRS PRINTS CHRS
0 17 " 34 3 51
1 m 18 35 4 52
2 19| $ 36 5 53
3 | 20 | % 37 6 54
4 21 & 38 7 55
£ 5 22 39 8 56
! 6 23 (40 9 57
7 24) 41 58
oisasees [[EIEN (8 25 . 42 ; 59
enases ([FEIER (G 9 26 + 43 < 60
10 27 , 44 = 61
Y o | 28 ~ 45 > 62
12 case 29 46 ? 63
3 £ 3 / 47 @ 64
14 | B 3 0 48 A 65 |
15 | B2 32 49 B 66 |
16 ! 33 2 50 C 67 '

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
D 68 | (@] 97 126 155
E 69 | (1] 8 | N 127 | A 156
F 70 | M 99 128 157
G 7 | H 100 120 | BB 158
H 722 |53 101 130 | KA 159

| 73 | 4 102 131 160
J 74 | [J 103 132 |] 16
K 75 | [104 | 133 162
L 76 | K] 105 | 3 13a | [] 163
M 77 | [N 106 | f5 135 L 1es
N 78 (] 107 | 7 13| [1es
0 70 | L 108 | f2 137 B 166
P so | N 109 | fa 138 L] 167
Q 81 | 110 | 6 139 & 168
R 82 | [11 8 140 P e
s 83 |] 112 | [1 41 (1 170
T 84 113 142 B 17
U 85 | [114 143 | (W 172
v g6 | (V] 115 | EA 144 9 173
w 87 | L] 1 145 | RJ] 174
X 88 |4 117 | B 16| = 175
Y 8o | X 118 147 (8 176
z 90 | O 119 g | B 177
[91 120 149 o 178
£ 92 | LI 121 150 | HJ] 179
] 93 | ¢ 122 151 [l 180
i 94 | HH 123 152 | L 181
- o5 | Bl 124 153 | B 182
H 96 | [I] 125 154 | [183

PRINTS CHRS | PRINTS CHRS | PRINTS CHRS$ | PRINTS CHRS$

™ 1s4 | [] 186 | | W 188 | M 490
- 185 | ml 187 | H] 189 | Mg o1

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

From the above table you can see that all of the graphics characters
are also available by a series of CHR$ commands. However, attempting
to display them all using CHR$ wilf result in strange things happening
on the screen, as some of these commands are used for things other
than displaying characters. CHR$(13} for instance, is the equivalent
of pressing the Return key, CHR${147) is the same as clearing the
screen, and so to display all the characters on the screen we need to
resort to our old friend POKE, as in the following example:

5 PRINT "[CLRI":85=1024:C5=552%26
10 FPOKE 53280,9:P0OKE 53281,0

20 FORI=0OTOZ255

Z0 POEESS+1,1:POKE CS+1,7

40 NEXT I

This simply clears the screen, sets the border and background colours
to be brown and black, and then POKEs every character onto the
screen in yellow for legibility.

The program can be made a lot more interesting by incorporating an
instruction to POKE the computer repeatedly into graphics and lower
case. As you know, this can be achieved from the keyboard by pressing
one of the shift keys and the logo key at the same time. But from within
a program we have to use yet another POKE command, like this:

S FPRINT "[CLRE1":55=1024:C5=55294
10 FPOKE S5Z2BO.9:POKE S3281.0

20 FORI=0TOZ55

2O FORESS+]1,1:FOKE CS+1.7

40 NEXT I

S0 PORE S3272,22

60 FORE=0TOSCO: NEXTE

70 FPOKE 5Z272.21

80 FORK=QTOS00:NEXTH

20 6070 S0

30

The additional lines now perform a continuous loop, with the FOR
K ... lines acting purely as a delay to allow you to see what is happening.
The two POKEs in lines 50 and 70 respectively put us into lower case
and graphics modes.

If we wanted this to be of more practical use, so that we could teil
which value of | was producing which particular character on the
screen, we'd have to alter line 30 to POKE the characters out on, say,
every third square, and in the gap in between use the PRINT command
to put the value of | that belongs to that character on the screen.

However, if you want it in reference form, here it is:

SET1 SET2 POKE| SET1 SET2 POKE | SET1 SET2 POKE
@ 0 S s 19 & 38
A a 1 T t 20 ' 39
B b 2 U u 21 (40
C c 3 \ Y 22) 41
D d 4 w w 23 . 42
E e 5 X X 24 + 43
F f 6 Y y 25 , 44
G g 7 b4 rd 26 - 45
H h 8 (27 . 46
' i 9 £ 28 / 47
J 01) 2 | o 48
Kok 1} 30 | 1 49
L | 12 — 31 2 50
M m 13 SPACE 32 3 51
N n 14 ! 33 4 52
o 0 15 34 5 53
P p 16 # 35 6 54
Q q 17 $ 36 7 55
R r 18 % 37 8 56

31

POKE

w0
o
-—

106

107

108

109
110
111

112

113
114

nw o N~ o O
- - - -
- - - - -

120
121

o~
Bl N N
al WO G0 Fr D ™ML] ™ q] ®
¥ 5 98 3885328582388 58383¢8283
a
(4]

T wikF >D>>2T X >N ’,
I R
| @IPONX O T Fw = Vg1 [18 [
w
“ N @O OO O — N M N © M~ 0O OO O ~ N OO < D O N~ W D O
Q| v W W @ © © ©® © © © © ®© ® K N~ M N N~ N~ N MK KN®
o
m « m OO0 WWOOTI — - ¥ 4352Z2 0 o
Ll o voroa s [Jel=TT LI TET 2N AN 0O

Codes from 128-255 are reversed images of codes 0-127.

32

Tricks from the keyboard
Having got all our characters up on the screen, and achieved an overall
familiarity with the keyboard (what characters appear when you POKE
them to the screen, and so on), it only remains to give you a few tricks
of the trade before we get down to some serious programming.
While not specifically connected to either graphics or sound, these
tricks do have their uses when programming generally, giving you such
things as repeat keys, preventing people from looking at your program
listings, disabling run/stop and restore, and so on.
In order, we have;
COMMAND USE REMEDY
POKE 775,200 PREVENT LISTING POKE 775,167
POKE 808,239 DISABLE STOP KEY POKE 808,237
POKE 808,255 AND RESTORE KEY! POKE 808,237
POKE 649,0 DISABLE KEYBOARD POKE 649,10
POKE 808,256 PREVENT SAVING POKE 808,237
POKE 818,32 AND LISTING POKE 818,237
POKE 650,255 AUTO REPEAT POKE 650,0
If you discover any other ‘peculiarities’ of the machine, please write
and let us know!

Graph plotting
Obviously with all the graphical features we have at our disposal on
the Commodore 64, there are many uses to which even the existing
character set can be put. After all, it didn’t deter the earlier Commodore
computers from producing some excellent results.
Of particular interest in the worlid of animation would be the characters

to be found on the U,l,J and K keys by using the shift key. Little aliens
in flight could easily be achieved by using these characters and

33

swopping from one to another.

For graph plotting, we could use the quarter square graphics characters
found on the D,F,C and V keys, as this would relatively easily double
the resolution on the ordinary 64 from the 40 by 25 characters achieved
at power on to a more respectable 80 by 50 by careful use of those
four characters.

Bar charts, histograms and pie charts are all fairly easily done, as are
simulations of mathematical equations in graphical form, for instance
the plotting of sine waves, or two equations combined together to
give one output.

For example, if plotting a bar chart you could use a string that was
set up to be four reverse spaces in length, with the first two being
light red, and the second two being dark red. A little juggling with
reverse field characters thereafter gives a very nice three-dimensional
effect on the screen. You could also use the other two colours that
have light and dark versions, namely green and blue, and perhaps also
black with one of the darker grey colours.

Experiment is the key here, and if you manage to produce a nice bar
chart and someone says ‘What about histograms?’, simply turn the
television set on its side and there you are: instant histograms!

Some very good effects can be achieved by this use of reverse field
characters: some of them if printed out in reverse look surprisingly
different from their more normal form.

Android Nim

Use of reverse field characters is made to devastating effect in the
following program from Don Denis. In it he defines a number of little
androids made up out of reverse quarter block {and other!) characters,
and then proceeds to bring in some delightful animation as the game
proceeds.

The program itself is based on the old game of Nim, usually played
with three rows of matches, with three matches in the first row, five
in the second and seven in the third.

Players take it in turns to remove matches, and whoever takes the

last match wins. So the trick is to pick and choose both the row and
the number of matches to remove, and force your opponent into a

34

position where he has to give you the last one.

Here, the game is acted out by eighteen androids, three acting as
executioners, and the other fifteen forming our three rows of matches.
You and the computer alternately select the row and the number of
androids to be ‘executed’, and try to force your opponent into giving
you the last ‘droid. The game shows a cleverly increasing 1.Q. if it loses
the first few games, and becomes gradually more and more difficult
to beat.

The listing itself is not without pitfalls when entering itin. In common
with all the listings in this book we’ve removed all the cursor control
characters, graphics characters and so on, and replaced them with
the symbols given earlier.

With this one more than any of the other listings you're going to have
to take great care when entering it, especially lines 41 to 47 and the
data statements in lines 5030 to 5120.

The data statements in particular need very careful attention. Since
we've replaced the graphics that would normally appear with their
worded equivalent, some of the data statements are actually longer
than one line {e.g. line 5030), and we've had to run them on over one
or two lines. When you type it in, make sure that all the data just comes
in one data statement. In other words, where the REM statement says
follows on from lines XXXX and YYYY), the group of lines before
it are intended to be one line of data.

Finally, the pound signs really are meant to be pound signs, and the
occasional letter in italics is meant to be in upper case when you type
it in. Owing to the POKE 53272,23 statement in line 0, the game is
meant to be played in upper/lower case rather than upper
case/graphics mode, so just type everything else in as normal. When
run, you'll get the correct mixture of upper and lower case letters.

Simply sitting back and watching the little characters can be enjoyable
enough, although you might get tired of their remarks as you
continually do nothing. When the game is being played properly, watch
out for their reactions as they are about to shoot their fellow androids,
or if you set them an impossible task or type in something they don't
understand.

This program has been a classic ever since it first appeared on a

Commodore PET in 1979. I've simply converted it to run on the 64
and given each of the three main androids a different voice.

35

A very clever use of the existing graphics set.

0 POKE 53280,1:P0OKE 53281.1:POKE 53272.23
1 PRINTYICLRI"TAB(10) "[2CD,GRN]1*#*xILRVSIANDROID NIM
COFF Jx%x"
2 PRINTTAB (1) "[CDIBY":FRINTTAB(14) "(CDIPON DENISL
ICD1"
I PRINTTAB(11) "7TORONTO, CANADA":PRINTTAB(13)“JULY,
1979":
4 REM 157 UNDERHILL DR
S5 REM DON MILLS, CANADA
& REM MZA 2K6
7 REM (41614453927
8 FPRINTTAR(12) "LEZCDIAMENDED BY"
? FRINTTAB(IZ2)"LCDIPETE GERRARD":PRINTTAR(13) "JAN.
, 1984"
10 SF=464:VC=54272
2 FOEEVCE+24,15
14 FOKE VC+19,18:FOKE VC+20,250
18 POKE VC+18,3Z
31 CL#="L[HOME,405P ,HOME]
Z4 LN=214:CN=211:kB=198
35 DEF FNE(X)=(A(P)ORE)AND{(NOT (A(P)ANDE)) : IB=.7
6 DIM B#(18)

38 : FORI=0TO17
29 : READB#(I)
40 = NEXTI

41 B#(18)="[EL,RVYS,SP,0FF ,2CEMK,RVS,25F,CD,SCL,SP,
CBMC,OFF ,CEMD, SP,RVS,SF,CD1"

42 Bf(1B)=B$(18)+"[5CL,SP,CBMC,0FF ,CBMV,CBMD ,RVS, S
P,CD,SCL ,SF,0FF ,CEBME ,SP 1"

43 B%(18)=B% (18)+"[CBMD,RVS,CBMF,CD,SCL , SP ,0FF ,CBM
¥ ,SP,RVS, 2CBME ,CD,5SCL1"

44 B$(18)=B$(18)+"[SP,CBMV,CBMK ,0FF ,CBMD,RVS,SP,CD
,SCL ,25F , 2CBMK , SF,CD,5CL,SP1"

45 B#(18)=B%(18)+"[LCBMC,CBMY,OFF ,CBMI ,RVS,SP,SCL,7
CuU,0FF ,5%F,CD,SCL,55P1"

46 B#(18)=B$(18)+"(CD,5CL,5SP,CD,SCL,SSP,CD,5CL ,55
F,CD,SCL,5SF,CD,SCL,S5SP1"

47 B$(18)=B$(18)+"[CD,SCL,55P,CU]"

50 DIM PX{17),PY(17) ,R(17) ,CM$(7) ,A(2) ,B(2)

60 FORI=OTO17

70 = READ PX(I) ,PY(I)
75 :+ R(IY=I
80 : NEXTI

105 DIM M£(15)
110 FORI=0TO1S
115 = READ M$(I)
120 3 NEXT1

36

121
122
123
130
1446
150
155
160
165
A B
166

FORI=0TO7

: READCM$(I)

: NEXTI

GOSUB2000

IR=.9

RR=3:B(0)=10:B(1)=15:B(2)=18

G$="Dp0 YOU NEED INSTRUCTIONS?":G0OSUBS00
IFA$="N"GOTO200

Q%="HE ARE THE EXECUTIONERS.f PICK ONE OF US (
OR €)£ TO DESTROY AS MAN

@$=R%+"Y ANDROIDSEf FROM EACH ROW AS YOU WISH.£

THEN IT IS OUR TURN TO PLAY.

167

QF=R$+"£ THE ONE WHO GETS THE LAST DROID WINS.

": GOSUB1500

200
205
210
215
220
225
228
230
235
240
245
250
255
0

256
260
265
270
275
280
285
288
290

PRINT"[CLR1": GOSUB2000: FOR N=3T017

: GOSUB1000O

: R(N)=N

: NEXTN

RR=18: A(0)=7:A(1)=5:A(2)=3

TR=0:@%="D0 YOU WANT TO PLAY FIRST?":G60OSUBBOO
M=0

IFAS="N"GOTO245

IFA$C>"Y"GOTO225

M=1-M

IFRR=360TOS00

IFM=0G0TO400

TR=0:Q$="IT IS YOUR TURN.£ WHICH ROW?":GOSUBBO

=1

=ASC (A%$) —4&5

IFP<OORP >2THENBOSUBS600: GOTO255

IFA(P) =0THENGOSUB&S0: GOTO255

TR=P: Q$="HOW MANY ANDROIDS?":GOSUBB0O
I=ASC(A%) -48

IFZ<10RZ >9THENGOSUB&0O: GOTO253

POKELN,PY (P) : POKECN,PX (P) : PRINT"E2CU,CRI"Z
IFZ>A (P) THENGOSUB6S0: POKELN ,PY (P) : POKECN,PX (P)

sPRINT"L[2CU,2CR,5P1":60T0275

300
305
310
400
405
410
415
420
425
430
470

SL=25: GOSUB700

POKELN,PY (P, : POKECN,PX (P) : PRINT" [2CU,2CR,8P1"
6070240

E=0: F=0

FORP=0TO2

t E=FNE(O): IFA(P) >FTHENF=A(P):111=P

: NEXTP

FORP=0TO2

: R=FNE (0) : IFR<{=A(P)G0OT0470

: NEXTP:STOP
IFR=A(P)ORIG>RND (1) THENP=I1:R=A(P)—~INT(RND (1) %

(A(P)-1)+1)

475

TR=P:Z=A(P)—-R: Q$="WE CHOOSE"+STR$ (Z)+" ANDROID

FROM ROW "+CHR$ (P+&5)+".£"

37

476 GOSUB1500

478 SL=5:G0SUB700

495 G0OTO240

SO0 QF=" WIN.£": IFM<>OTHENG®=" LOSE.L£"

S05 EF="YOU"+Q+%
510 IFM=0THENQ$=Q%+" WE WILL PLAY BETTER NEXT TIME
LENIR=I0*IO*IR

515 TR=0:G0OSUB1500

S20 QF="HOULD YDOU LIKE ANOTHER GAME?":GOSURBOO
525 IFA$<{>"N"GOT0O200

530 E3%="THANK YOU FOR FLAYING.££":GOSUB1S00: RUN
600 TR=0:R1=0:R2=0:R3=0:5=17

605 M1IF=M$(F) :M2$=MF (10) s MIE=ME (1 1)

610 60SUBF00O
615 RF="YOUR ANSWER DOES NOT MAKE SENSE.£"

616 IFZ=0THEN@#$="CAN T YOU MAKE UF YOUR MIND?E"
4617 605UB1500

620 RETURN

650 R1=P:R2=P:R3I=P: 5L =25

655 M1$=M$(7) : M2$=M$ (B) : MI$=M$ (8)

640 GOSUB00

665 TR=F:Q%="5S0RRY. ONLY"+STR$(A(P))+" ANDROIDS LE
FT.£"

670 IFA(P)=0THENR#%="1 CAN'T DO IT. I HAVE NONE LEF
T.£"

675 GOSUB1500

680 RETURN

700 R1=P:R2=F:R3=F

705 Mi$=M%(6) 1 M2$=MF (8) :MZ+=MFE (8)

710 GOSUB?00

712 1I=B{(P)-AF)

715 FORI=IITOII+Z-1

20 : POKELN,PY (1) :POKECN.PX(I):PRINT"[CU.CR1"B¥ (4
)

725 : NEXTI

726 REM

727 FOR3J=255TO30STEP-1:POKE VC+15,JJ:FOKE VC+14.,J
J:NEXTJJ

728 POKE VC+15,0:POKE VC+14.0

730 FORI=1TO0Z

735 : GOSUB?50

740 : NEXTI
788 RETURN
800 POKEKB,O: QU$=0%:60S5UB1500
805 T=T1+800
810 MI+=ME(RND(1)*16)
815 M2%=M$ (RND(1)*14)
820 MI3=M$(RND(1)*1&)
825 R1=R{RND (1) *RR)

30 R2=R(RND (1) *RR) : IFR2=R160T0830
835 R3I=R(RND (1) *RR) : IFRI=R20RR3=R160T0835
840 SL=INT (25%RND(1)+1)

38

845 GOSUBI00

850 GETAS$: IFAS$<>""THENPRINTCL$: RETURN

855 IFTI>TTHEN Q$=CM$(RND(1)*8)+"£ "+QU$:G0SUB1500
: GOTOBOS

860 G0OTOB10

200 FORC=SL TO1STEP-1

210 : POKELN,PY(R1) :POKECN,PX(R1):PRINT"I(CU,.CR]1"BS%
(ASC(RIGHT$(M1%$,C))-SF)

920 : POKELN,PY (R2) : POKECN,PX (R2) : PRINT"LCU,CR1"B%
(ASC(RIGHT$ (M2$,C))-SF)

930 : PDKELN,PY (R3) :PDKECN.PX (R3) :PRINT"LCU,CR]1"B#
(ASC(RIGHTS$ (M3¢,C))-SF)

9240 : NEXTC

945 RETURN

950 POKELN,PY(R1):POKECN,PX(R1) :PRINT"LCU.CD,4CR1"

H

954 FORJJ=20T0140STEP7:POKEVC+15,JJ:POKE VC+14,.JJ3:
NEXTJJ: POKEVC+15,0: POKEVC+14,0

955 SP=PX(R1)::EP=PX(B(P)-A(P))-5

959 SP=PX(R1):EP=PX(B(P)-A(P))~5

960 FORJ=SPTOEPSTEP2:PRINT" ~=#[3CL1"3:NEXTJ

965 IFINT ((EP-SF) /2) #2=EP-SPTHENPRINT"LCL]1";

970 PRINT"LCU,CRI"B$(18)

974 RR=RR-1:A(P)=A(F)-1

976 A=3

977 ONP+160T0990,985,980

980 A=A+A(1)

985 A=A+A(0)

990 FORJ=ATO1é&

7721 : R(J)=R(J+1)

992 : NEXTJ

998 RETURN

1000 POKELN.PY (N) : POKECN.PX(N) : PRINT"L[CU.CRI"B$ (1+
7#RND (1)) 3 .
1010 POKELN,PY (N) : POKECN,PX (N) : PRINT"L[CU,CR1"B$(0)
1020 POKELN,PY (N) : POKECN,.PX (N) : PRINT"(CU,CR]1"B$ (9+
S*¥RND(1)) 3

1030 POKELN,PY (N) : POKECN,PX (N) : PRINT"LCU.CR]"B$(14
+4#RND (1)) 2

1040 RETURN

1500 PRINTCLS

1505 11=0:G0SUB1600

1510 FORI=1TOLEN(QU$)

1515 : CH$=MID$(Qs$,I,1)

1517 N=N+1

1520 : IFCH$=" "THENGOSUB1&00

1525 : IFCH$="£"THENII=I1:FORJ=1T0&00:NEXTJI:PRINTCL
$: 60701550

1530 : POKELN,1:POKECN,I-II:PRINT"LCU,CL]"CHS$

1530 : NEXTI

1560 RETURN

1600 POKELN,PY(TR) : POKECN,PX (TR) : PRINT"({CU,CR1"B#(
1)

1605 POKE VC+15,30-TR*10:POKE VC+14.10

1606 POKE VC+15,0:POKE VC+14,0

1610 PRINT"L3CL,CBMK,CLI"::6G08UB1700:REM USE CBM K
EY AND K FOR GRAPHIC CHARACTER

1615 PRINT"LRVS,CBMC,CL1";:60SUB1700: REM USE CBM K
EY AND C FOR GRAPHIC CHARACTER

1620 PRINT"LS5P,CL]1";:60SUB1700

1625 PRINT”ICBMC)":GOSUB1700:REM USE CBM KEY AND C
FOR GRAFPHIC CHARACTER

1630 N=0O

1650 RETURN

1700 FORJJI=1TO3*RND(1)

1702 POKE VC+15,30- (TR*10+RND (1) *3)

1704 POKE VC+14,30-(TR*#10+RND (1) #3)

1706 NEXTJJ

1710 POKE VC+15,0:POKE VC+14,0:RETURN

2000 FOR N=0TO2

2010 : GOSUB100OC

2020 : PRINT"IRVS,2CU,3CLI*I(CD,CL1"CHRE (N+&5)

2030 : NEXTN: RETURN

5030 DATA"LRED,3CD,CR,RVS,S5FP,CD,CL,S5P,CU,CBMD,0OFF,
CD,CL,CBMK,CD,2CL ,2CBMK ,CD

5031 DATA"[2CL ,2CBMK,CD,3CL,CBMC,CBMV,RVS,CBMI ,0OFF
,3CL,7CU,REDJ1"

5032 REM CARRY ON FROM LINES 5031 AND 5030

5035 DATA"LRED,SP,2CEMK,CD,3CL,RVS,CBMV, 20BMF ,OFF,
CBMF ,CD, 4CtL ,CBMC,RVS ,CBMC

5036 DATA"LCBMD,OFF,SP,RED]1":REM CARRIES ON FROM L
INE 5035

5040 DATA"LBLU,SP,2CBMD,CD,3CL ,RVS,CBMK,CBMB,CBMY
OFF ,5P,CD, 4CL ,RVS,CBMI ,SP

5041 DATA “L[CBMD,OFF,CBMV,RED1":REM CARRY ON FROM
LINE 5040

5045 DATA"[PUR,SP,2CBMD,CD,3CL ,RVS,.CBMV,28FP ,0FF ,CB
MF ,CD,4CL ,RVS,CBMK ,CBMB,CBMV

50446 DATA"LOFF,SP,REDI":REM THIS CARRIES ON FROM L
INE 5045

5050 DATA"IPUR,SP,RVS,2CBMK,CD,3CL ,CBMK, 2CBMD,OFF,
SFP,CD, 4CL ,0FF ,CBMC,RVS, SF

5051 DATA"LCBMB,OFF ,SP,RED1":REM THIS CARRIES ON F
ROM LINE 5050

5055 DATA"[BtK,25P,CBMK,.CD,3CL,RVS,CBMK,SP,0FF ,CBM
v,sr,CD,4CL ,CBMC,RVS5,5F,CBMD

5056 DATA"LOFF,SP,RED1":REM WHEN YOU TYPE IT IN, C
ONT. THIS AS PART OF LINE 30355

5060 DATA"LRVS,2CBMK,0OFF ,5F,CD,3CL,CBMC,.RVS,CBMD,S
F,0FF ,5P,CD,4CL ,CBMC,RVS,CBMV,

5061 DATA"LCBMD,OFF ,SP1":REM WHEN YOU TYPE IT IN,
CONT. THIS AS PART OF LINE S060

5065 DATA"LSP,CBMK,25P,CD,4CL ,SP,RVS,CBMF,SP,0FF .S

40

P,CD, 4CL ,CBMC,RVS ,SF,CBMD,OFF ,SP1

5070 DATA"([CD,CR,RVS,2SP,0FF,CR,CD1"

5075 DATA"[3cD,RVS,CBMB,CD,2CL ,0FF ,CBMC,CBMF,CD, 2C
L,SP,CBMC1"

5080 DATA"LBRN,3CD,RVS,CBMB,CD,2CL,0FF ,SP,CBMK,CD,
2cL,SF,CBMC,REDI”

5085 DATA"[BRN,3CD,RVS,CBMB,CD,2CL ,0FF ,SP,CBMK,CD,
2cL,SP,CBMV,RED1"

5090 DATA"[BREY!,3CD,RVS,CBMB,CD,2CL ,0FF,SP.CBMK,C
p,2CL ,CBMC,SP,RED1"

5100 DATA"LLT.RED,3CD,RVS,CBMK,CD,CL,CBMK ,2CL ,0FF,
sp,CD,CL,SP,CBMV,RED1"

5105 DATA"LYEL,3CD,3CR,CBMF,CD,CL,RVS,CBMB,CD,2CL,
CBMD,OFF ,SP,RED1"

5110 DATA"[YEL,3CD,3CR,CBMF,CD,CBMK,CD,2CL ,RVS,CBM
p,OFF ,SP,RED1"

5115 DATA"[GRN,3CD,3CR,CBMF,CD,CL,CBMK,CD, 2CL ,CBMK
.CBMV,RED1"

5120 DATA"LGRN,3CD,3CR,CBMF,CD,CL,CBMK,CD,2CL ,CBMK
,CBMC ,REDI"

5230 DATRO,2,3,10,0,18,5,2,10,2,15,2,20,2,25,2,30,
2,35,2,13,10,18,10,23,10,28

5240 DATA10,33,10,21,18,26,18,31,18

5330 DATA AHDEEDABACABACABACAADHDAB

5335 DATA AHDAFADAFADEDHDAHAFFHFFAA

5340 DATA AHANCAAABKFPLOAKPINHACCAFG

5345 DATA JOKPLOKPJOKPLEKPJIDINFIHFM

5350 DATA FGNKLJLJLJILJLFHFFADEGNJINID

5355 DATA AHAFADAFAHADFDFDFDHDAFGKN

5340 DATA AHBBBAHADEEEDABACABACADEI

5365 DATA ABBBAHADEEEDAFADAFADAFAHA

5370 DATA 0JJJIPPPPEPEPKKKKKKKKKKKKK

S137 DATA AAARAAAAHABBBAAACCAHAAAHA

5380 DATA AARAAAAATIIIIJKLLLIIIIIII

5385 DATA AAAAAAAANI I1I10PRAANNNNNNN

5390 DATA AHABADACAFABADACFBDCFBDHD

5395 DATA ADEDADEDADEDHAFGFAFGFAFGF

5400 DATA BDBDBDBDBACFMNCACACACAHCA

S405 DATA AFGGNRPEPOFAHDEPANDAFGLIG

5510 DATA"COME ON.","WE HAVEN'T GOT ALL DAY'"

5520 DATA"WE HAVE BETTER THINGS TO DO."

5530 DATA"JUST ANSWER THE QUESTION.","IT ISN'T THA
T DIFFICULT!"

S540 DATA"THERE IS A LIMIT TO OUR PATIENCE'"

5545 DATA"JUST GET ON WITH IT.","WHY ARE YOU SO ST
UPID! 7"

READY.

41

4
Sprites

Just what is a sprite?

A sprite sounds as if it ought to be some kind of elf dancing about
through the woods, but reality and computing have a way of bringing
you back down to earth, and we find that a sprite is in fact a
programmable, moveable object block that can either be 24 pixels
horizontally by 21 pixels vertically, or in some special cases as we’'ll
see in chapter five, 24 pixels by 24.

For now we'll confine ourselves to standard sprites as they exist on
the Commodore 64.

24 pixels by 21 is approximately three characters wide by three
characters high, and when in normal mode this is indeed about the
size of a sprite. However, as we shall be seeing later, sprites can be
expanded in either the horizontal or the vertical direction (or indeed
both), to roughly twice this size.

As we've already seen, a pixel can either be on or off, and so an ordinary
sprite like this can have every one of the 24 by 21 pixels defined to
be either on or off. In other words, the image portrayed by the sprite
will be a two colour one: one colour is the actual sprite colour, and
the other will be whatever background colour the screen happens to
be at the time.

Commands exist to move sprites about the screen; you can check
whether a sprite has hit another sprite (or some other data on the
screen), and they can be turned on or off selectively. That is, we can
have sprites 0,1 and 3 turned on, and sprite 2 turned off, should we
so desire it.

Data storage

Needless to say, there are one or two penalties associated with using

43

sprites, and one of them is that we’ve got to store the data for each
sprite somewhere in the computer’s memory.

Since 24 by 21 pixels is equal to 63 bytes, defining a large number
of sprites can take up a lot of memory. However, a practical limit for
most purposes will be eight sprites, and to begin with we’ll just stick
with one or two.

There are eight locations in memory which tell the computer where
the data is to be stored for each of the first eight sprites. These are
locations 2040 through to 2047, which are the eight locations
immediately before the start of the computer’s Basic RAM memory.

If we POKE a 13 into location 2040, this tells us and the computer that
the 63 bytes of data for sprite 0 are to be found in the 13th location
of the computer’s memory set aside for sprite storage. This starts at
memory location 832. Why 8327 Well, you're probably getting used
to the fact that in the world of computers, everything has inevitably
got to be divisible by 8, and 63 is not particularly useful as a number
to be divided by 8. So the computer sets aside 64 bytes for each sprite,
calling the last one a ‘sprite marker’. 64 times 13 equals - you guessed
it - 832, and so that’s where the 13th block of sprite data lives.

The 14th and 15th block are the next two 64 byte chunks of memory,
starting at locations 896 and 960 respectively. The 12th block is alas
used by the computer itself, and so for another one we must move
down in memory to the 11th block, starting at location 704 (11 times
64).

So if we'd POKEd 2040 with an 11, that would have told the computer
that the data for sprite zero was now to be found starting at memory
location 832.

The colour of cur sprite is determined by another memory location
which we'll arrive at in a moment, after briefly mentioning one other
variation on a sprite theme: multi-coloured sprites.
Multi-coloured sprites

As you might surmise, a multi-coloured sprite is one that is capable
of showing more than one colour, and indeed we can have up to four

colours on display in such a sprite.

These are the ordinary sprite colour which we’re aiready used to, the

44

background colour of the screen, and two other colours referred to
as sprite multi-colour zero and sprite muliti-colour one. We'll see shortly
where this information is kept in the computer’'s memory.

With this feature available, why should anyone ever want to use
ordinary sprites? Because a multi-coloured sprite may still occupy 63
bytes in memory, but each row of 24 by 21 bytes is now read in a
somewhat different manner.

As you can see from the above, if we look at each row of data we
have 24 bits to play with. Using an ordinary sprite, we can say that
each of those bits will be either on or off. However, using a
multi-coloured sprite we cannot look at each bit at once, since we need
to know whether each multi-coloured sprite bit is any one of three
colours, or is turned off.

A bit cannot be in four different states, and so the bits are joined
together in twos, since two bits can indeed be looked at in one of four
different ways, as shown below:

OFF OFF : Displays screen background colour
OFF ON : Displays sprite multi-colour zero
ON OFF : Displays ordinary sprite colour

ON ON : Displays sprite multi-colour one

So by looking at two bits at a time, we can select which colour to
display that part of the sprite in. Thus, although we still have 24 bits
to play with, as far as sprite resolution goes they are to be regarded
as just 12 different blocks: half the resolution of an ordinary sprite.

45

Before we start getting a little more complicated, here’s where all the
sprite data is stored in memory.

Sprite data map

Starting at location 53248, we have 47 registers at our disposal, and
these are grouped as follows:

Location
(63248 +)
00
01
02-15

16

17

18
19
20

21

23
24

25

Function

X co-ordinate position of sprite 0

Y co-ordinate position of sprite 0
Ditto for sprites 1 to 7.

Most significant bit of X co-ordinate
position of all sprites. Used when
moving sprites at right hand side of
screen, when X co-ordinate would

normally be greater than 255

Used in selecting extended colour mode,
scrolling screen in Y-direction, etc.

Raster register

X co-ordinate position of light pen
Y co-ordinate position of light pen
Turning selected sprites on

Used in selecting multi-coloured mode,
scrolling screen in X-direction, etc.

Expand selected sprite in Y direction
Memory pointers

Interrupt registers

Location Function

26 Enable interrupt

27 Sprite data priority: controls what
happens when sprites hit something on
the screen

28 Used in selecting multi-colour sprites

29 Expand selected sprite in X direction

30 Controls what happens when sprites

collide with each other

31 Controls sprite to data collisions in
conjunction with register 27

32 Controls the screen border colour

33 Controls screen background colour

34 Background colour 1, used in high
resolution modes

35 Background colour 2, as above

36 Background colour 3, as above

37 Selects sprite multi-colour zero

38 Selects sprite multi-colour one

39 Selects colour for sprite 0

40-46 Ditto for sprites 1 to 7.

So, as you can see, with ordinary sprites you can have each of the
eight sprites displayed in a different colour, whereas multi-coloured
sprites have all got to have the same colour, since only one register
is set aside for each multi-colour mode.

47

Defining sprites in Basic

Later on in this book there are a number of programs which make life
a lot easier when it comes to defining sprites.

But for the time being we’re going to need to do it by hand, if only
so that we can get a better grasp of what precisely is going on. Using
someone else’s programs is all very well, but you may end up not
knowing anything about how the machine itself handles everything.

So for now we're going to do this the long way, by getting sheets
of paper out and drawing all over them. | suggest that your first
exercises are done using a pencil and rubber, since mistakes are bound
to occur!

First of all, we'll need to draw up a 24 pixel by 21 pixel grid, like this:

ARCDEF GHABCDEF GHARCDEF GH

Note the letters across the top. These are given the usual binary
notation, so that A=128, B =64, and so on until we reach H, which
is equal to 1. This will enable us to calculate the necessary data for
each sprite, as we shall see.

48

Now, define a sprite! Let's say we came up with something like this:

ABCDEFGHABCDEFGHABCDEFGH

..... e HWER, Lt tnn e
......... KRERNR, .. cvnewn

U= 2 2733 R ST X 2 T 2 TN
. e e RN NNEREN . ., .
o e m NN RN ERNNR

e HW, o WHRNRR, ... *¥, .
W L L L HRRRRK, ...,
k3 PR L 2 2 2 3 L 1 N, *3%
..... PR 2 2.2 0 1 5 & L 1 JU
...... E R 2 2 2.2 2 0 5 8 2 L SRR
..... WR, REERER, KX, ...

e e W NN L WRMNN, L RER, .,
e NI, L RWINNN, RERE, .
e RN, L RN, L HRNNN,
oo KRN, NN, HNNE,

A rather primitive looking rocket, but it will serve the purpose. To get
the bytes of data for this sprite we must add up the values for each
row of the sprite, so that the first row becomes equal to 0,24,0 (the
three groups of letters).

We then carry on for each row, adding up all the numbers, until we
get to the last row, in this case equal to 62,126,120.

Having now got all our 63 bytes of data, these have got to be POKEd
into the relevant bit of memory, and the following program will do
just that, for a rather different looking sprite: a Duckworth duck!

10 y=53248 : REM START OF VIDEO CHIFP
20 FORI=0T0&2:READA: POKES32+I,A:NEXT
1000 DATA 0,0,0,0,3,128,0

1010 DATA 4,64,0,9,112,0,8

1020 DATA 56,0.8,112,0.8.128

1030 DATA 78,9,0,177,249,0,100

1040 DATA B0,128.170,44.64,101,152
1050 DATA 32,19,0,32,8,0,64

1060 DATA 7,255,128,0,108,0,0

1070 DATA 108,0,0,111,0,0,110

1080 DATA 0.0.120,0,0,112.0

Incidentally these data statements were generated by the sprite
designer program given later, albeit with different line numbers.

Now that we've worked out what all our data is, how do we actually
begin to start using it?

Sprite data, and how it's stored

The last program POKEd 63 bytes of data into memory locations 832
to 894, and this data will be used to draw up our sprite, but first we
need to tell the computer that this is where we've stored all our data.

As we already know, memory locations 2040 to 2047, for sprites 0 to
8, tell the computer where to go, and assuming we're going to define
this sprite to be sprite number 0, we need to alter memory location
2040. Sprite number 1 would look for location 2041, and so on.

Since we've put all our data in the 13th block of memory set aside
for sprite data, there is little point in telling the computer that we've
put it somewhere else, so we need to add:

12 FPOKE 2080.1%

Now we have to turn the sprite on, and give it a colour. First of all,
we'll give it a colour. A look at the map shows that the colour of sprite
ze ‘0 is defined by the content of memory location 39, so if we want
a yellow sprite we must add the following:

14 POEE W+I29,7

Now to turn it on, using memory location V +21. Remembering how
binary numbers operate, POKEing a 1 into this location will turn on
sprite 0, a 2 will turn on sprite 1, a 4 for sprite 2 {or a 3 for sprites 0
and 1), and so on until we reach 255, which turns every sprite in the
universe on {or at least all those defined in the computer’s memory).

So the next line to add becomes:

1S POKE V+21.,1

All we need to do now is to move the sprite about the screen, so that
you can see your creation in action, and to do this we'll just update
the X and Y co-ordinates (V + 0 for X co-ord, V+ 1 for Y co-ord for
sprite 0), like this:

50

30 FORI=0TO0200
35 POKE V+0,1
40 POKE V+1,1
S50 NEXT 1

55 60OTO 30

This will send your Duckworth duck scurrying about the screen from
the top left hand corner to somewhere near the bottom right, moving
one pixel position in either direction at a time.

Of course we can get a bit more sophisticated than this, and the
following program shows a number of different coloured ducks
whizzing about the screen.

To explain the listing briefly, our Duckworth duck sprite data is in line
63000 onwards, and is read in in line 62035. The two lines before that
determine whether or not it's a multi-coloured sprite by looking at the
first four items of data. If it isn’t, we just jump to line 62035 and read
all the data. The first part of the program merely moves the four of
them randomly about the screen.

5 PODKE 53281,1:POKE 53280,12
10 T=4:G0SUBL2000

15 PRINT"CCLRI"

20 FORI=0TO3

22 P=INT(RND(.5)*15) : IFP=1THENP=8

23 POKE V+1+39,P

25 POKE V+I%2, INT(RND(.5) #220+30)

26 POKE V+I*2+1,INT (RND(.5) *150+50)

27 NEXTI

30 POKE V+21,255

40 FORK=1TD250:NEXTK:GOTO20

61999 END

62000 V=53248

62005 B(0)=248:B(1)=249: B(2)=250:B(3)=251:B(4)=252
1 B(5)=253: B(&) =254: B(7) =255

62010 NS=T: IFNS=O0THENRETURN

62015 FORA=1TONS

62020 READSK,M1,M2: IFSK=0THENPOKEV+28 , PEEK (V+28) AN
D255-2" (A—1) : GOTOL2030

462025 POKEV+28,PEEK (V+28) OR2" (A—1) : POKEV+37 ,M1: POK
EV+38,M2

62030 READCO: POKEV+38+A,C0: POKE2039+A,B(A-1)

62035 FORC=B(A-1) #64TOB (A1) #564+63: READR: POKEC, @: N
EXT:RESTORE: NEXT: RETURN

63000 DATA O , 2 , 7 , B

63001 DATA0,0,0,0,3,128,0

63002 DATA4,464,0,9,112,0,8

63003 DATASL,0,8,112,0,8,128

63004 DATA78,9,0,177,249,0,100

51

63005 DATABO,128.170,44,64,101,152
63006 DATA3Z,19,0,32,8,0,64

63007 DATA7,255,128,0,108,0,0
63008 DATA108,0,0,111,0,0,110
63009 DATA0,0,120,0,0,112,0,0

Multi-colour and expanded sprites

As always, it's swings and roundabouts time, as our sprite is now 24
by 21 pixels, but with the horizontal pixels joined up in pairs, thus giving
us the ability to have four different colours assigned to each sprite.

The colours are defined in the usual bit pair sequence, with each pair
taking on the following values:

00 : becomes transparent, and displays the screen colour.
01 : sprite multi-colour register 0 (53285)

10 : sprite ordinary colour register (563287-)

11 : sprite multi-colour register 1 (53286)

Sprites are expanded in the X direction with the following command:
POKE 53277,PEEK(53277)OR(2 to the power SN}

where SN is the sprite number from 0 to 7.

and in the Y direction with:

POKE 53271,PEEK(53271)OR(2 to the power SN)

To get life back to normal again, in the X direction:
POKE 53277,PEEK(53277)AND(255-(2 to the power SN))

and in the Y direction:

POKE 53271,PEEK(53271)AND(255-(2 to the power SN})

Sprite positioning

So far we've never moved sprites beyond an X co-ordinate of 265,
simply because memory locations can’t hold values greater than this.

However, memory location 53264 allows us to move all the way to

52

the edge, in the following way.

When the X co-ordinate becomes equal to 255, POKE 53264 (or V + 16),
with a 1, and then reset the X values to zero again. Now we're only
moving from 256 to 320, or a total of 64 positions, so X ranges from
0 to 63. When moving back again, reset V + 16 back to a zero, let X
equal 2565 and control the sprite in the normal manner,

Sprite priority and collision

We'll leave you to experiment with the program listings given elsewhere
to see precisely how this works, but in brief the priority of each sprite
can be controlled from register 53275 (53248 + 27).

This register works in exactly the same way as all the others, with sprite
0 being controlled from bit 0, sprite 1 from bit 1, and so on. If the bit
is set to zero, then the sprite will be displayed on top of anything else:
the sprite is in the foreground, in other words.

To get the relevant sprite into the background, the bit mustbe setto 1.

Collision
This is controlled from memory location 53278, or 53248 + 30.

Again, this works in the same way as all the other locations, and is
used to detect collisions between sprites.

If the register is showing zero, then nothing has happened; a 3 indicates
a collision between sprites 0 and 1; a 6 for sprites 1 and 2, and so on.

This is based on the usual manner of selecting sprites from the
appropriate bits of a particular byte.

i.e. Value 12864 321684 21

Bit 7 6 5 43210

SpriteNo. 7 6 5 43210
Thus sprites 2 and 3 are controlled from bits 2 and 3, which respectively
give the values of 4 and 8, and therefore a value of 12 (4 +8) must
be POKEd into that byte, or indeed read from it, and the relevant action
will follow.

Multiple sprite collision is also possible from this.

For instance, if register 563278 returns a value of 82, it means that bits
6, 4 and 1 have been affected, or in other words sprites 6,4 and 1 are
involved in a collision.

A most useful location!

Turning sprites off
Well, we'll have to get rid of them sometime! The quick and easy way
1o turn them all off is to type POKE V + 21,0, but for selected sprites
you must use:

POKE V +21,PEEK(V +21)AND(255 - 2 to the power of SN)

where SN is the sprite number from 0 to 7.

Sprite movement
We've already shown you sprites moving across the screen, and you
should now be in a position to amend the games listings given in this

chapter to incorporate your own sprites.

Just define the sprites first, and then POKE the appropriate values into
the X and Y co-ordinate locations as the nature of the game dictates.

Of course, this game could also be adapted for control by a joystick,
using the following locations to test for movement, firing and so on.

For joystick in port 1:
S1=PEEK(56321)
-({S1AND16) = 0) gives a 1if the fire button is pressed, and a 0 if it's not.

({STAND15) =4)-({(STAND15) =8) gives a 1 for moving left, a -1 for
moving right, and a 0 if nothing’s doing.

({(STAND15) = 1)-({STAND15) = 2) gives a 1 for moving down, a -1 for
moving up, and a 0 if nothing’s doing.

To read a joystick in port 2, let S2 = 56320, and substitute S2 for

54

S1 in all of the above expressions.

Having done that, it would be a relatively simple matter to have a sprite
controlled joystick game, written entirely in Basic.

None of the programs that follow have been designed with sprites in
mind, although it wouldn’t be too difficult to convert any of them to
respond to a joystick input rather than a keyboard input.
Space Battle
This first program, a fairly simple game, was designed to show how
up to four sprites could be moved around the screen at the same time,
while also providing a reasonably challenging game.
The object of the game is to stop the aliens {two sprites) from reaching
the bottom of the screen by manoeuvring your spaceship around and
firing at them. Your spaceship is, needless to say, another sprite, and
a fourth sprite appears in the form of the missile which you launch
against the aliens.
The whole game is played on a starry background, with the noise tone
selected from the waveforms available indicating the descent of the
aliens.

And now, a few notes about the program.

Program notes

We won't go through every single line, but instead indicate routines
of some importance, and also point out where anything interesting
is happening.

Line 8 : clear the sound channel, and set the volume to its highest level.

Line 9 : set various sound parameters (see chapter eight).

Line 10 : set x position of sprite 0 {you), and go to subroutines to set
up other sprites and give instructions.

Lines 20-40 : sprite parameters.

Lines 46-60 : which key pressed (SP denotes the speed of the game).

55

Lines 100-104 : moving left!

Lines 200-206 : moving right!

Lines 300-316 : move missile if fired.
Lines 400-412 : generate or update aliens.

Lines 414-421 : check progress of aliens, and change colour, and/or
expand, if necessary.

Lines 500-520 : check for collision between alien and missile.
Lines 600-620 : oops!

Lines 2000-2200 : instructions for playing.

Lines 62000-62035 : get sprite data.

Lines 63000-63345 : the data itself.

8 S=S54272:FDRI=1TO024:POKES+]I ,0:NEXT: FOKE S+24,15

9 POKE S+5,5:POKE S+4,108:FPOKE S+12,5:POKE S§+13,10
8:POKE S+4.129:POEE S+11,129

10 T=4:X=160:GOSUBL2000: GASURZ000

20 REM START 0OF GAME FROFER

21 POKE V+16,0

22 FOKE V+21,0

25 POKE V+21,255

26 POKE V+4,0:FPOKE V+5,0

30 POKE V+1,227:FPOKE V,X

40 REM

45 IFPEEK (1927)=10THEN10OO:REM MOVE LEFT

S50 IFPEEK(197)=18THEN200: REM MOVE RIGHT

&0 IFPEEK (1927)=1ANDF=0THENF=1:S5P=8P+.2: GOTO0300: REM
FIRE

&5 IFF=1THEN310

70 GOSUBS00:GOSUBS10:6G0TO 400:REM NOTHING DOING, S
0 UPDATE ALIENS

100 X=X—-10-INT(SP) : IFX<25ANDPEEK (V+156) =0THENX=25
101 IFX<1THENPOKEV+16,0: X=254

102 POKE V,X: IFF=1THEN310

103 GOTO 400

104 GOTO 40

200 X=X+10+INT(SP) : IFX>254THENPOKE V+16,1:X=0

56

202 IFPEEK (V+16)=1ANDX>60THENX=60

204 POKE V,X: IFF=1THEN310

205 GOTO 400

206 GOTD 40

300 IFF=1THEN302

301 IFF=OTHEN4O

302 X1=X:Y1=207: IFPEEK (V+16) =1 THENPOKE V+14,5

304 POKE V+4,X1:POKE V+5,Y1

310 Y1=Y1-20~INT (SP): IFY1<25THENY1=25%5: POKEV+5,Y1s

F=0:G0TO 40

312 BOSUBS00:GOSUBS10

314 POKE V+5,Y1

316 GOSUBS10:B0SUBS00

400 REM ALIENS

402 IFAP=1THEN40O7

403 AX=INT (RND(.5) #230+25) : AY=20

404 POKE V+2,AX:POKE V+3,AY:AP=1:POKE V+40,61 POKE

V+29,0

407 IFAM=1THEN410

408 AA=INT (RND(.5) #230+25) : AB=0

409 POKE V+7,AB:POKE V+6,AA: AM=1:POKE V+42,4:POKE
V+29,0

410 AY=AY+2+INT (SP):POKE V+3,AY:AB=AB+2+INT(SP):PD
KEV+7,AB

412 POKE S,AY:POKES+1,INT(AY/4):POKE S+7,AB:POKE §
+8,INT (AB/4)

414 IF AY>220THEN&OO:REM END OF GAME!

415 IFAY>120THENPOKEV+40,7

416 IFAY>160THENPOKE V+40,9: IFPEEK (V+29) =0 THENPOKE
V+29,2

417 IFAY>160ANDPEEK (V+29) =BTHENPOKE V+29,10

418 IF AB>220THEN&OO:REM END OF GAME !

419 IFAB>120THENPOKEV+42,3

420 IFAB>160THENPOKE V+42,1: IFPEEK (V+29) =0THENPOKE
v+29,8

421 IFAB>140ANDPEEK (V+29) =2THENPOKEV+29,10

450 GOTO 40

500 IFPEEK (V+30)=2446THENAP=0: POKEV+3,03 POKEV+2,0: Y
1=10: AK=AK+1

502 IFPEEK (V+30) =254 THENAP=0: POKEV+3,0: POKEV+2,01 Y
1=10: AK=AK+1

505 RETURN

S10 IFPEEK (V+30) =252THENAM=0: POKEV+7 ,0: POKE V+6,0:3
Y1=10: AK=AK+1

520 RETURN

600 POKE V+21,0:PRINT"CCLRIYOU BLEW IT!!"

602 PRINT"[2CD,CL1"AK" ALIENS KILLED ''"

604 POKE S+4,129:POKE S+11,129:POKE S,10:POKES+1,3
0:POKE S+7,10:POKE S+8,30

606 FORI=1T010:POKE 53280, INT (RND(.5)#14) t FORJ=1T0O
100:NEXTJ, 1: POKE 53280,9

608 PRINT"LWHT,2CDIPRESS ‘SPACE® TO START AGAIN."

57

610 GET GUS$: IFGU$<>" “THEN&10

612 PRINT"L2CDIOK, JUST HANG ON!'"

4620 RUN

699 STOP

1999 END

2000 REM INSTRUCTIONS

2010 POKE 53280,9:POKE 53281,0

2012 PRINT"[CLR,WHTIWELCOME TO [YELISPACE INVASION
taw

2014 PRINT*[2CD,WHT1JUST STOP THE INVADERS FROM RE
ACHING THEBOTTOM OF THE SCREEN. "

2015 PRINT“L[2CDIPRESS ‘A’ TO MOVE LEFT, D’ TO MOVE
RIGHTAND ‘RETURN® TO FIRE."

2016 PRINT"[2CDIBUT BE WARNED : THE ACTION IS SLOW
LY, BUT SURELY, GETTING FASTER!'"

2017 PRINT"[2CDIPRESS 'SPACE’ TD START"

2018 GETKES$: IFKE$<>" "THEN2018

2020 PRINT"LCLR1"

2025 FORI=1TO75:PL=INT (RND (.5) #800)

2026 POKE 1024+PL,46:POKE S52946+PL, INT (RND(.5) #16)
2027 NEXT

2200 RETURN

62000 V=53248

62005 B(0)=24B:B(1)=249:B(2)=250:B(3)=251:B(4) =252
:B(5)=253:B (&) =254:B(7)=255

62010 NS=T: IFNS=O0THENRE TURN

62015 FORA=1TONS

62020 READSK ,M1,M2: IFSK=0THENPOKEV+28 ,PEEK (V+28) AN
D255-2" (A-1) 1 GOTOAL2030

62025 POKEV+28,FPEEK (V+28) OR2™ (A—1) : POKEV+37 ,M1: POK
Ev+328,M2

62030 READCO: POKEV+3B+A,C0: POKE2039+A,B (A—1)

62035 FORC=B (A-1) #64TOB(A-1) #64+63: READ@: POKEC ,@: N
EXT:NEXT:RETURN

63000 DATA O , 2 , 7 , 1

63005 DATAO,24,0,0,60,0,0,102,0,0,219,0,1,189,128,
1

63010 DATAZ19,1728,1,231,128,1,255,128,1,255,128,3,
255,192,7,255

63015 DATAZ24,15,219,240,31,255,248,63,255,252,63,
219,252,463 ,255,252

63020 DATALOD,195,60,56,255,28,16,126,8,16,40,8,0,2
4,0,0

63025 DATA O , 2 , 7 4 &

63030 DATA0,0,0,0,0,0,0,0,0,0,195,0,1,231,128,7

63035 DATAZSS,224,15,255,240,31,0,248,63,255,252,1
07,255,214 ,232,0

63040 DATAZ3,107,255,214,463,255,252,31,0,248,15,25
5,240,7,255,224

63045 DATA0,195,0,0,195,0,0,195,0,0,195,0,0,195,0,
o

63200 DATA O , O , O , 12

58

63205 DATA0,48,0,0,48,0,0,48,0,0,120,0,0,252
63210 DATA254,0,1,254,0,1,254,0,1,254,0,3,3,
63215 DATA128,6,1,128,6,1,128,6,1,128,0,0,0,
63220 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
63325 DATA O , 2 , 7 , 4

63330 DATA0,0,0,0,0,0,0,0,0,0,195,0,1,231,128,7
63335 DATA2SS,224,15,255,240,31,0,248,63,255,252, 1
07,255,214,232,0

63340 DATAZ3,107,255,214,63,255,252,31,0,248,15,25
5,240,7,255,224

63345 DATA0,195,0,0,195,0,0,195,0,0,195,0,0,195,0,
o

,0,1
0,6,
0,0,

1
o)

Notes

There are no graphics other than sprites used in this game, so there’s
nothing to worry about there. The only thing to watch out for is the
strange symbol in lines 62020 and 62025, which is meant to be an up-
arrow (raising to the power of) symbol, but my printer just wouldn’t
have it!

Sprite Generator

Now that you’ve seen a few sprites in action, and hopefully designed
a few of your own, we'll make it a lot easier for you by giving you
a listing for a sprite generator. This one is for single-coloured sprites
only, but there will be a multi-coloured one a little later on.

There is some data already in there for displaying a sprite on the screen
(it's our old friend the Duckworth duck again), so that you can see
what’s happening.

Using this program you can define sprites to your heart’s content, move
them about the screen, convert them to Basic data statements, expand
or contract them, and do just about everything you'd legally want to
do to a sprite.

Program notes

This one is pretty heavily REMmed, so it shouldn’t be too difficult to
see what's happening. Nevertheless, we’ll go through it all anyway.

Line 20 : using spare space in cassette buffer, indicate position of first
sprite.

59

Lines 50-60 : read data, and if there is some go and draw up sprite.
Line 90 : function for keeping track of cursor on screen.

Lines 100-160 : sprite parameters.

Lines 180-290 : put up screen display.

Line 300 : and display program options.

Lines 330-570 : check for user update.

Lines 580-650 : point added, so update screen display and sprite display.
Lines 660-720 : editing another sprite!

Lines 730-800 : point removed, so again update both screen and sprite
display.

Lines 810-850 : set up initial sprite, if any.

Lines 860-880 : define array as used in sprite calculation.

Lines 900-990 : expanding/contracting sprite in either X or Y direction.
Lines 1000-1140 : on-screen instructions.

Lines 1150-1200 : clear sprite and update screen display (by pressing
shift 2.,y clear home keys).

Lines 1210-1390 : sprite goes walkabout, so check X and Y registers,
and don't let it go too far off screen.

Lines 1400-1440 : sprite colour change.
Lines 1450-1590 : turn sprite data into actual data statements.

Lines 30000-30010 : the sprite data (a duck).

60

10 REM SPRITE GENERATOR
12 REM FROM AN ORIGINAL PROGRAM BY RICHARD FRANKLI

14 REM WELL DONE!

20 POKE 829,223

29 REM

30 REM IF ANY SPRITE DATA,SET UP SPRITE

31 REM 1T LOOKS AN AWFUL LOT BETTER UNEXPANDED
40 POKE 828,0

50 READ SP

IF SP>OTHEN 810

69 REM

70 REM NO MORE SPRITE DATA

71 REM

80 GOSUB 860: POKES 3281 ,0: POKES3280,8: PRINT"LYEL1"
90 DEFFNA(ZZ)=1064+R*40+C

169
170
171
180

V=53248: NO=PEEK (829)
XL=0: YL=1: X6=1&: SE=21: XY=23: XX=29

SC=39: PRINT"[CLR1"

POKE 2040,NO:POKE V+SE,1:POKE V+XY,1

POKE V+XX,1:POKE Y+XL,255:POKE V+YL,190
POKE V+XG,0

X=255: Y=190

REM

REM SET UP DISPLAY

REM

PRINT " LHOME , GRNIX X X X" :REM

USES SHIFTED X FOR GRAPHICS

185
190
200
210
220
230
240

LOC=64%NO: PRINT" (HOME1"

FORI=LOCTOLOC+&2STEP3

FORJ=0TO2

ZI=PEEK(I+J)

FORK=7TOOSTEP-1

A=INT ((ZZANDAXL (K)) /A% (K))
IFA=1THENPRINT*[YEL1Q"3; : G0TO260: REM USES SHIFT

ED @ FOR GRAPHICS

250
260
270
280
290
300
309
310
320
321
330
340
342
345
350
360

PRINT"CYEL1.";
NEXTK

NEXTJ

PRINT

NEXTI

GOSUB1000

REM

REM SPRITE SET UP ON THE SCREEN
REM INPUT CHANGES

REM

R=0: C=0

Z=FNA(0)

PC=PEEK(Z) : PK=Z

POKE Z,24:

POKEZ+54272,1

GETAS$: IFA$=""THEN340

61

370 POKEZ+54272,7:POKEPK,PC

380 IFA$="QR"THENPRINT"[CLRI":END

390 IFA$="LCRI"ANDC=23THEN C=0:G0OT0340
400 IFA$="[CR1I"THENC=C+1:G0T0340

410 IFA$="LCLI"ANDC=0THENC=23:G60T0340
420 IFA$="LCLI1"THENC=C-1:G0T0340

430 IFA$="L[CD1"ANDR=20THENR=0:G60T0340
440 IFA$="[CD]1"THENR=R+1:60T0340

450 IFA$="L[CUI"ANDR=0THENR=20:G60T0340
460 IFA$="[CUI"THENR=R-1:G0T0O340

470 IFA$="[HOME]" THENR=0:C=0:G0T0340
480 - IFA$="[CLR1" THENGOSUB1150: GOTA340
490 IFA$="+"THENS80

S00 IFA$="-"THEN730

510 IFA$="M"THEN1210

520 IFA$="B"THEN1450

530 IFA$="C" THEN 1400

540 IFA$="X"THEN90O

550 IFA$="N"ANDNO-223<31THENNO=NO+1:B80T0130
560 IFA$="E"THEN&&LO

570 GOTO 340

S574 REM

575 REM ADD POINT

576 REM

580 Z=FNA(0)

590 Z1=PEEK(Z)

600 IFZ1=B1THEN340

610 POKEZ,81

&620 BYTE=INT(C/8) +R*3

630 BIT=7-(C-INT(C/9)*8)

640 POKEBYTE+NO#6&64 ‘EEK(BYTE+NO%*64) ORAZ(BIT)
650 60OTO 340

654 REM

655 REM INPUT SPRITE # TO EDIT

&56 REM

660 INPUT"[HOME,23CD,7CR,RVSISPRITE NO. C4c
L3I"3S

670 IFS<ODORS>31THENLLO

680 IF NO=223+STHENZZ=1:60T0700

690 NO=223+5

700 PRINT"[HOME.23CD,395F HOME]1";

710 IFZZ=1THENZZ=0:G0T0340

720 GOTO 130

724 REM

725 REM DELETE POINT

726 REM

730 Z=FNA Q)

740 Z1=PEEK(Z)

750 IFZ1=46THEN 340

760 POKE Z,46

770 BYTE=INT(C/8)+R»3

780 BIT=7-(C-INT(C/8)*x8)

62

790 POKE BYTE+NO#*&4 ,PEEK (BYTE+NO#&4)AND (255-A% (BIT
))

800 GOTO 340

804 REM

805 REM IF ANY DATA, SET SPRITES UP

806 REM

810 LOC=SP#64

820 FOR I=LOC TO LOC+&2

830 READ A:PDKE I,A

840 NEXT 1

842 READ CS

844 NO=PEEK (829)

845 POKE S53248+39+N0-223,CS

850 GOTO SO

854 REM

855 REM SET ARRAY WITH POWERS OF TWO

856 REM

860 FOR I=0 TO 7

870 A%L(I)=2"1

880 NEXT I

890 RETURN

894 REM

895 REM INPUT FOR EXPAND

896 REM

900 PRINT"L[HOME,23CD,10CR,RVSIENTER X OR Y*
910 GETAS$: IFA$<>"X"ANDAS< > Y " THENFOO

920 IFA$="X"THEN9&0

930 IFPEEK (V+XY)=1THENPOKEV+XY,0: GOTO980
940 POKEV+XY,1

950 GOTO980

960 IFPEEK (V+XX)=1THENPOKEV+XX,0: GOTO980
970 POKEV+XX,1

980 PRINT"([{HOME,23CD,10CR,125P1"

990 GOTO 340

994 REM

995 REM DISPAY CONTROL OPTIONS

994 REM

1000 PRINT"[HOME1"SPC (2b) “LRVSICONTROLSLOFF1"
1005 PRINTSPC (25) "SPRITE #L[RVS,GRN1"NO-223
1010 PRINT:PRINTSPC (25) " LWHT ,RVSIELOFFIDIT SPRITE
*ll

1020 PRINTSPC (25) "LRVSINLOFFIEXT SPRITE #"
1030 PRINTSPC (25) "LRVSIMLOFF 1OVE SPRITE"
1040 PRINTSPC (25) “LRVSICLOFFIOLOUR CHANGE"
1050 PRINTSPC (25) "[RVSIXLOFF IPAND"

1060 PRINTSPC (25) "LRVS1+LOFF1 ADD DOT"
1070 PRINTSPC (25) "LRVS1-LOFF] REMOVE DOT"
1080 PRINTSPC (25) “[RVSIBLOFFIASIC DATA"
1090 PRINTSPC (25) "[RVSIQLOFFIUIT"

1100 PRINT:PRINTSPC (25) "USE CURSOR"

1110 PRINTSPC (25) "CONTROL TO"

1120 PRINTSPC (25) “POSITION"

1130 PRINTSPC (25) "CURSOR. "

1140 RETURN

1144 REM

1145 REM CLEAR PRESENT SPRITE

1146 REM

1150 FORI=0T062: POKENO*64+1 0z NEXTI
1160 FORI=0TO20

1170 FORJ=0TO23

1180 POKE1064+I%40+3,46

1190 NEXTJ,I:R=0:C=0

1200 RETURN

1204 REM

1205 REM MDOVE SPRITE ARDUND BCREEN

1206 REM

1210 PRINT"[HOME,22CD,RVSIUSE CURSOR KEYS TO MOVE

THE SPRITE,"

1220 PRINT"[RVSIRETURN TO REYURN TD EDITING"
1230 GETA$: IFA$=""THEN1230

1240 IFA$="[CR1"ANDX<319THENX=X+2
1250 IFA$="[CLI1"ANDX>1THENX=X-2
1260 IFA$="[{CD]1"ANDY<2S54THENY=Y+2
1270 IFA$="[CUI"ANDY>1THENY=Y-2
1280 POKE V+YL,Y

1290 POKE V+XG, INT (X/255)

1300 PDKE V4+XL,X—INT(X/255) %255
1310 IF A$=CHR$(13) THEN1330

1320 GOTO1210

1330 POKE V+XL,255

1340 POKE V+YL.190

1350 POKE V+XG,0

1360 X=255:Y=190

1370 PRINT"[HOME,22CD,365F1"

1380 PRINT"[36SP,HOME]"

1390 GOTO 340

1394 REM

1395 REM CHANGE SPRITE COLOUR

13946 REM

1400 INPUT"[HOME,23CD,9CR,RVSICOLOUR (0-15)
[5CL3I":CO

1410 IF CO<ODRCO>1STHENIA400

1420 POKE V+SC,CO

1430 PRINT"[HMOME,23CD,395P ,HOME" ;

1440 GOTO 340

1444 REM

1445 REM CREATE DATA STATEMENTS FOR

1446 REM PRESENT SPRITE

1447 REM

1450 PRINT"[CLR.3CD1";PEEK (828) +30000; "DATA"RIGHTS$
(STR$ (NO) ,LEN (STR$ (ND)) —1)

1440 POKES28,PEEK (828) +1:FORI=0TO8

1470 PRINTPEEK (828) +30000"DATA" ;

1480 FORJ=0TD&

64

1490 BB=PEEK (NO#64+1%7+J)
1500 BB$=RIGHTS$ (STR$ (BB) ,LEN (STR$ (BB))—1)
1510 PRINTBBS;",";

1520 NEXT J

1530 PRINT"CCL] *:POKEB28,PEEK (828)+1
1540 NEXT 1

1550 PRINTPEEK (828) +300005 “DATA";CO3 " ,—1"
1560 PRINT"RUNSOLHOME]"

1570 POKE 198,12

1580 FORI=OTO11:POKE&G31+1,13:NEXT I

1590 POKEB29,NO: END

29997 REM

29998 REM SPRITE DATA STORED FROM HERE
29999 REM

30000 DATA223

30001 DATA0,0,0,0,3,128,0

30002 DATA4,44,0,9,112,0,8

30003 DATAS6,0,8,112,0,8,128

30004 DATA78,9,0,177,249,0,100

30005 DATAB0,128,170,44,64,101,152

30006 DATA32,19,0,32,8,0,564

30007 DATA7,255,128,0,108,0,0

30008 DATA108,0,0,111,0,0,110

30009 DATA0,0,120,0,0,112,0

30010 DATA 15 ,-1

Notes

_ There are only two graphic characters used in this program: the shifted
X character in line 180, and the shifted Q in line 240.

Our problem with the up-arrow key surfaces again in line 870 (see notes
for Space Battle above).

Apart from that, it shouldn’t be too difficult to get this program up
and running.

Continuing with my policy of letting you play about with a program
before showing you the utility used to generate it, the next (very!)
simple game was written to show how four different muiti-coloured
sprites could be used in a game to produce a kind of animation effect.

This is just one way of doing it, obviously there are others. However,
the simple expedient of replacing one sprite with another slightly
different one in exactly the same position does manage to produce
the effect that we're after.

65

Alpine Slopes

This really is a very straightforward program, but it does show what
we were after: four different multi-coloured sprites in action according
to the dictates of the person playing the game.

It's an old idea - you have to guide your little man down a ski-slope
which zigzags about from side to side. Needless to say, if you hit the
sides that is the end of the slope as far as you're concerned, and the
game gives you a report of how long you managed to stay upright.

Just to make it that little bit harder, the course also gets narrower the
longer the game progresses.

The four sprites used are all variations on the theme of a man on {or
off, in one case) a pair of skis. in order of data, they show a little man
skiing to the left, one skiing to the right, one skiing straight ahead {with
a ‘look, no hands’ approach), and the fourth sprite is of a not very
happy skier who's just collided with the side of the course.
Program notes

Nothing of any great difficulty with this one, so here we go.

Line 10 : declare number of sprites, and then set sprites up and display
instructions.

Line 12 : place X and Y co-ordinates at top centre of screen.
Line 16 : set up various sound parameters.

Line 20 : set up a primitive walll

Line 25 : set up various sprite parameters.

Lines 30-32 : set up start of course.

Line 33 : set time at start of game.

Line 34 : set man up skiing straight ahead.

Lines 40-80 : which direction will he ski in? ‘1" indicates left, ‘2" indicates
straight ahead, and "3’ off to the right.

66

Lines 100-199 : moving left!

Lines 200-299 : and straight ahead.

Lines 300-399 : and to the right.

Line 500 : if the sprite’s hit anything, that’s the end of the game.
Line 502 : update ski-course.

Line 504 : back to where you came from.

Lines 500-599 : end of game, so start another one.

Lines 600-610 : check to see whether course needs narrowing, and
which direction to move it in.

Lines 2000-2100 : instructions.
Lines 62000-62035 : read and set up sprite data.

Lines 63000-63520 : sprite data.

10 T=4:60SUB&62000: GOSUBZ2000

12 X=170:Y=60

16 POKE S+24,15:POKE S+5,40:POKE S+&6,146:POKE S+4,
129:POKE S+3,12

18 PRINT"[GRN1

20 Bs$="XX XXx":REM USE SHIFTED X FOR GR
APHICS

25 POKE V+21,4:POKE V+4,X:POKE V+5,Y:POKEV+31,0:P=

30 PRINT"[CLRI"TAB(P);B$
32 FORI=1T020: PRINTTAB (P) ; B$: NEXTI
33 BB=TI

34 GOTO 200

40 GETAS

50 IFA$="1"THEN100

&0 IFA$="2"THEN200

70 IFA$="3"THEN300

75 IFA$<>" “THEN200

80 GOTO 40

100 POKE V,X:POKE V+1,Y
102 POKE V+21,1

67

103 X=X-B:Y=Y+1

104 GOSUBS00

105 IFX<2S5THENX=25

106 POKE S+1,5:POKE S,20

107 IFY>180THENY=180

120 IFPEEK (197) =S&4THEN100

130 IFPEEK (197)=64THEN100

199 GOTO 40

200 POKE V+4,X:POKE V+5,Y

202 POKE V+21,4

203 X=X:Y=Y+1

204 GOSUBSO0

205 IFX<25THENX=25

206 POKE S+1,10:POKE 5,30

207 IFY>1BOTHENY=180

220 IFPEEK (197) =59THEN200

230 IFPEEK (197)=64THENZ00

299 GOTQ 40

300 POKE V+2,X:POKE V+3,Y

302 POKE V+21,2

303 X=X+8:Y=Y+1

304 BOSUBSOO0

305 IFX>255THENX=255

306 POKE S+1,5:POFE S,40

307 IFY>180THENY=180

320 IFPEEK(197)=8THEN300

330 IFPEEK (197)=64THEN300

399 GOTO 40

500 IFPEEK (V+31) < >OTHENPRINT " L HOME , GRN IKABOODMMMM !
L1 GOTOSS0

502 GOSUBLOO

504 RETURN

S50 POKE V+6&,X:POKE V+7,Y:POKE V+21,8
551 POKE §+4,129:POKE S+1,20:POKE S,40
552 FORI=1TO2000:NEXT:POKE V+21,0

554 PRINT"LCLRIOH DEAR ''"

555 PRINT*[2CD1YDU LASTED "; INT((TI~BB)/&0) ; "SECON
DS

S460 POKE S+4,129:POKE S+1,20:POKE S,40
599 POKE V+31,0:RUN

600 A=A+1: IFLEN (B$) < 10THEN&OZ

601 IFA/30=INT (A/30) THENB$=LEFT$ (B$,2) +MID$ (B$,3,L
EN(B$)-5) +RIGHT$ (B$,2)

602 IF (RND(.5)#10) >4. 6THENP=P+1: GOTO&06
604 P=P—1: IFP=—1THENP=0: GOT0&08

606 IFP>19THENP=18

608 PRINTTAB(P)B$

510 RETURN

1999 END

2000 REM INSTRUCTIONS

2001 POKE V+21,4:POKE V+4,170:POKE V+5,52

68

2002 PRINT"L[CLR1"

2003 S=54272:FORI=0T024:POKE S+I,0:NEXT

2004 POKE 53281,1:POKE 53280,12

2006 PRINT"L[2CD,BRNIWELCOME TO THE ANCIENT ART OF
SKI-ING. *

2008 PRINT"[2CDISTEER YOUR LITTLE MAN DOWN THE TRA
CK BY USING THE 1,2 AND 3 KEYS “j

2010 PRINT"FOR MOVING LEFTSTRAIGHT, AND RIGHT RESP
ECTIVELY."

2012 PRINT"[2CDIAVOID THE SIDES OF THE TRACK FODR A
S LONGAS YOU CAN."

2014 PRINT"[2CDIPRESS ‘'SPACE’ WHEN YOU'RE READY TO
START"

2016 GETKYS$: IFKY$<>" "THEN2016

2020 PRINT"CCLR1" :

2100 RETURN

62000 V=53248

62005 B(0)=248:B(1)=249:B(2)=250:B(3)=251:B(4) =252
:B(5)=253:B(6)=254: B(7) =255

62010 NS=T: IFNS=OTHENRETURN

62015 FORA=1TONS

62020 READSK ,M1,M2: IFSK=0THENPOKEV+28 , PEEK (V+28) AN
D255-2" (A—1) : GOTD&L2030

62025 POKEV+28,PEEK (V+28) DR2”~ (A—1) : POKEV+37 ,M1 : POK
EV+38,M2

62030 READCO: POKEV+38+A,C0: POKE2039+A,B (A-1)

62035 FORC=B(A-1) #64TOB(A-1) #64+63: READR: POKEC,@: N
EXT:NEXT3: RETURN

63000 DATA 1 , 2 , 7 , 8

63005 DATAO,80,0,0,144,0,0,144,0,0,80,0,1,84,0,1
63010 DATA244,0,5,212,0,21,116,0,81,84,0,65,84,0,2
,168

63015 DATAO,2,168,0,10,40,0,10,40,0,40,160,0,162,1
28,0

63020 DATA162,145,64,41,165,0,5,164,0,20,80,0,17,6
4,0,0

63025 PATA L , 2 , 7 , B

63030 DATA0,S5,64,0,6,64,0,6,64,0,6,64,0,21,64,0
63035 DATA31,44,0,23,80,0,21,84,0,31,69,0,21,544,0,
42

63040 DATA128,0,42,128,0,42,128,0,40,160,0,10,40,0
,2,138

63045 DATA1,74,40,0,105,160,0,20,80,0,5,20,0,1,69,
o

63050 DATA 1 , 2 , 7 , 8

63055 DATAO,20,0,0,105,0,0,105,0,4,20,16,4,85,16,5
63060 DATA125,80,0,125,0,0,85,0,0,85,0,0,170,0,0,1
70

63065 DATA0,0,170,0,0,130,0,1,130,64,1,130,64,1,13
0,64

63070 DATA1,130,64,1,130,64,1,65,64,1,65,64,1,65,6
4,0

69

63500 DATA 1 , 2 , 7 , 8B

63505 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

63510 DATAO,16,0,44,64,0,17,0,0,4,0,0,17,0,0,44
63515 DATAL4,1,0,16,0,0,0,0,0,0,160,0,10,40,0,40
63520 DATA10,0,160,2,150,128,0,125,0,0,125,0,0,85,
0,0

Notes

Nothing to note with this one really, as only one graphics character
has been used. That is in line 20 where the italicised Xs are meant to
show the shifted X character, the three leaf clover, otherwise known
as the club symbol.

As before, we'll now give you the listing for the multi-colour sprite
generator. The data that comes in it is meant to represent a sprite of
someone pouring a pint of beer, but | think the end result failed to
do justice to the idea. Still, the program’s meant for your sprites, not
mine, so we'll leave it to your imagination.

Multi-Colour Sprite Designer

This follows much the same format as the original sprite designer
program, with a number of important modifications to allow for the
fact that we are using multi-coloured sprites now. The listing is given
again in full, although you will find that quite a few lines are in common
with that original listing.

However, on the theory that if we just gave the new lines and told
you which lines to remove from the old listing then everyone wouid
get totally confused, we present it here in full.

The lines to watch out for are 625 to 627, which are the ones used
to calculate the update for the sprite itself, once the screen display
has been updated by the user. These look and see what the two spaces
on the screen represent, since we designated the three colours
(forgetting background for a while), as a combination of spaces and
shifted spaces. They may look the same on the screen to you, but
to the program trying to keep the rest of the sprite the same as it was
while updating the part you've chosen to alter, they look healthily
different.

70

Program notes

We’'ll go through the whole program again, to save you flipping back
to the notes for the original sprite designer program and having half
the pages in the book fall out.

Line 45 : set up parameters for video chip, and where sprite data will
be stored.

Lines 50-60 : any data to be read?

Line 90 : function to keep track of cursor on screen (double cursor
this time).

Lines 110-165 : set up various sprite parameters.
Lines 180-183 : set up screen display.

Line 184 : print on-screen instructions, and no | can’t remember why
I put in GOTO309 either now!

Lines 330-370 : update double cursor on screen.

Lines 380-570 : check on user input.

Lines 580-620 : point added, so update screen and sprite displays.
Lines 625-627 : checks state of old sprite before updating it.

Lines 730-770 : point removed, so update screen and sprite displays
again.

Lines 808-850 : read any sprite data.

Lines 900-990 : expand or contract sprite in either X or Y direction.
Lines 1000-1140 : print on-screen options.

Lines 1150-1200 : remove sprite, so clear screen and sprite displays.
Lines 1210-1390 : sprite goes on sponsored walk.

Lines 1400-1440 : change drawing colour.

VAl

Lines 1450-1590 : convert sprite to Basic data statements.
Lines 3000-4004 : welcome to the show.

Lines 30011-30021 : sprite data for beer pouring.

10 REM MULTI-COLOUR SPRITE GENERATOR
15 REM ON FIRST RUN THROUGH, TRY SELECTING (IN ORD
ER), COLOURS 1,9 AND 12

20 REM FOR A GLIMPSE OF ONE OF THE AUTHOR'S FAVOUR
ITE SIGHTS!!

29 REM

30 REM IF ANY SPRITE DATA,SET UP SPRITE

31 REM IT LOOKS AN AWFUL LOT BETTER UNEXPANDED

40 POKE 828,0

45 V=52248:N0D=13:SP=13: POKE V+21,0

50 READ FF

60 IF FF>OTHEN 804

469 REM

70 REM NOD MORE SPRITE DATA

71 REM

80 POKES3I2?81.,0:POKES3280,8: PRINT"L[YEL1"

85 GOSUB 3000

90 DEFFNA (ZZ)=106S+R*40+C

110 XL=0:YL=1:XB=16:SE=21:XY=23: XX=29

120 SC=39: PRINT"{CLRI"

130 POKE 2040,13:POKE V+SE,1:POKE V+XY,0

180 POKE V+XX,0:POKE V+XL,255:POKE V+YL,190

150 POKE V+XG,0

160 X=255:Y=190

165 POKE V+28,1

169 REM

170 REM SET UP DISPLAY

171 REM

180 PRINT"[HOME,YEL ,SP,24CBMP1":REM PRESS CBM KEY
AND P FOR GRAPHIC CHARACTER

181 FORI=0TOZ20

182 PRINT"E[CBMN,24SP,CBMH1":REM PRESS CBM N AND CB
M H FOR GRAPHICS CHARACTERS

183 NEXTI:PRINT”[SP,24CBMY1: REM PRESS CBM KEY AND
Y FOR GRAPHICS CHARACTER

184 GOSUB1000:GOTO309

309 REM

310 REM SPRITE SET UP ON THE SCREEN

320 REM INPUT CHANGES

321 REM

330 R=0:C=0

340 Z=FNA (D)

342 PC=PEEK (Z): PD=PEEK (Z+1) : PK=Z

343 IFPC=160THENRV=128: GOTO345

72

344 RV=0

345 POKE Z,24+RV:POKE Z+1,24+RV

344 KN=PEEK (Z+54272) : KM=PEEK (Z+54273) : IFKN=0THENKN
=1:KM=1

350 POKEZ+54272,KN: POKE Z+54273,KM

360 GETAS$: IFA$=""THEN3&0

370 POKEZ+54272,KN:POKE Z+54273,KM: POKEPK ,PC: POKEP
K+1,PD

380 IFA$="Q"THENPRINT"I[CLR,CD1I HOPE YOU'VE TURNED
YOUR SPRITE INTO DATA'!":END

390 IFAS$="“LCRI"ANDC=22THEN C=0:B0T0340

400 IFA$="[CR]"THENC=C+2:G50T0340

410 IFA$="[CL3"ANDC=0THENC=22:B0T0340

420 IFA$="[CL]"THENC=C-2:B0T0340

430 IFA$="[CD1"ANDR=20THENR=0:G0TO340

440 IFA$="[CD1" THENR=R+1:G0T0O340

450 IFAS$="[CUI]"ANDR=0THENR=20:G0T0340

4460 IFA$="LCUI"THENR=R~1:G0TO340

470 IFA$="[HOME]*THENR=0:C=0: GOTO340

480 IFA$="{CLR1"THENGOSUB1150:G0T0340

490 IFA$="+"THENS80

S00 IFA$="-"THEN730

510 IFA$="M"THEN1210

520 IFA$="B"THEN1450

530 IFA$="C" THEN 1400

5S40 IFA$="E"THENS00

570 GOTO 340

574 REM

575 REM ADD POINT

576 REM

580 Z=FNA(O)

S90 IFCS=AZ2THENK1=224:K2=160

595 IFCS=A4THENK1=140:K2=224

600 IFCS=A3THENK1=160:1K2=140

610 PDKEZ,K1:POKE Z+1,K21POKESS296+1-1024,CS51POKE
55296+2-1023,CS

620 BYTE=INT(C/8) +R#3: 5DSUBL25: BOTO340

625 CH=1065+40#R+8%INT(C/8): TC=0: BI=8

626 FORL1=CHTOCH+7:P=PEEK(L1):BI=BI~1: IFP=1400RP=2
ATHENTC=TC+2"BI

627 NEXTL1:POKEBYTE+NO#&64,TC:RETURN

724 REM

725 REM DELETE POINT

726 REM

730 Z=FNA(0)

740 Z1=PEEK(Z)

760 POKE Z,32:POKE Z+1,32

770 BYTE=INT (C/8) +R#3: GOSUB&25: BOTO340

804 REM

805 REM IF ANY DATA, SET SPRITES UP

806 REM

808 READ Al,A2,A3: IFA1=0THENPOKE V+28,PEEK (V+28)AN

73

D255-2"(0) : 6OTO810
809 POKE V+28,PEEK (V+28)0R2"(0):POKE V+37,A2:POKE
V+38,A3

810 READ A4:POKE V+39,A4

815 LOC=SFP*64

820 FOR I=LOC TO LOC+&62

830 READ A:POKE 1,A

840 NEXT I

850 60TOS0

894 REM

895 REM INPUT FOR EXPAND

896 REM

900 PRINT"[HOME,23CD, 10CRIPRESS X OR Y”

F10
P20
{30
940
930
60
970
280
990
994
995
996
1000
1005
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1144
1145
1146
1150
1160
1170
1180
1190
1200
1204
1205
1206
1210

74

GETA$: IFA${>"X"ANDAF< >" Y " THENIOQ
IFAE="X"THENS40

IFPEEK (V+XY) =1THENPOKEV+XY ,0: GOTO980
POKEV+XY , 1

60710280

IFPEEK (V+XX) =1THENPOKEV+XX ,0: GOTO9830
POKEV+XX, 1

PRINT" [HOME,23CD, 10CR,125P]
GOTO 340
REM
REM DISPAY CONTROL OPTIONS
REM

PRINT"[HOME,YEL1"SPC(27) "IRVSICONTROLSLOFF 1"
PRINTSPC (26) "SPRITE # O
PRINTSPC (26) "[RVSIMLOFF1OVE SPRITE"
PRINTSPC (26) "[RVSICLOFF JHANGE COLOUR"
PRINTSPC (26) "IRKVSIELOFF 1XPAND'
PRINTSFC (26) "[RVS1+[0OFF1 ADD DOT"
PRINTSPC(26) "LRVS1-LOFF] REMOVE DOT*"
PRINTSPC(26) "{RVSIBLOFFIASIC DATA"
PRINTSPC(246) "[RVSIQUOFFIUIT"

PRINT: PRINTSPC (26) "USE CURSOR"
PRINTSPC (26) "CONTROL TO"
FRINTSPC (26) "POSITION"
PRINTSPC (26) "CURSOR. "

RETURN

REM

REM CLEAR PRESENT SPRITE

REM

FORI=0TO&62: POKENO#&64+1 ,0zNEXTI
FORI=0TO20

FORJ=1TO24

POKE10&64+1%#40+J,32

NEXTJ,I:R=0:C=0

RETURN

REM

REM MOVE SPRITE AROUND SCREEN

REM

PRINT" [HOME ,23CDIUSE CURSOR KEYS/RETURN TO

EX

IT.”

1230 GETAS$: IFA$=""THEN1230

1240 IFA$="L[CR1"ANDX<319THENX=X+2

1250 IFA$="L[CLI"ANDX>1THENX=X~2

1260 IFAS$="L[CD1"ANDY<2S54THENY=Y+2

1270 IFA$="LCUI"ANDY>1THENY=Y-2

1280 POKE V+YL,Y

1290 POKE V+XG, INT(X/2355)

1300 POKE V+XL,X—INT(X/255)#253

1310 IF A$=CHR$ (13) THEN1330

1320 GOTO1210

1330 POKE V+XL,235

1340 POKE V+YL,190

1350 POKE V+XG,0

1360 X=255:Y=190

1370 PRINT"[HOME,23CD,398P1"

1390 6070 340

1324 REM

1395 REM CHANGE SPRITE COLOUR

1396 REM

1400 PRINT"[HOME,23CD,YELIPRESS 1, 2 OR 3 TO MAKE
YOUR CHOICE."

1402 GETCGS$: IFCG$=""THEN1402

1403 IFCG$="1"THENCS=A2:60T01420

1404 IFCG$="2"THENCS=A3:60T01420

1405 IFCG$="3"THENCS=A4:G0T01420

1406 GOTO 1402

1420 POKE V+36+VAL (CB$) ,CS

1430 PRINT"({HOME,23CD,38SP,HOME" 3

1440 GOTO 340

1444 REM

1445 REM CREATE DATA STATEMENTS FOR

1446 REM PRESENT SPRITE

1447 REM

1450 PP=PP+11:PRINT"”LCLR.3CD]1";PP+30000; "DATA" ;8P
"’1’“=A2; II'II;As; "’";A4; an

1460 FORI=OTOB

1470 PRINTPP+1+30001"DATA";

1480 FORJ=O0TO6

1490 BB=PEEK (NO#64+1%7+J)

1500 BB$=RIGHTS$ (STR$(BB) ,LEN(STR$(BB))-1)
1510 PRINTBB#;",";

13520 NEXT J

1530 PRINT"LCL] "

1540 NEXT I

1550 PRINTPP+10+300005 "DATA —1":NO=NO+13:SP=5P+1
1560 PRINT“GOTOASTCHOME]"

1570 POKE 198,12

1580 FORI=0TO11:POKE&631+1,13:NEXT 1

1590 END

3000 PRINT"C[CLRIMULTI-COLOUR SPRITE DESIGNER."
3002 PRINT"L2CDIYOU CAN DISPLAY UP TO FOUR COLOURS

75

PER SPRITE NOW. THESE ARE :="

3004 PRINT"IL[2CDISPRITE MULTI-COLOUR ONE,

3006 PRINT"SPRITE MULTI-COLOUR TwWO,

3008 PRINT"ORDINARY SPRITE COLOUR,"

3010 PRINT"AND THE SCREEN COLOUR. "

3012 PRINT"[2CDITHIS LIMITS OUR SPRITE RESOLUTION

TO 12 BY 21 CHARACTERS.*

3014 PRINT"[2CDINEVERTHELESS, WITH A LITTLE BIT OF
IMAGINATION, SOME ";

3016 PRINT"STAGGERING RESULTS CANBE ACHIEVED."

3018 GOSUB 4000

3019 POKE 53281,1

3020 PRINT"[CLR,YELIFIRST OF ALL, YOU MUST CHOOSE

YOUR COLOURS FROM THE "3

3022 PRINT"146 AVAILABLE."

3023 PRINTTAB(30)CHR$ (18) "[BLK] LOFF,GRN]1 - oO"

3024 PRINTTAB(30)CHRS$ (18) "[WHT] COFF,GRN] - 1*

3025 PRINTTAB(30)CHR$(18) “[RED] [OFF ,GRN] - 2"

3026 PRINTTAB(30)CHR$ (18B) "[CYN1 [LOFF ,GRN] — 3"

3027 PRINTTAB(30)CHR$ (18) "[PUR] [OFF,GRN1 - 3"

3028 PRINTTAB(30)CHR$(18) “[GRN] [OFF ,GRN] - 5"

3029 PRINTTAB(30)CHR$(18) "I[BLU]J LOFF ,GRNJ - 6"

3030 PRINTTAB(30)CHRS$ (18) "LYEL1 [OFF,GRN] - 7"

3031 PRINTTAB(30)CHR$ (18) "LORG] [OFF,GRNY - 8"

3032 PRINTTAB(30)CHRS (18) “{BRN1 [OFF ,GRN] - 9"

3033 PRINTTAB(30)CHR$ (18) "[L.T.RED] [LOFF ,GRN]1 —
loll

3034 PRINTTAB(30)CHRS$ (18) "[GREY1] [LOFF,BRN] -
llll

3035 PRINTTAB (30)CHRS (18) "[GREY21] LOFF ,GRN] -
12'!

3036 PRINTTAB(30)CHR$(18) "[LT.GRNJ] LOFF ,6RN]1 -
l3ll

3037 PRINTTAB(30)CHR$(18) "LLT.BLU] [OFF,GRN1 —
14"

3038 PRINTTAB(30)CHR$(18) "LBREY3] LOFF,GRN]1 -
15"

3040 INPUT "SPRITE MULTI-COLOUR ZERO";A2: IFA2<00RA
2>15THENPRINT“[2CU1": GOTO3040

3042 INPUT "SPRITE MULTI-COLOUR ONE";A3: IFA3<O0RA3
>15THENPRINT"[2CU]": GOTO3042

3044 INPUT "SPRITE ORDINARY COLOUR";A4: IFA4<O0ORA4>
15THENPRINT“[2CU1": 60703044

3045 CS=A4

3046 GOSUB 4000

3048 POKE V+37,A2:POKE V+38,A3:POKE V+39,A4

3050 PRINT"ICLR,YEL]1":POKE 53281,0:PRINT" [HOME IMOV
E THE CURSOR AROUND THE “;

3051 PRINT"SCREEN WITH THE CURSOR";

3032 PRINT" KEYS. DITTO FOR THE SPRITE LUSING MEN
U OPTION M.

3053 PRINT"I[CDIWHEN SATISFIED, TURN IT INTO DATA

76

3054
3055

3056
THE
3057

STATEMENTS BY USING OPTION B."

PRINT"THESE ARE LISTED AS LINES 30011-30020."
PRINT“LCDITHE REST OF THE INSTRUCTIONS ARE
DISPLAYED ON THE SCREEN."

PRINT*[2CD1APART FROM...! PRESS HOME TO MOVE
CURSOR BACK TO THE TOP LEFT"j
PRINT" , AND CLR/HOME TO ERASE THE SPRI

TE COMPLETELY."

3058 PRINT“CCDJIALSO, WHEN CHANGING COLOURS, PRESSI
NG 1 GIVES YOU MULTI-COLOUR ";

3059 PRINT“ZERD, ‘2° GIVES YOU MULTI-COLOUR ONE
LAND °'3° GIVESTHE ORDINARY 3

3060 PRINT"SPRITE COLOUR. "

3065 GOSUB 4000

3070 RETURN

4000 PRINT“[2CDIPRESS ‘SPACE’ TO CONTINUE"

4002. GETSP$: IFSP$<>" “THEN4002

4004 RETURN

29997 REM

29998 REM SPRITE DATA STORED FROM HERE

29999 REM

30011 DATA 13 ,1, 1 , 9@ , 12

30012 DATAO,2,128,0,2,128,0
30013 DATA2,128,0,2,128,0,2
30014 DATA128,10,170,128,8,0,0

30015

DATAB,0,0,12,0,0,12

300146 DATA&8,0,29,1,0,79,16

30017

DATALA4 ,31,192,16,7,255,244

30018 DATA1,255,253,0,127,244,0

30019

DATA31,208,0,7,44,0,1

30020 DATA0,0,0,0,0,0,0

30021

Notes

DATA -1

A few graphics characters to watch out for here, particularly in lines
180, 182 and 183.

Here we’ve used CBMP to represent pressing the Commodore logo
key and the P key together, and likewise for CBMN, CBMH and CBMY.
If you don't get a box appearing on the screen, you've gone wrong
somewhere!

There are no other graphic characters used, but you might get problems
with lines 3023 to 3038, which are meant to draw up a display of all
the available colours on the screen. You'll just have to be careful what
you press.

77

Finally our old friend is at it again, i.e. the up-arrow key has once again
appeared as a chinaman’s hat in a few places, in lines 626, 808 and 809.

To conclude

I hope you'll find some or all of the above listings useful. They should
certainly help towards a better understanding of how sprites work and
how they can be manipulated on the Commodore 64.

Before going on to user defined graphics and high resolution plotting,
it would help if we actually knew what we were going to be talking
about, so we’ll conclude chapter four with a fairly detailed look at the
graphics chip that does it all, namely the 6566 Vic chip.

6566 Video interface chip

The 6566 is a multi-purpose colour video controller device, capable
of being used in quality arcade game terminals, which we have control
over in the Commodore 64. It has 47 control registers, which are
accessed by any 6502 compatible 8 bit microprocessor, in this case
the 6510. In this section we’ll be taking a detailed look at its various
operation modes and the graphics options it gives us.

Character display mode

In this particular mode, the 6566 fetches character pointers from the
video matrix area of memory, and translates that into character dot
addresses in the 2K character base of memory. The video matrix
consists of 1,000 locations in memory, each containing an 8 bit
character pointer.

The location of this video matrix in memory is defined by VM13-VM10
in register 24 ($19), which are used as the four most significant bytes
of the video matrix address. The lower order 10 bits are provided by
an internal counter, in VC3-VCO, which steps through each of the 1000
character locations.

The 6566 has some 14 address outputs, as follows:

78

Character Pointer Address

A1T AlZ2 A1l A10 AD9 AOB AOO

VMIZ UM12 VM11 VMI1O VC9 VCB VCO

The 8 bit character pointer permits up to 256 character definitions to
be available simultaneously. In other words, under normal operating
conditions, we are capable of displaying up to 256 different characters
on the screen at once.

Each character consists of an 8 by 8 bit dot matrix, and is stored in
the character base as eight consecutive bytes.

The location of this character base is defined by CB13-CB10, which
are also installed in register 24. These are used for the three most
significant bits of the character base address.

The 11 lower order addresses are formed by the 8 bit character pointer
from the video matrix {D7-D0), which selects a particular character,
and a 3 bit raster counter (RC2-RCO0), which selects one of the eight
character bytes.

The resulting characters are formatted onto the screen in 40 columns
of 25 rows: a total of 1000 screen locations, as we saw above.

In addition to this 8 bit character pointer, there is a 4 bit colour nibble
(simply another word for half a byte, you may recall) associated with
each video matrix location. The video matrix must be 12 bits wide.

The colour nibble defines one of the 16 available character colours for
each character.

The character data address table looks like this:

Character Data Address

A13 Al2 A1l A10 ADZ ... AOZ A2 AD1 AOO

CB13 CB12 CB11 D7 D& ... DO RC2 RCY RCO

79

Standard character mode

In standard character mode, the 8 sequential bytes from the character
base are displayed directly on the 8 lines in each character space.

A ‘0’ bit causes the background colour £0 (from register 33, or $21)
to be displayed, while the colour selected by the colour nibble, known
as the foreground colour, is displayed for a bit thatis settoa ‘1’. These
colour codes have already been given in chapter two, and are simply
the ordinary 16 colours available to us.

In other words, each character has a unique colour determined by the
4 bit colour nibble, and all characters must share the same background
colour, i.e. the screen background colour.

One of our earlier programs illustrated this, when displaying a collection
of randomly coloured spaces on the screen.

To illustrate the point further, it would be possible to change the reverse
space printed to be a reverse letter of the alphabet, or indeed any one
of the characters available.

Function Character Colour Displayed

Bit
Background 0 Background Colour £0
Foreground 1 Colour chosen by colour nibble

Multi-colour character mode

Multi-colour mode gives us a much greater flexibility in choosing our
displays, as it allows up to four different colours to be printed within
each character space, but our character resolution is now halved in
the horizontal direction.

The multi-colour mode is selected by setting the MCM bit in register
23, or $16, to a ‘1", which causes all the dot data stored in the character
base to be interpreted totally differently.

If the most significant bit of the colour nibble is a ‘0’, then the character
will be displayed as described above, in standard character mode.

80

When it is set to a ‘0’, it is displayed in multi-colour mode as shown
below.

Thus the two different modes can be displayed on the same screen,
but it is not possible to use any of the colours other than the first 8.

Function Character Colour Displayed
Bit
Background 00 Background Colour £0
Background 01 Background Colour £1
Foreground 10 Background Colour £2
Foreground 1" Colour from 3 LSB of
colour nibble

Since we now require two bits to specify the colour of a dot, each
character space is reduced to being 4 pixels by 8 pixels, with each
horizontal ‘pixel’ being the equivalent of two pixels in ordinary mode,
in order to allow us to select the colours as indicated. Still, we can
now have two background and two foreground colours per character
space.

Extended colour mode

Extended colour mode allows the selection of background colours for
each character space within the normal 8 pixel by 8 pixel resolution.
Thus greater flexibility of colour choice is given than in standard
character mode, without the loss of resolution given by multi-colour
mode.

However, extended colour mode and muiti-colour mode cannot be
used at the same time.

This mode is selected by setting the ECM bit of register 17, or $11,
to a ‘1’. The character dot data is displayed exactly as in standard
character mode, in that the foreground colour as determined by the
colour nibble is displayed for every character bit set to a ‘1", but the
two most significant bits of the character pointer are used to select
the background colour for each character space as follows:

81

Character Pointer Background Colour Displayad
for each nibble

MSB Pair

00 Background Colour £0
01 Background Colour £1
10 Background Colour £2
1 Background Colour £3

Since the two most significant bits of the character pointers are used
for colour definition, this means that only 64 characters can be
displayed on the screen in extended colour mode. As the 6566 forces
CB10 and CB9 to be a ‘0" regardless of anything else going on, we
are limited still further to the first 64 characters. However, these can
be either the first 64 characters of ROM, or of your own character set.
We'll be looking at this in the next chapter.

This mode allows us to choose any one of 16 foreground colours, and
one of four background colours, for each character space.

Bit map mode

The most powerful of all the graphical modes on the 64. It is also the
slowest to operate, and is usually handled from machine code rather
than the much slower Basic.

Needless to say, in this mode everything is handled totally an. ~atly
from all the other modes, and it works in the following way:

In bit map mode the 6566 fetches data from an 8000 byte block of
memory, and displays it on the screen in a one-to-one ratio. In other
words, each bit of those 8000 bytes relates exactly to a bit as it appears
on the screen.

This gives us a maximum resolution of 320 pixels by 200 pixels, or 64000
pixels, or bits. Each bit being one-eighth of a byte, this gives us our
(64000/8) 8000 bytes of memory required.

Bit map mode is selected by setting the BMM bit in register 17, or
$11, toa ‘1.

The video matrix is still accessed as before, but the data contained

there is no longer interpreted as character pointers, but instead it is
read as colour data.

82

The video matrix counter is then also used as an address to fetch the
dot data for display from the 8000 byte display base.

The display base address is made up like this:

A13 Al12 A1l ... AO3S AOZ AOL AQO

CB13 V€9 vC8 ... VCO RC2 RC1 RCO

Where VC denotes the video matrix counter output, RC the 3 bit raster
line counter, and CB comes from register 24. The video counter goes
through the same 40 locations for eight raster lines, going on to the
next 40 locations every 8 lines, while the raster counter is incremented
for each horizontal line on the screen (otherwise known as a raster line).

Because of this, each block of 8 sequential memory locations in the
8000 byte base is formatted as an 8 pixel by 8 pixel block on the screen.
The first byte is the top line, the second byte the second line, and so on.

Standard bit map mode

When standard bit map mode is initialised, the colour information
comes only from the data stored in the video matrix, and anything
that the colour nibble tries to do is totally ignored.

The 8 bits are divided into two 4 bit nibbles, which allows two colours
to be independently selected for each 8 pixel by 8 pixel block. When
a bit in the display memory is set to a ‘0’ the colour of the output dot
is set by the least significant, or lower, nibble, and when it is set to
a ‘1’ the colour is selected by the most significant bit, or highest nibble.
Thus:

Bit Colour Displayed

0 Lower nibble of video matrix pointer
1 Higher nibble of video matrix pointer
Multi-colour bit map mode

Multi-colour bit map mode is selected by setting the MCM bit in register
22, or $16, to a ‘1’, in addition to setting the BMM bit in register 17.

This mode uses the same 8000 byte block of memory to display its

83

characters, but this time the data is handled in a totally different way
(as you might expect!), like this:

Bit Pair Display Colour
00 Background Colour £0-register 33

01 Higher nibble of video matrix pointer
10 Lower nibble of video matrix pointer
11 Video matrix colour nibble.

This time we are using the colour nibble, along with the video matrix
pointer and the background colour £0 from register 33. Thus we can
have three separately chosen colours in each 8 pixel by 8 pixel block,
along with one standard background colour.

However, due to the bit pairing to get the colour information, each
horizontal pixel is the equivalent of two pixels in ordinary mode, and
s0 our maximum resolution is halved to become 160 dots by 200.

Sprites

We've already seen how sprites can be displayed and formed, now
let’s get a little more technical and go into further detail on how sprites
behave in the way that they do.

Sprites on and off

Each sprite can be turned on or off independently of any other sprites
that happen to be around, and they are turned on by selecting the
corresponding enable bit in register 21 to be a ‘1", If this bit is set to
be '0’, nothing will happen to that particular sprite.

The SID chip memory map was explained in some detail in the chapter
on sprites and high resolution graphics.

It sounds wonderful to talk about disabling a sprite - kicking sand in
its face - but as we’ve seen this is simply done by setting the appropriate
bit in register 21 to a zero.

Positioning a sprite

Each sprite is positioned according to X and Y co-ordinates, on a 320
by 200 scale respectively. However, not all these locations can be seen

84

on the screen, which allows you smooth scrolling off the screen in
both horizontal and vertical directions.

For practical purposes, the display should be confined to a vertical
scale of 50 to 200, and a horizontal scale of 25 to 315.

The number put into the X and Y co-ordinate registers determines
where the sprite will appear on the screen. We gave the memory map
for these registers in the earlier part of this chapter.

One other register must be considered, register 16, or $10. This must
be set to a ‘1’ if the X position exceeds 2565 (and X re-set to zero),
and back to a ‘0’ (and X to 255) again when going the other way. This
allows a sprite to travel across the full width of the screen without
coming to a sudden halt somewhere near the right-hand side.

Colouring a sprite

Each sprite has a separate 4 bit register to determine its colour, and
as usual there are two different colour modes, known as standard and
multi-colour.

In standard mode, a ‘0’ bit of sprite data allows the background colour
to show through, and this is referred to as being ‘transparent’.

If the bit is set to a ‘1’, then the sprite colour is shown as dictated
by the corresponding sprite colour register: see earlier memory map.

But each sprite, regardless of its neighbours, can be selected as a multi-
colour sprite by setting the MCS bits in the sprite multi-colour register
29, or $1C.

When this bit is set to a ‘1’, the sprite will be displayed as a multi-
colour sprite, with the colour coming in as follows:

Bit Pair Colour Displayed

00 Transparent

01 Sprite Multi-colour £0-register 37

10 Sprite Colour-registers 39 through 46
1 Sprite Multi-colour £1-register 38

As we now require two bits to define the colour of each sprite, the
resolution of that sprite is halved in the horizontal direction, as each

85

‘pixel’ becomes the equivalent of two pixels in standard mode.

It does give us control over three colours per sprite, plus one
background colour, but the multi-colours must be the same for all
sprites in multi-colour mode.

Magnifying sprites

Sprites can be doubled in size either horizontally or vertically, or both,
and reduced back to normal size again.

Two registers control sprite expansion. If the relevant sprite bit is set
to a ‘1", the sprite is expanded; if set to a ‘0’ it goes back to normal
again.

Register Function

29 ($1D) Expand horizontally
23 ($17) Expand vertically.

Despite expanding the sprite, we don’t get any increase in resolution,
as the same 24 pixel by 21 pixel grid is displayed, but expanded in the
appropriate direction.

Priority amongst sprites

This determines which sprite has priority over what, i.e. if sprites pass
over each other, or over anything else that happens to be on the screen,

register 27 ($1B) determines what will be displayed.

This can be individually selected for each sprite, by setting the
appropriate bit in register 21 to be a ‘0’ or a ‘1, and functions like this:

Register Function

Bit
0 Non-transparent part of sprite
will be displayed
1 Non-transparent part displayed only

instead of background colour £0 or
multi-colour bit pair 01

Sprites also have a fixed priority amongst themselves, in that sprite

86

number 0 will always be displayed over sprite number 1, 1 over sprite
number 2, and so on.

Sprite to sprite priority is always sorted out before sprite to data-on-
screen priority.
Sprites colliding

Itis possible to detect two types of sprite collision, sprite to sprite and
sprite to anything else on the screen.

A collision between two sprites is said to occur when two non-
transparent parts of each sprite want to occupy the same screen area.

When this happens, the appropriate bits in the sprite collision register,
register 30 or $1E, are set to ‘1’ for both sprites.

As more sprites collide, the appropriate bits in register 30 continue
to be set, until a read of this collision register, when all the bits are
set back to ‘0’ again.

Sprites can even collide off-screen, so watch out!

The second type of collision is between a sprite and anything else on
the screen.

When this occurs the appropriate bit for the sprite concerned is set
in register 31, or $1F, to ‘1", although as before the collision of
transparent data does not generate a setting of this register.

The display data from a 01 multi-colour bit pair also does not generate
a setting to ‘1’ of this register.

Again, collisions can take place off-screen, and the register is cleared
back to zeros again as soon as it is read.
Accessing sprites in memory

We've touched on this one aiready, but for the sake of complete clarity
here we go again.

The data for each sprite is stored in 63 consecutive memory locations,

87

and some of these we've talked about earlier.

Naturally we have to tell the 6566 where the data for each sprite is
stored, and this is done using memory locations 2040 to 2047, the 8
bytes immediately after the screen RAM, and each byte refers to one
sprite.

Thus location 2040 refers to sprite 0, 2041 to sprite 1, and so on, up
to 2047 which refers to sprite 7.

If a value of 13 is stored in location 2042, it means that the data for
sprite 2 is to be found at the 63 memory locations starting at the 13th
block of sprite data, which happens to be memory location 832.

The eight-bit sprite pointer, together with the six bits from the sprite
byte counter (to address 63 bytes), define the entire 14-bit address
field, like this:

A13 A12 All AL0 AOY AOB AO7 ADG AOS ... ADO

SP7 SP6 SP3 S5P4 SP3 SP2 SP1 SPO SCS ... SCO

Where SP are the sprite pointer bits, and the SCs are the internally
generated sprite counter bits. The sprite pointers are read from the
video matrix at the end of every raster line.

When the Y position register of a sprite matches the current raster
line count, then the sprite data is fetched, with internal counters
stepping through the 63 bytes of data, displaying 3 bytes on each raster
line.

Other screen features
As well as all these graphical and sprite features, the 6566 is capable
of much more, as we shall see.

Screen blanking

The display can be blanked off by setting the DEN bit of register 17,
or $11, to a zero. POKE 53265,11 achieves this.

When we blank the display area, the entire screen is filled with the
exterior colour as set in register 32, or $20. This allows us to perform

88

full processor utilisation of the system bus, or in other words access
things like cassette decks, Vic disk drives, and so on.

Sprites, however, unless specifically disabled, continue to shine
through.

To get the screen back, the DEN bit must be set to-a ‘1’ again, and
POKE 53265,27 achieves this.

Selecting rows and columns

As we've seen, we normally get a 40 column by 25 row screen, but
for some purposes it would be desirable to change this. For instance,

to enable smooth scrolling of the screen.

This is achieved by altering the RSEL bit in register 17, or $11, and
the CSEL bit in register 22, or $16, and works like this:

RSEL Number of Rows CSEL Number of Columns

0 24 0 38
1 25 1 40

This effectively moves the border over on to the screen area, but leaves
the characters previously displayed there still intact, but no longer
visible.

As an example, POKE 53265, 19, loses the top half of the top line of
the screen, and the bottom half of the bottom line of the screen. POKE
53265,27 gets us back to normal again.

Scrolling the screen

The entire screen display can be scrolled either horizontally or vertically,
one pixel at a time, up to a maximum of one character space. Using
this in conjunction with the screen window (screen display minus
border) facilities mentioned previously, enables us to produce smooth
scrolling of the display area, while updating the system memory only
when a new character row or column is required.

This method is also used to centre a fixed display within the screen
window.

Bits Register Function

X2,X1,X0 22 ($16) Horizontal Position
Y2,Y1,Y0 17 ($11) Vertical Position
Light pens

The light pen input stores the current screen position in two registers,
labelled LPX and LPY.

The X position is stored in register 19, or $13, and will contain the 8
most significant bytes of the X position at the time of detection.

As the X position is defined by a 512 (9 bit) state counter, resolution
to two pixels is provided.

The Y position, stored in register 20, or $14, allows us a single raster
resolution on the screen display, or down to one pixel.

This light pen input may be triggered only once per frame, or screen
scan, and subsequent triggers with that frame will have no effect.
Raster register

It's always tempting to make comments about people wearing red,
green and yellow hats, but instead this is a dual function register.

Reading the raster register 18, or $12, returns the lower 8 bits of the
current raster position. The higher 8 bits are stored in register 17, or $11.

The visible display window is from raster 51 to raster 251, or $033 to
$OFB.

A write to the raster bits, including RC3, is stored for use in an internal
raster compare, and when the current raster matches this written value,
the raster interrupt latch is set.

Interrupt registers

The interrupt register shows the status of the four sources of interrupt,

which are:

90

Latch Enable When Set
Bit Bit

IRST ERST Raster Count = Stored Raster Count
ISDC ESDC Sprite collide with data on screen
ISSC ESSC Sprite collide with another sprite
ILP ELP Negative transition of LP input

{once per frame)
IRQ

in order for the interrupt request to set the IRQ output to ‘0, the
corresponding interrupt enable bit in register 26, or $1A, must be set
toa’t.

Again, once an interrupt latch has been set, it may only be cleared
by writing a ‘1’ to the appropriate latch in the interrupt register.

Dynamic screen refresh

Five 8 bit row addresses are refreshed every raster line, and this
guarantees a maximum delay of 2.02 ms between the refresh of any
single row address in a 129 address system, or 3.66 ms in a 256 address
system.

Reset

The reset bit RES in register 22, or $18, is not used in the normal mode
of operation.

Thus it is normally set low, and setting it high suspends the entire
operation of the 6566!

To be used with caution.

Theory of operation
The 6566 interacts with everything else on board the 64 in a special way.

The 6510 requires access to and from the system buses only during
that portion of its cycle known as phase 2, when the clock is set high.

The 6566 takes advantage of this system, and therefore only accesses

91

memory during phase 1, or when the clock is set low.

Therefore, such operations as getting character data, or refreshing the
screen, or anything else that the 6566 handles are totally transparent
to the 6510, and thus don’t reduce the speed of processor operation.
The 6566 itself provides the various interface control signals necessary
to perform and maintain this kind of bus sharing.

The 6566 also provides the signal to enable address control, used to
disable the 6510 address bus drivers (I nobly resist all comments here!),
thus allowing the 6566 to access the address bus for itself. Address
Enable Control is active {set low) during phase 1 of the clock cycle,
so that again the 6510 is not affected in its speed of operation.

However, because of all this all memory accesses must be completed
in at most half a cycle, or 500ns, as the 6566 provides a TMHz clock.

This could become a problem, since some of the operations of the
6566 require much longer (relatively) than a mere half a cycle. In
particular, sprite generation requires that the 6566 also grabs a slice
of the action during phase 2, which means that the 6510 must itself
be disabled somehow.

This is achieved with the BA, or Bus Active, signal, which is connected
to the ROY input of the 6510.

This is normally set high, but can be set low to indicate that the 6566
wants to do some processing during phase 2. In all, the 6566 has three
phase 2 times after BA has been set low in order to complete all its
data access.

On the fourth phase 2 after BA being set low, the Address Enable
Control remains low until the 65666 has finished.

More manipulation must take place during the fetching of the character
pointers, which takes some 40 consecutive phase 2 accesses to fetch
the video matrix pointers.

Sprites, as we’ve said, also require more than one phase 2 access,
and in fact require four accesses in total, as follows:

92

Phase Data Condition

1 Sprite Pointer Every Raster Scan

2 Sprite Byte 1 Each raster while sprite
is displayed.

Sprite Byte 2 As above

Sprite Byte 3 As above

N -

Thus sprite pointers are fetched every other phase 1 at the end of every
raster line.

All this bus control is handled internally by the 6566 itself, thank
goodness.

Memory interfacing

The 6566 has thirteen fully decoded addresses for direct connection
to the system address bus, and can be accessed in the same way as
any other peripheral device.

The following 6510 interface signals are provided:

Data Bus DB7 - DBO

These 8 data bus pins combine to form the bi-directional data port,
which can only be accessed while the Address Enable Control and
Phase 0 are high, and chip select is low.

Chip Select CS

This is brought low to enable access to the device registers in
conjunction with the address and Read Wirite pins. It is only recognised
as being low when Address Enable Control and Phase 0 are high.

Read Write R/W

This is used to determine the direction of data transfer on the data
bus, in conjunction with CS. When R/W is high, data is transferred
from the selected register to the data bus output, and when it is low
data presented on the data pins is loaded into the chosen register.
Address Bus A05-A00

These lower six pins are bi-directional, and are used as inputs during

93

a processor read or write to the video device. The data on the address
inputs selects the register for read or write as defined in the register
map.

Clock Out PHO

The clock output, or phase 0, is the T MHz clock used as the 6510
processor phase 0 in. All system bus activity is referenced to this clock,
the frequency of which is generated by dividing the 8MHz video input
clock by 8.

Interrupts IRQ

The interrupt output is brought low when an enabled source of interrupt
occurs within the device. It requires an external pull-up register.

Video interface

The output signal from the 6566 consists of two signals, which need
to be mixed together.

SYNC/LUM contains all the video data, and requires an external pull-
up of 500 ohms.

The Colour output, containing all the colour information for screen
display, is terminated with 1,000 ohms to ground.

These two signals are then mixed before being fed through to your
television set.

Conclusion
That concludes our look at the capabilities of the 6566 video interface
chip. Now that we know how it all works, let’s start putting our

knowledge into action, and take a look at the art of producing
user-defined graphics.

94

5

User-Defined
Graphics

Introduction

With the Commodore 64 you are given a full complement of characters:
numeric characters, alphabetic characters, and a whole host of other
graphical symbols.

Using these it is possible to create some very sophisticated displays
indeed, and remembering that we also have control over colour and
whether or not to print out a character in reverse field, in many
instances it is only our imagination that lets us down when it comes
to producing exciting screen output.

As if that wasn’t enough, we can also display in a variety of different
graphical modes, as was seen at the end of the last chapter. Whether
we want to go into ordinary high resolution mode, muiti-colour mode
or extended colour mode, the user is given a great deal of choice on
how to display images on the screen.

Finally, of course, we also have sprites. Again we are are presented
with a choice of different modes when displaying these, and again
we can use ordinary sprites or multi-colour sprites. Alas, there is no
such thing as an extended colour sprite!

But despite all that there are still times when we wish for a few more
different characters from the keyboard. The existing graphics set, albeit
a most useful one, is not without its limitations. Most of the characters
are straight lines, and the few that do depart from this standard image
are of little use except when writing card playing games.

There are times when we are using the existing character set, and we
want to add a couple of characters to it. For example, Commodore
provide us with a left arrow key and an up arrow key, but not a down
one or one pointing to the right. It would be nice, on occasions, to
be able to display such characters.

95

How do we do this ? The answer of course is that we define our own.

How characters are made up

We know that all the characters available directly from the keyboard
are made up of an eight pixel by eight pixel grid, with suitable bits
turned on or off depending on what the character is going to look like.

For example, the letter A is made up in the following manner:

ABCDEFGH
e ¥,

L RERE,
S
L EEERRR
LR L ER
LEE, L RE,
SRR R,

And the ‘@’ symbol looks something like this:

ABCDEFGH
L ERER, L
LKL L X,
RS S
LR REE,

SHE, L ®,
Lo ERER,

Don’t worry about all the letters on the top of each grid, we’ll come
to those later.

Each character, then, is made up on an eight by eight pixel grid, like
the two shown above. You'll note that the alphabetic characters don't
extend to the edges of the grid on either the left hand side or the right,
nor do they reach the bottom of the grid.

This is true for all the alphabetic characters, and it is done to prevent

them merging together as you type. Imagine trying to unravel a
program listing where all the characters merged into each other.

96

On the other hand, the graphical characters (on the whole) do extend
to the edges of the grid. This is so that they can be joined up, and
thus used to create continuous lines, pictures, and so on.

What we're going to do is to remove some of the existing characters
from the Commodore 64's character set, and replace them with some
of our own.

Which keys can we choose?

Re-defining keys

The answer, perhaps not surprisingly, is that we can choose any keys
that we feel like.

There are limitations, of course, but by and large we are not too
restricted when it comes to re-defining characters. However, most of
the time we would not want to re-define the entire keyboard, but would
like to keep some of the existing keys. For example, you might like
to keep all the alphabetic ones, and the numeric ones, and get rid of
everything else.

Whichever you choose is entirely up to you, but first you need to know
where everything is stored in the computer’'s memory.

Normally, unless we tell it otherwise, the 64 will get its character
information (that is, the information on how each character is made
up), from the character generator ROM, which sits in memory from
locations 53248 to 57344, a total of 4K of memory divided up into 8
blocks of 512 bytes each.

Each 512 bytes, remembering that every character takes up 8 bytes
of storage space, thus stores information on 64 characters.

In order, these 8 blocks are laid out as follows:

Block Address Description

Decimal Hex
0 53248 $D000 Upper case characters
0 53760 $D200 Graphics characters

97

0 54272 $D400 Reverse case upper case

characters

0 54784 $D600 Reverse case graphics
characters

1 55296 $D800 Lower case characters

1 55808 $DA00 Upper case & graphics

1 56320 $DCO0 Reverse case lower case
characters

1 56832 $DEQOO Reverse upper case and

graphics characters

Some of those numbers may seem a little bit familiar, but don’t worry.
In the 64, nothing ever occupies the same place at the same time, it
all gets switched around to cope with everything.

Choosing characters

To decide which set of characters we're looking at at any one time,
we obviously have to point the Vic chip in the right direction.

This is relatively easy for the user to do, but gives the 64 a few problems
(thankfully, they’re transparent to the user), since the Vic chip which
controls all the graphics is only capable of looking at 16K at a time.

Being an 8 bit chip it should be capable of addressing the full 64K all
at the same time, but Commodore decided that this was not to be,
and instead of the usual number of 16 address lines coming from the
chip, they give us just 14. Thus we come down from the giddy heights
of 64K to a mere 16K.

To select which block of 16K we want to look at, we have to alter
CIA£2 (one of the input/output lines).

First of all, we need to know where the four 16K blocks of memory
sit within the 64.

98

Blocks of memory

To swop from one block to another, we need a statement like:
POKEB6678, PEEK(56578)OR3

This sets bits 0 and 1 of port A of the second 8528 chip to zero.
Then, we need to:

POKEB6576, (PEEK(56576)AND252)ORA

which actually allows us to swop from block to block.

A takes on the following values:

A =0 - looking at block 0, starting at location
498162, or $C000-$FFFF

A=1 - looking at block 1, starting at location
32768, or $8000-8BFFF

A =2 - looking at block 2, starting at location
16384, or $4000-$7FFF

A=3 - looking at block 3, starting at location 0
or $0000-$3FFF

At power up we are always addressiig block 0. If the Vic chip I8 looking
at either block 0 or block 3, then the character ROM is automatically
switched into the Vic chip’s memory space, starting at location $1000.

if you want to move the location of the character ROM around yourself,
you'll need to:

POKE 53272,(PEEK(63272)AND240)ORA

where A, reasonably enough, determines where the character ROM
is going to sit. If A has a value of 0, it will start at memory location
zero, a value of 2 will put it at location 2048 onwards, and 8o on In
steps of 2048.

Waell, that's been a lot of theory, let’s start putting it into practicel

Altering character sets

You'll recall how characters are stored on the 8 by 8 pixel grid:

ARCDEFGH
L EERE, L
CERE, EE,
L EE_HEE,
LR RER,

As is usual with bits and bytes, we're going to give a series of values
to the letters A to H on the grid, and these are the usual values of
128,64,32,16,8,4,2 and 1.

For each row of the character ‘@’, in order to get the correct data
to be stored in the computer, we just need to add up the relevant
numbers for all the bits that are turned on in that row.

So, as far as the ‘@’ symbol is concerned, the first row of bits gives
us a value of 32 plus 16 plus 8 plus 4, or a total of 60. Continuing on
down the character, the seventh row has the same value, and the final
row of course has a value of 0.

We're going to use exactly the same principle when re-defining our
own characters, and just as an example we’ll define a little man.

Taking our usual grid:

100

A B C D E F 6 H
128 64 32 16 84 2 1

e HRNAEN, v e nnn .
“senmaa e WRRERR, L., ..
......... HHEEEN . L L e
......... 2 2
..... R 2 1 = T
........ Y
..... B L
R X 1 T
B L X X T T T e e S
e R, RERERE, L NKR, ..
T = T S
R PR T T ST T
T R Y T P
T 2 2 T X %%

In order to define our character, we now have to work out the value
of all the bits that are turned on and off, in order to POKE the relevant
number into the computer’'s memory.

We get this value by looking at each row in turn, and seeing which
bits are turned on and which are turned off. For the first row, you'll
see that bits A,B and C are turned off, bits D and E are turned on,
and bits F, G and H are turned off.

Earlier on we gave each of the bits A to H a numerical value, and the
values for D and E were 16 and 8 respectively. Adding these up gives
us a value of 24, and this is the first value in our soon-to-be formatted
data statement for this new character.

The next line is exactly the same, but the third line now turns on bits
C and F as well as bits D and E, while the others remain off. Again
adding the values up gives us a total of 32 plus 16 plus 8 plus 4, or
60. This is the third entry in our data statement.

101

Taking each line in turn, we arrive at the complete list of values:
24,24,60,90,153,36,36,36. We will use these figures to instruct the
computer which bits to turn on and which to turn off for our character.
This same character, incidentally, appears in the final program in this
chapter.

So, having designed everything on paper, and worked out all the
necessary values for each character, it's back to the 64 again.

Just as an example, we're going to keep all the upper case alphabetic
and numeric characters, as well as the standard graphic set, and re-
define all the reverse image characters. Thus we’ll hang on to the first
128 symbols in the character set, and re-define the last 128 symbols.

Bringing in the ROM

Since the character ROM is just that, Read Only Memory, there is no
way that we could ordinarily alter it. However, this doesn’t prevent
us from bringing all this ROM into RAM, and doing what we like with it.

As we've seen, the upper case and graphics characters are normally
stored in locations 53248 to 54271. Unfortunately, because of the way
the 64 was designed, this puts it between the input/output ROM sitting
on top of it, and the ordinary RAM sitting underneath it. So our first
task is to remove the input/output ROM, and this is done with a simple
POKE:

POKE 1,51

However, due to the constantly refreshed interrupts, we must do a
little more than this before we can copy in any of the character ROM,
since the interrupts will, quite reasonably, expect all that input/output
still to be in place. When it finds that it isn’t, the machine would simply
crash and we’d have to start again. So, to switch off all the interrupts
we need to issue the following command:

POKE 56333,127
This must be done before removing the input/output.
Now we are in a position where we can copy the first 1,024 bytes of

character ROM, since this is where the characters that we want to
keep are situated, into the computer’s RAM, and this is achieved by:

102

FORI=0TO1023
POKE 53248 + |, PEEK (53248 + 1)
NEXTI

Storing characters

Having got everything into RAM, the locations beyond 54271 are ready
to store our own characters. Why 542717 Well, we've just copied in
128 characters, each of which occupy 8 bytes in memory, 8 times 128
is 1024, and since we started at location 53248 we must move another
1024 bytes on, which takes us to memory location 54272 where we
can start storing our own characters.

This is done quite simply by reading in data, and then storing it at the
appropriate locations, like this:

FORI=0TO7
READA

POKE 54272 +1,A
NEXT

DATA 24,24,60,90,153,36,36,36

Obviously on most occasions you would wish to define more than one
character, and so there would be more data statements, and the FOR
... NEXT loop would also have to be adjusted accordingly.

Having read all the data in, we have to restore the input/output to
normal again, switch all the interrupts back on, and tell the Vic chip
where its character ROM has gone to (or in this case, character RAMI).

This is achieved with the following set of statements:

POKE 1,55
POKE 56333,129
POKE 648,196
POKE 56576,4
POKE 53272,21

103

The complete program

And that gives us our complete program. Putting it all together, you
might end up with something like:

10 FPOKEE S6333,127

20 FPOKE 1,51

Z0 FORI=OTO1023

40 POKE S3248+1,PEEK (S3248+1)
S0 NEXTI

60 FORI=OTAY

70 READA

8¢ POKE S4272+1,A

PG NEXT

160 POKE 1,55

110 POEE S5&63Z3,129

124 POEE 648,196

130 POKE 5&6576&.4

140 POKE 53272,2

100G DATA 24.24,560,90.153,36,36,36

The character that you have just created can now be displayed in a
variety of ways. Most simply, if you switch reverse field on and press
the ‘@’ key, instead of a reverse field ‘@’ you will now get a little man.
By defining another character to be a little man with his arms raised
and then swopping from one character to another, as has been done
in the final program in this chapter, you would get an animated effect.

The other way to see your character would be to POKE it onto the
screen. For instance, to display the man in the top left-hand corner
of the screen, you would:

POKE 50176,128

Always remembering to alter the colour as well, with a POKE 55296, 1
or whatever.

POKE 50176?! Yes, there are a number of side effects to re-defining
characters in this way.

First of all, the memory reserved for the screen now starts at location

50176, although it still of course occupies 1000 bytes, one for each
screen location. Colour memory, as always, remains unaffected by

104

all this, and still starts at location 55296.

Our character base, as we've seen, now starts at location 53248. This
leaves enough room to re-define 128 characters and store them away,
while still keeping all the normal characters. Attempting to go into lower
case produces some very strange results indeed!

What happens to sprites?

Finally, we now have to be a bit more careful when designing and
displaying sprites. Normally we would find out where the sprite data
was stored by referring to memory iocations 2040 to 2047, the eight
after the memory set aside for the screen RAM. Well, just as the screen
RAM has moved up to start at location 50176, so the sprite data
pointers have gone with it, and they now live at locations 51192 to
51199.

To find out where to store your sprite data, use the formula:
49012 +74*A

where A is the number of the data block you wish to point the sprite
to. For example, if you want to store sprite O at data block 13, you'll
have to POKE 51192,13 and put the data at location 49012+ 74*13,
or 49974.

As a bonus for having all these new aggravations, sprites have also
grown in size! They now need 72 bytes of data for each one instead
of the usual 63, since they now occupy a 24 pixel by 24 pixel grid and
not the more usual 24 by 21.

Finally, don’t try to use run/stop and restore if you want to break into
a program. Some very odd things happen.

Other graphics modes
User-defined graphics, or indeed the existing character set, can be
displayed in a number of ways. Earlier, we just talked about POKEing
characters onto the screen, or getting the user-defined characters by

going into reverse field mode.

However, there are another two display modes that we haven’t yet
looked at, apart from high resolution which comes in the next chapter,

105

so we’ll round off this one by looking at multi-colour mode and
extended colour mode.

Multi-colour mode

Multi-colour mode can be used with either high resolution standard
mode graphics, or ordinary standard graphics, and it is a way of getting
more than just two colours (foreground and background) into each
character square.

Normally, when displaying characters on the screen, they can take
on one of two colours. Either the screen background colour, or the
character colour reserved for that screen position.

Thus we can display many colours on the screen at once, but our
contro! of colour within each character space is limited.

Multi-colour mode allows us to get around this, but with a lowering
of the maximum resolution available on the screen. We are limited to
a maximum screen resolution of 160 pixels by 200 pixels, or in other
words half the normal horizontal resolution.

This is more than compensated for by the additional display facilities
gained, and high-res multi-colour mode can produce some staggering
results: we'll be seeing this in chapter six.

For now we'll stick to ordinary characters, and look at the registers
that have to be altered to get us into this mode.

To turn on multi-colour mode, you'll need to address memory location
63270 thus:

POKE 53270,PEEK(53270)0OR16

This turns on bit 4, and leaves the rest as they are. To turn it off again,
POKE 53270,PEEK(53270)AND239

This turns off bit 4, and again leaves the rest of the register as it was
before we started. Multi-colour mode is actually set on or off for each
character space on the screen, so that it is possible to mix muiti-colour

and hi-res graphics on the same screen, if required.

This is done by choosing your colours carefully. If the number in colour

106

memory for that space is less than 8, then that space is produced in
ordinary hi-res mode. If the number lies between 8 and 15 then we're
into multi-colour mode for that particular space. This is simply altering
bit 3 of the colour memory (beginning at decimal 55296, and never
moving, unlike just about everything else on the 64}.

The colours that can be used in multi-colour mode are dictated as
follows:

Each dot in a multi-colour space (8 pixels by 8 pixels, but remembering
that each horizontal pixel is the equivalent of two normal ones) can
take on one of four colours:

The screen colour, from background register number 0
The colour in background register number 1

The colour in background register number 2

The character colour

These memory locations are respectively:

53281 ($D021) : bit pair 00
53282 ($D022) : bit pair 01
53283 ($D023) : bit pair 10
Colour specified by colour memory, starting at 55296: bit pair 11

It is the bit pairing that determines what colour will be displayed in
each pixel, and it operates in the same way as multi-colour does with
sprites.

Take, for example, our oid friend the character ‘@’, made up in normal
high-res graphics like this:

0111100
01100110
01101110
01101110
01100000
01100010
00111110
00000000

In normal mode, wherever there's a 1 the pixel is turned on (character
colour), and where there’s a zero it's turned off (screen background
colour).

107

In multi-colour mode we use the bits in pairs {hence the halving of
horizontal resolution) like this:

Coo11 11 00
1 10 g1 1o
01 10 11 10
Gl 10 11 1¢
01 19 o0 o0
Gl 10 Q0 10
[S 1O i1 10
O OG0 00 OO0

By reference to the above table we can see which colour each one
part of the symbol ‘@’ will come out as.

By bearing all this in mind, and utilising some of the character definition
technigues as described earlier, some quite stunning displays can be
made without resorting to sprites, or indeed high resolution displays.

To give you just a short programming example, which prints a number
of different coloured characters onto the screen:

10 POKE S3270.PEEK(53270)0R16 : REM TURN ON MULTI-
COLOUR

20 POKE 53282,1 REM WHITE

30 POKE 53283,6 REM BLUE

40 POKE 53281,5 : REM GREEN

50 PRINT "ABCDEFGHIJ"

60 FORI=0TO0%:POKESS5296+1,2:NEXT

Truly horrendous, but at least it illustrates the variety of colours that
can be displayed.

To finish with multi-colour mode (for the time being), it is possible
to change instantly the colour of every dot drawn in a particular colour.
Thus everything drawn in the screen and/or background colours can
be changed immediately.

All you have to alter is either the first or the second background colour.
Finally, a quick way of getting into muiti-colour mode is to turn it on
in the usual way with the POKE 53270 etc., and then change the colour

of everything using the logo key. Thus, logo and 9 will give you a brown
colour, or multi-colour white.

108

Extended background colour mode

This is a further extension to multi-colour mode, and gives you the
ability to choose both background and foreground colours for each
character. You lose a few colours, like all the ones normally accessed
with the logo key, but you do get a much greater choice of
combinations.

For example, you could display a white character with a blue
background on a black screen, or something like that, which gives
you the ability to produce some rather interesting three dimensional
effects.

It is invoked with the following command:

POKE 53265, PEEK(53265)0R64

This turns on bit 6, and leaves the rest as they were. To turn it off again:
POKE 53265,PEEK(53265)AND191

This turns bit 6 off, and again leaves all the other bits unaltered. As
usual, there is a trade-off for this, and we are now restricted to using
just the first 64 characters of character ROM, or of course the first
64 characters of your own user defined character set.

This is because we need to know which background colour to display

everything in, and this is determined by two bits of the character code,
like this :

For 0 to 63: select background colour with
location 53281

For 64 to 127: select background colour with
location 53282

For 128 to 191: select background colour with
location 53283

For 192 to 255: select background colour with
location 53284

Choosing screen values greater than 63 will simply reflect back onto
the screen the character corresponding to itself in the first 64 screen
codes, but in a different background colour.

109

Thus POKEing a 72 to the screen will still produce a letter H on the
screen, but in a different background colour than if you'd just POKEd
an 8 onto the screen.

For instance:

5 POKE 53245,FEEK (53265)0RA4

10 PRINT"LCLRI"

1% FORI=0OTOZ:FOKE SZ2B1+1,INT(RMD(. Sy *15) s NEXKTI
25 FORI=0OTO25S

30 POEE1O2441,1

40 NEXTI

S0 GOTO10

You may have to play about with screen background colours,
depending on what you already had up there!

Character generator

Now that you’'ve been doing it all the hard way for so long, here's a
program that will take the trouble out of re-defining characters, by
doing all the hard work for you. All that’s required from you is the
imagination!

When you run the program at first, don’t be alarmed if nothing seems
to be happening other than the screen clearing, a few words appearing
on the screen, and then absolutely nothing else. This is merely due
to the program copying the character ROM into locations 12288
upwards, and as you have seen with the small program given earlier,
this does take some time.

When the program does re-appear, you'll be given a grid of characters
on the left-hand side of the screen, and a list of options on the right
to sither create a new character of your own, edit an existing one,
or simply quit the program.

Quit simply takes you out of the program and changes the screen and
border colours to what they wers at power on. Either of the other two
options will bring a new display onto the screen.

This consists of an eight by eight grid of dots, with blobs where we
would like the pixels to be turned on (if indeed any are turned on at
all). The normal cursor controls move your little cursor about the
screen, and you can either add or remove dots as you wish. Updating
the masterpiece when you're satisfied with it will give you the data
for each row of pixels for the new character.

110

You can either just jot these down, or if you wish the program will
turn them into data statements when you press the appropriate key.

The data thus produced can be used with the program given earlier
provided that you remove the first number in the data statement. This
is just used by this program to keep track of where all the characters
are stored in RAM, and need not be a part of any of your own
programs.

Program notes

Line 130 : sets screen and border colours.

Line 140 : screen messages.

Lines 150-205 : copy character ROM into RAM.

Lines 210-260 : add new line to Basic program so user doesn’t have
to sit through a long wait again!

Lines 280-310 : set starting parameters.

Lines 330-340 : set up fundtions.

Line 3w§5rint on-screen instructions.

Lines 360-460 : print screen display when editing.

Lines 470-770 : await and act upon user input.

Lines 810-840 : ditto when starting up.

Lines 1000-1170 : set up on-screen instructions and initial display.
Lines 1210-1300 : display on-screen editing options.

Lines 1520-1550 : exit from program.

Lines 1600-1710 : handle update option i.e. display pixel data on screen.
Lines 1810-1910 : selected edit option, display grid and character data.

Lines 2010-2160 : produce data statements from pixel data.

m

130 POKE 53280.9:FOKE 53281,0

140 PRINT“LCLR,YEL] * CHARACTER DESIGNER #
"s PRINT"[3CDIPLEASE HANG ON'"

150 POKE 828,0

160 RUN 170

170 CS5=12288

175 POKE 56334 ,FPEEK (56334)ANDZ54: POKE 1,PEEK (1) AND
251

180 FOR I=CS TO CS+2047

190 POKE 1,PEEK (53248+1-CS)

200 NEXT 1

205 POKE 1,PEEK(1)DOR4:POKE S56334,PEEK (56334)0R1
210 PRINT"ICLRIS RUN 280"

220 PRINT"RUN"

230 POKE 198,.3

240 POKE 631,19

250 POKE 632,1%

260 FOKE 633,13

270 END

280 5=1024:CL=40

290 CS=12288

300 CR=0:LN=30000+PEEK (828)

310 P=24:BG=1:BR=1

320 POKE 53280,%:POKE 53281,0

3320 DEFFNA(XX)=S+R#2#CL+2#C:REM SCREEN POKE LOCATI
ON

340 DEFFNB(XX)=8#R+C:REM SCREEN POKE VALUE FOR CHA
R

350 GOTO 1000

360 PRINT"[CLR,YEL]1":G0SUB 1200

370 PRINT"I[HOME]";:FOR I=0 7O 7

IBO PRINT".":PRINT

390 NEXT I:F=0

400 PRINT"THOME]1":R=0:C=0

410 Z=FNA(QO)

420 IF F=0 THEN 460

430 IF Z=ZL THEN 430

440 POKE ZL ,IL:ZL=Z:I1L=PEEK(IL)

450 POKE Z+54272,6

460 POKE Z+54272,6

470 GET A%:1IF As$="" THEN 470
480 POKE Z+54272,7

490 REM

500 REM CURSOR CONTROL OFPTIONS
S05 REM

510 IF As$="Q" THEN 1500

520 IF A$="[L[CR1" AND C=7 THEN C=0:G0TO 410
530 IF As$="[CR1" THEN C=C+1:G0T0 410

540 IF A$="[CL1" AND C=0 THEN C=7:G0TO 410
S50 IF A$="[CL1" THEN C=C-1:G60T0 410

560 IF A$="[CD1" AND R=7 THEN R=0:G0OTO 410
570 IF A$="[CD1" THEN R=R+1:607T0 410

12

580
590
600

IF A$="L[CU1" AND R=0 THEN R=7:G0TO 410
IF A$="[(CUI" THEN R=R-1:G0TO 410
IF A$="[HOMEI" THEN 400

610 IF F=1 THEN BOO

695 REM

700 REM DEFINE NEW CHARACTER OPTIONS

705 REM

710 IF A$="+" THEN POKE Z,81:G0T0C 410
720 IF A$="--" THEN POKE Z,46:GB0TO 410
730 IF A$="=" THEN 1600

740 IF A$="[CLR1" THEN 370

750 IF A$="R" THEN 1000

760 IF As="B" THEN 2000

770 6OTO 410

795 REM

800 REM REVIEW CHARACTER SET OPTIONS

805

REM

810 CR=FNB(0)

820
830

IF A$="N" THEN POKE 53272,21:60T0 360
IF As$="E" THEN POKE 53272,21:F=0:60TC 1800

840 GOTO 410

995

1000
1005
1010
1020
1030
104Q
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1195
1200
1205
1210
1220
1230
1240
1250
1260
1270
1280

REM
REM DISPLAY CHARACTER SET OPTIONS
REM
POKE 53272, (PEEK(53272)AND240) +12:R=4:C=0
ZL=FNA(0): IL=32
F=1:PRINT"I[CLR]1";
PRINT"LYEL]I@ A B C D E F G":PRINT
PRINT"H I J K L M N O":PRINT

PRINT"P @ R S T UV W':PRINT

PRINT"X Z L N1~ _":PRINT

PRINT" "CHR$(34)" # ¢ % & '":PRINT
PRINT" ¢ * + 4 = . /"sPRINT

PRINT"O 2 3 4535 6 7":PRINT

PRINT"8 s 3 £ = > ?"iPRINT
PRINT"CHOME1"SPC (22) "OPTIONS" : PRINT
PRINTSPC (22) "[{RVSINLOFF1 NEW CHAR":PRINT
PRINTSPC (22) "[RVSIELOFF] EDIT CHAR":PRINT
PRINTSPC (22) "CRVBIQLOFF1 QUIT"

BC=PEEK (55296)

GOTO 410

REM

REM EDIT OFTIONS

REM

PRINT"[HOME ,YEL1"SPC(25) "OPTIONS" s FRINT
PRINT

PRINTSPC(P) "CRVSI+LOFF] ADD DOT”:PRINT
PRINTSPC(P) "I{FVSI-LOFF1 ERASE":PRINT
PRINTSPC (P) "[LRVS1=L0OFF] UPDATE" :FRINT
PRINTSPC (P) "LRVSIRLOFF1 REVIEW":PRINT
PRINTSPC (P) "LRVSIRQLOFF] QUIT":PRINT
FRINTSPC(P) "LRVSIBLOFF1 ADD DATA":PRINT

g v

13

1290
1300
1495
1500
1505
1510
1520
1530
1540
1550
1595
1600
1605
1610
1620
1630
1640
1650
1660
1670
1680
169G
1700
1795
1800
1803
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
19935
2000
2005
2010
2020
2030
2040
2030
2060
2070
1)

2080
2090
2100
2110

114

FRINTSPC(FP+1} "[CUISTATEMENT"
RETURN

REM

REM QUIT

REM

REM

FOKE 53272,21

FPOEE 53281,6:POKE S3280,14
PRINT"[CLRI"

END

REM

REM UPDATE

REM

PRINT" CHOME1" :

X=CS+8*CR

FOR R=C TO 7:SM=0

FOR C=0 TO 7:D=7-C
SM=5M—2-D* (PEEK (FNA (0)) =81)
NEXT C

POKE X+R,SM
PRINTSPC(17) ; SM:z PRINT

NEXT R:R=Q:C=0

B5OTO 410

REM

REM EDIT CHAR

REM

PRINT"CCLRI"

X=CS+8%CR

FOR R=0 TO 7:Y=PEEE (X+R)
FOR Cs® TO 7:Z=FNA (M)
B=46: Y=Y*2

IF Y>255 THEN @=81:Y=Y-256
POKE 2,Q:POKE Z+54272,7
NEXT C,R

R=0:C=0

GOSUB 1200

GOTO 410

REM

REM ADD DATA STATEMENTS
REM

X=CS+8%CR

PRINT"[CCLR,8CD1"

PRINTLN: “DATA";
FRINTRIGHT$(STR$ (X) ,LEN(STR$ (X)) —1);
FOR I=X TO X+7

PRINT™ ,":

PRINTRIGHTS (STR$ (PEEK (1)) ,LEN (STRE(PEEK (1)))~

NEXT I

PRINT:FRINT"RUN [HOME]"
FOKE 828,PEEK(828)+1
POKE 198,9

2120 FOR I=0 TO 8
2130 POKE I+631.,13
2140 NEXT 1

2160 END

Notes

There shouldn’t bs any problems with this listing, since there are no
graphic characters printed to the screen at all, everything is simply
POKEd. However, there is one character which you'll have to watch
out for, and yes, you guessed I3, the strange symbol in line 1650 is
indeed meant to be an up-arrowl!

Movemaze

Originally written by Jim Butterfleld for one of the ancient Commodore
PETs, this program has been revised and updated to take into account
some of the facllities of the Commodore 84, and in particular to use
a couple of user defined characters.

The game is basically a straightforward maze game, but with one
important difference. In this one, the walls move as you walk along
through Itl You can barge through a wall if you want, but this adds
ten points to your score (normally it just goes up by one point for every
move that you make), and since the Idea Is to reach the exit in as few
moves a8 possible this I8 not a good idea.

You are shown moving through the maze as a little man, and your
friend can be seen gulding you to the exit as he jumps up and down
and waves his arms about. Both of these characters are, of course,
user-defined graphics.

Program notes

Lines 80-92 : set up screen and border colour as well as sound
parametars.

Lines 100-176 : on-screen Instructions, and GOSUB to set up
user-defined graphics.

Lines 200-280 : set up maze on screen.

Lines 300-330 : setting up parameters.

116

Lines 340-364 : put characters on screen and await input.

Lines 370-379 : accept or reject input, convert accordingly, and play
a note.

Lines 380-390 : checking input.

Lines 400-430 : update progress.

Line 440 : if there isn't a space in front of you there could be trouble!
Lines 450-460 : okay, update position and return

Line 470 : if there isn’t a shifted space (exit) in front then you are in
trouble!

Lines 480-510 : home and dry!

Lines 520-760 : more housekeeping, plus move a piece of the maze
around.

Lines 770-920 : oops! crashed through a wall.
Lines 20000-20130 : character ROM routine.

Lines 30000-30001 : data for new characters.

90 POKE 53281,0:POKE 53280,8:PRINT"LYEL1"

92 S=54272:P0OKE 5+24,15:POKE S+5,9:FOKE S+6,108:P0

KE S5+4,33

100 REM MOVING MAZE DEC/80 JIM BUTTERFIELD

102 REM MODIFIED JAN/84 FOR CBM&64 PETE GERRARD

110 PRINT"ICLR,3CRIMOVING MAZE

120 PRINT"ILCD] JIM BUTTERFIELD

130 PRINT"[2CDITHE MAZE CHANGES AS YOU MOVE THROUG

H IT TO TRY AND RESCUE YOUR ";

132 PRINT"LITTLE FRIEND BY THE EXIT."

140 PRINT"L2CD] .. YOU MAY PUSH THROUGH A WALL BUT
IT

150 PRINT"WILL COST YOU 10 MOVEMENT FOINTS.

160 PRINT"LCD]1 MOVE WITH KEYS:

170 PRINT" uP)

171 PRINT" I

172 PRINT" (LEFT) A D (RIGHT)
173 PRINT" M

174 PRINT" (DOWN)

176 PRINT”[2CD1JUST HANG ON A BIT!":GOSUB 20000:PR

116

INT"LCLR,CD,YEL1]
180 PRINT"[CD] PRESS ANY KEY WHEN READY.[GRN1"

190 GETX$: IFX$=""GOTO190

200 POKES+24,0:PRINT"LRVS,SHIFTN,CLR1":PRINT" ":FO

RJ=0T0O%0: IFPEEK (50176+J) =32THENNEXTJ

210 L=J:L1=(L—-10)/2:L$=" "4+CHR$(111) :R$=CHR$ (165) s

M$=CHR$ (163) : FORJ=1T09

220 PRINTLS$;: FORK=1TOL-8: PRINTMS$;

230 NEXTK:PRINT"L[CLI";RS$

240 IFJ=960T0O280

250 PRINT" "CHR$(165);:FORK=1TOL-8:PRINT" "j3:NEXTK
:PRINT"LCL]1"; CHRS (1465)

260 L.$=" "+CHR$ (165) 1 R$=CHRS$ (165) s M$u" »

270 NEXTJ

280 PRINT"[CU,SP1"CHRS (163) 5 : FORK=1TOL—-8: PRINTCHRS
(163) 3 :NEXTK:PRINT"LCLI";"

290 FORV=0TD6:FORH=0TOL1-1:HX=V+H: IFINT (HX/2)=H%/2

80TO320

300 GOSUBS20:VZ=RND (1) #2

310 GOSUBS30

320 NEXTH:zNEXTV

330 M=0:V=0:H=~11:GOSUBS20

340 C=X+1-L:POKEC,129:POKE S55296+C~-350176,7

350 V=641H=L1:G0SUBS20: POKEX~L ,96

355 POKE S0176+634,129:POKE S55296+634,1

360 POKE S+24,0:6GETX$: IFX$=""G0TO340

362 POKE S0176+634,129-BB: BB=1-BB

364 POKE S+4,33:POKE S+24,15

370 X=ASC (X$)-64: IFX<OORX>146D0TO360

372 IFX=13THENX=1:POKE S+1,4:POKE S,73:G0T0380

374 IFX=1THENX=3:POKE S+1,5:POKE S,103:B30T0380

376 IFX=9THENX=7:POKE S+1,6:POKE S,108:G0T0380

378 IFX=4THENX=5:POKE S+1,7:PDKE S,53:B0TO380

379 GOTO 340

380 VI=X/I:sHL=X-Vi*3

390 V%=1-V%:H%=H%—1: IFVZ*HY< >060TO360

400 M=M+1:PRINT”[HOME,YELJ1":M;"[CL] MOVESLGRN1"
410 IFVZ+HZ=0GOT0O460

420 Mi=C+L#VZ+HZ%

330 M2=C+2% (L*¥VZ+HL)

440 IFPEEK (M1)<>32G0T0470

450 POKEC,32:C=M2:POKEC, 129t POKE S5296+C-50176,7
450 GOSUB720:G0OTD360

470 IFPEEK (M1)<>94THENGOSUB770: BOTO360

480 POKEC,32:C=M2:POKEC, 129: POKE S55296+C-50176,7

490 PRINT"[HOME,YELIHOME IN";M;:PRINT"MOVES! ANOTH

ER GAME (Y OR N)CGRN1"

492 GETZ$: IFZ$="Y"THEN200 :

494 IFZ$="N"THENPRINT"[CLR,CDIBYE":FORI=0T0O24:POKE
S+1,0:NEXT:END

496 GOTO 492

510 PRINT"LCLR1":END

117

520 X= (V+2) #L.#2+ (H+2) #2+50175: RETURN
530 IFVZ>0B0T0D670

540 GOTOS90

550 FORJ=X-L#2TOX+LSTEPL :K=PEEK (J):Z=32: IFK=10160T
0580

560 2=99: 1FKk=796G0T0S80

570 GOTO Z60

580 POKEJ,Z:NEXTJ

590 FORJ=X-2TOX+1:k=PEEK (J):Z=99: IFK=32G0T0620
600 7=79: IFK=101G0T0&620

610 GOTO 360

620 POKEJ,Z:NEXTJ:RETURN

630 FORJI=X-2TOX+1:K=PEEK (J):Z=32: IFK=9960T0660
640 Z=101: IFK=79G0TT560

650 GOTO 260

660 POKEJ,Z:NEXTJ:G0T0L70

670 FORJI=X-L*2TOX+LSTEPL

680 K=PEEK (J):Z=101: IFK=3260T0710
690 2=79: IFK=99G0T0710

700 GOTO 360

710 POKEJ,Z:NEXTJI: RETURN

720 V=INT(RND(1)%#7) :H=INT(RND (1) #L 1) : HL=V+H: IFINT(
HZ/2)=H%/260T0720

730 BOSURS20:K=PEEK (X)

740 IFkK=101GOTOSS0

750 IFK=99G0T0630

760 GOTO 360

770 M=M+10:Q=M1-50175-4%L-4

772 POKE S+4,129

780 V2=INT (Q/L) s H2=0-V2*L

790 V=INT (V2/2) :H=INT (H2/2)

800 IFV=V2/260T0840

810 IFH=H2/2G0T0OB870

820 GOTO 360

830 V=V1:H=H1:60T0730

840 H=(H2+1) /2:60SUB?10

850 IFETHENH=(H2-1)/2

860 GOTO890

870 V=(V2+1) /2:6505UB910

880 IFETHENVY=(V2-1)/2

820 IFV>=0ANDV<{7ANDH>=O0ANDH<L 1G0OTO730
P00 RETURN

P10 HL=V+H

P20 E=(INT (HZ/2)=HZ/2) : RETURN

20000 POKE 56333,127

20010 FOKE 1,51

20030 FORX=0TO1023

20040 POKE S53248+X.PEEK (53248+X)
20050 NEXT X

20060 FORX=0TO1S

20070 READA:POKE S54272+X,A

20080 NEXTX

118

20090
20100
20110
20120
20130
30000
30001
30002

POKE 1,55
POKE S56333,129

POKE 648,196

POKE S56576,4

POKE S53272,21
DATA153,90,40,24,24,36,346,36
DATA24,24,40,90,153,36,36,36
RETURN

119

6
High Resolution Graphics

Introduction

High resolution plotting is arguably the most powerful of all the
graphical features available on the Commodore 64, but it is perhaps
not invoked as often as you might imagine, owing to the prodigious
demands on the computer’s memory.

To fill a full screen with a high resolution display requires some 8K
of memory to handle it, since we are now controlling every individual
pixel on the screen (at least, in standard high resolution! Multi-colour,
as usual, halves our horizontal resolution). Since the screen has 1,000
character locations on it, and each one of those consists of 64 pixels
(8 pixels square}, we have to look after 64,000 pixels, or 8000 bytes.
A lot of memory to control.

However, the rewards justify the efforts involved, even in Basic,
although we will be giving a few routines in machine code towards
the end of this chapter to speed things up a little.

Even in standard high resolution mode, where each character space
is limited to just two different colours (foreground and the usual screen
background), some marvellous displays can be very easily generated.
Muilti-colour mode gives us a more generous four colours per character
space, but each pixel in this mode becomes equivalent in size to two
pixels in the ordinary mode, so we lose a little on resolution, but
nevertheless gain an awful lot on the type of displays that we can
achieve.

Different modes

With ordinary graphical displays we also had a third choice when it
came to displaying characters, namely extended colour mode.

However, in high resolution plotting we have no such luxuries, and

121

we are left with just the two modes already mentioned.

Still, this is more than generous by the standards set by most other
home computers, and it is up to 64 users to make the most of it; the
hardware code is there for you to use, all we've got to do is provide
the software!

Getting started

There are two very important registers when it comes to manipulating
everything in high resolution mode, and these are registers 53265 and
53270.

If you glance at the video chip memory map given in chapter four,
you'li see that these correspond to locations V+ 17 and V+22, and
that, as well as invoking high resolution, they can also be used to move
the screen about, set windows, and so on. We'll be coming to those
latter topics later on, but for now we’ll stick with straightforward
graphics.

As we've seen, it requires some 8K of memory to display anything
in high resolution on the screen. This does not mean that the amount
of memory that can be stored on the screen has increased to 8K, nor
that the screen memory itself has been increased. It has, and always
will have, just 1K set aside for it. Rather, each screen location remains
as one byte, but to generate the image displayed in it requires 8 bytes.

So what we’re doing in this chapter is basically transferring an 8K
section of your computer’s memory directly onto the screen, and this
will determine whether each bit on the screen is to be turned on or
off, and in what colour it is to be displayed.

As the only two Basic commands which allow us to transfer memory
from one place and store it in another are PEEK and POKE, you begin
to get some idea of why all this is so slow. Later on there are some
routines for doing this kind of thing in machine code, but we’ll save
those for a little while. For now, on with:

Standard bit mapping
As with normal character displays on the screen, standard mode gives

you fewer colours, but greater resolution: the full 320 by 200, in fact,
but only two colours per 8 pixel by 8 pixel square. High resolution and

122

normal displays actually relate quite closely to each other, but moving
from one to the other is not very straightforward. Still, two of the
routines at the end of this section do allow you to swop from one type
of screen to another virtually instantaneously.

Bit map mode is turned on with the foliowing command:
POKE 53265, PEEK(53265) OR32

This turns on bit 5 of this register and leaves the rest unaffected. We
turn off bit map mode by issuing the following command:

POKE 53265, PEEK(53265)AND223

This time we're turning bit 5 off, and once again every other bit remains
unaffected. This is much to be preferred to the usual method of POKE
FRED, BILL, which can sometimes have quite devastating effects!

Obviously we’re going to have to get our bit map information from
somewhere, and for this we'll have to clear out a section of memory.
To start with, we’ll wipe out memory location 8192 onwards, so to
clear out our 8K we must:

FORI =8192TO 8192 +7999:POKEI,0:NEXT
which is not the quickest of processes.

Now we've got to select a few colours, and the colour displayed on
the screen in this mode is determined not by the colour memory, but
by the actual content of each screen memory location. The value
POKEd into a screen location produces the background colour from
the lower 4 bits (or lower nibble) of that value, and the pixel colour
from the upper four bits (or upper nibble). Thus each screen character
space can have two colours in it, and throughout the screen we can
use any of the 16 colours.

It might be easier, instead of thinking of upper nibbles and lower
nibbles, to picture the byte split up into two separate halves. This:

BitNo. 01234 5 6 7
Value 1248163264128

is how we normally would look at it. Now, we have something like:

123

BitNo. 0123 4567
Nibble Lower Upper
Value 1248 1248

Now the upper half can take a value from 0 to 16, and so can the lower
half.

Screen printing

Before printing anything on the screen, we need to tell the screen where
our bit map is stored, and this is done with:

POKE 53272, PEEK(53272) OR8

which puts the bit map at locations 8192 through to 16191 by setting
bit 3 to be on. Setting one of the other bits to be on would move the
bit map locations correspondingly, although you must remember to
wipe out the correct part of memory as well, otherwise ... disaster.

Also, if we don’t tell the screen where to go, some very odd things
happen! For instance, POKE 53265,59 without having previously set
location 53272 will show the top half of the screen containing the bit
map from the first 4096 memory locations, and the bottom half from
the character generator area. You can actually watch it all change up
at the top, as page zero continues to monitor what’s happening.

It makes an interesting experiment, if nothing else, and as you hammer
away at the keys trying to restore the machine to order, page zero
happily carries on its work, oblivious.

Assuming we've done everything correctly, try entering the following
line:

FORI=8192T08511STEP8:POKEI,255:NEXTI

This will now produce a hi-res line across the top of the screen, given
that we're still looking at locations 8192 upwards for our hi-res area.

This is due to the way in which the screen data is interpreted. The
8000 memory locations are not viewed as a continuous set of data.
Instead, we have to take the first row of pixels from each of the first
40 bytes to form the top row of our high resolution screen, the second
row of pixels forms the second row of the screen and so on, until on
the 41st byte it all starts all over again!

124

This can be confusing at first, but there are ways in which we can
calculate the position of any pixel on the screen.

Or again:

FORI = 1024T02023:POKEI,4:NEXT!

will produce a purple hi-res screen.

To discover whether any particular pixel is to be on or off, we’ll need
to find it on the screen, and the following formula will show the location

of any pixel on the screen, assuming we want it to be at X location
horizontally, and Y location vertically, with our origin at the top left:

R= INT(Y/8) : find the row
C= INT(X/8) : find the column position
L= YAND7 : the line of that character position

B= 7-(XAND7) : the bit of that byte

Putting them all together gives us the byte where any pixel with the
co-ordinates X,Y is situated:

BYTE = 8192 + R*320 + C*8 + L
and to turn any X,Y co-ordinate bit on in that 8 by 8 space we:
POKE BYTE,PEEK(BYTE) OR (2 to the power B)

We'll use some of the theory that we’ve learnt above to get the 64
to draw an interesting plot on the screen.

5 POKE S3272,PEEK(53272)0R8

7 POKE S53265,PEEK (53265)0R32

10 FORI=8192708192+7999: POKEI ,0: NEXT

12 FORI=1024T02023:POKETI ,1: NEXT

20 DEFFNA(Y)=90%#EXP (-Y#Y/1500)

30 FORA=1TO2

40 BG=160:K=60:FORX=—-100TO0:L=—60: H=5*INT (SER (10000
—-X%X)/3)

S50 FORZ=HTD-HSTEP-5: Y=25+FNA (SR (X*X+ZI%Z))—.6#Z
60 IFY>LTHENL=Y

62 C=INT((G+X}/8):R=INT ((K+Y) /8):L=(K+Y)AND7

64 BYTE=8192+R*¥320+C*8+L

&6 B=7—((G+X)AND7)

68 POKE BYTE,PEEK(BYTE)OR2"B

126

70 @=INT((G-X)/8):S=INT((K+Y)/8): T=(K+Y)AND7

71 BYTE=8192+S#320+@%8+T

72 D=7-((G-X)AND7)

73 POKE BYTE,PEEK (BYTE)OR2"D

75 NEXTZ,X:G0SUB14690

80 DEFFNA(Y)=38%#(SIN(Y/24)+.48%5IN(3*Y/24)) +20:NEX
T:zEND

Now, I'm not saying that this is the fastest program in the world (you've
time to make a cup of tea, smoke a cigarette, make a cup of tea, smoke
... etc.), but IT WORKS!

To plot your own functions in hi-res, or indeed just plotting a couple
of individual points, it is simply a matter of working out the X and Y
co-ordinates on a scale of 0 to 320 for X and 0 to 200 for Y,
remembering that the origin is the top left hand corner of the screen,
and then simply using the formula given earlier to get the display
happening.

By using functions as we have here, life has been made a little easier.
You're welcome to try any function you can think of and see what
happens.

Multi-colour bit mapping

This is similar to multi-colour mode in ordinary graphics, as we are
again allowed to have up to four colours per 8 pixel by 8 pixel grid,
but we have to suffer a halving of the horizontal resolution available,
down to 160 by 200 pixels.

As usual, this is because each horizontal pixel becomes the equivalent
of two ordinary pixels, in order to allow us to define these four colours.

Again, we are using an 8K section of memory, and our four colours
are chosen from:

Screen background colour, register 53281.

Character screen position, where the upper four bits give us one colour,
the lower four another.

Colour memory.

To turn multi-colour bit mapping on, we must:

POKE 53265, PEEK(53265)0R32: POKE 53270, PEEK(53270)OR16

126

and to turn it off again:
POKE 53265, PEEK(53265)AND223: POKE 53270, PEEK(53270) AND239

Referring back to the section on ordinary multi-colour mode in chapter
five, the bit pairs are now read as follows:

00 takes on the screen background colour.

01 comes from the upper four bits of screen memory.

10 from the lower four bits.

11 from the colour memory.

Thus using multi-colour mode graphics in high resolution is not

markedly different from using it in standard graphics modes.
Moving the screen about

With all these capabilities at your disposal, it is not surprising to learn
that graphically the Commodore 64 can do some rather amazing things.

It is possible, for instance, to move the screen either horizontally or
vertically in either direction, just one pixel at a time.

This kind of high resolution movement makes a lot of things possible,
such as spreadsheet programs, word processors and the like, and it
is achieved in the following manner.

The 64 normally displays a screen that is 40 columns across and 25
rows down, but in order to scroll in either direction we can change
this into a 38 by 24 display, in order to give the screen information
somewhere to go to, and come from.

To go into a 38 column screen display, we must enter:

POKE 53270,PEEK(53270)AND247

and to get back again we must:

POKE 53270,PEEK(53270)OR8

To get to a 24 row screen display, we must enter:

POKE 53265, PEEK(53265)AND 247

127

and to go back to 25 rows again:

POKE 53265, PEEK(53265)OR8

While all this is going on, the screen border will expand and shrink
again in size accordingly, in order to accommodate the screen
manipulation. This does not mean that we are losing any characters
simply because the border is now covering them. They're still there,
waiting to be read (or rather, PEEKed) by the computer, in order to
decide what to do with them.

To scroll horizontally, we must then:

POKE 53270,{PEEK(53270)AND248) + X

where X is the screen position from 0 to 7. To scroll vertically:
POKE 53265, (PEEK(53265)AND248) + Y

where Y is the Y position of the screen from 0 to 7.

To see how this works in practice, let’s look at a few practical exampiles.

Values in the range 24 to 31 actually control the vertical position of
the characters on the screen, so:

FORJ =24T031:POKE53265,J:NEXTJ

will set the screen moving downwards, leaving an empty space near
the top. POKES3265,27 to get back to normal.

To illustrate 24 column mode, type POKE 53265,19, which cuts the
top and bottom lines in half, and this is the basis of all these scrolling
operations.

Switch to a 24 character screen, move everything up slowly, then jump
back to a 25 character screen again, and so on.

Finally, to turn the screen off completely, type POKE 53265,11.
POKEing 53265 with 27 always sets everything back to normal again.
There’s a lot of material to follow in all of that, and the only way to

understand it all is just to play around, taking notes of everything you
do and the results that follow.

128

You can’t harm your computer, and Run/Stop and Restore will usually
get you out of trouble without too much bother.

To finish off with, and to leave you with a game before we start taking
a look at sound, playing around on the 64 one day | made (as everyone
does) a typing error. | was trying to get the machine into lower case,
but instead of altering register 53273 to 23, | accidentally altered register
53272 to 23.

The result was so interesting that it had to be pursued, and | finally
discovered that POKEing 53272 with a 25 gave satisfactory results.
This will give you a 40 column by 25 row display all right, but in a totally
different character set. The letters manage to look very futuristic, and
could save someone a lot of time and memory if they were trying to
re-define the entire character set to look like this.

The Thinker

This is a variation on a Mastermind theme, but it also uses that
interesting character set that | just mentioned.

The player can choose from having to guess 4, 5 or 6 different colours,
and whether or not colours are to be repeated.

Guesses are entered by pressing the relevant key on the keyboard.
For instance, if you think the first counter is black, enter your first guess
by pressing the key marked BLK. The colours used are black, white,
red, purple, green and blue.

The computer will then mark your guess in the traditional way, by
displaying a tick for a piece that is the correct colour and in the correct
place, or a cross if you've got the right colour but the wrong place.
Of course, if your guess is completely wrong in both placing and colour,
you won't be told anything.

If you want to give up, you can just press the left arrow key (which
is the strange symbol in lines 128 and 2300 that for some reason my
printer rejected), and you can also change your mind over your guess
by pressing the delete key.

Program notes

Line 10 : sets colours, into lower case, and selects strange character set.

129

Line 20 : off to explain the rules.
Line 30 : print heading. The T in The and Thinker is in italics because
it is meant to be in lower case. This acts throughout the listing.
When you type it in, enter it using the shift key.

Line 40 : top of display, using shifted X char.

Lines 45-80 : print up display of board. Please take very careful note
of the REM statements in this part. When REM refers
to a character, it means the little chinamen’s hats
everywhere.

Lines 100-150 : accept only valid characters as guesses, check for delete
and left arrow key, play musical (?!} note.

Lines 166-168 : ready to check row?

Lines 169-170 : update number of guesses.

Line 190 : didn’t guess it in time!

Line 200 : response to pressing delete key.

Lines 500-605 : check guess, and print up display accordingly.
Lines 800-810 : you guessed right.

Lines 1000-1080 : end of game, display answer, ask for another game.
Lines 2000-2300 : instructions.

Lines 2305-3020 : set up combination for player to guess.

Lines 5000 onwards : various musical pieces.

10 POKE 53280,12:POKE 53281,15:FOKE $3272,2Z:POKE
53270,25: PRINT"[CLR,BRN1";

20 GOSUB 2000

30 POKE S3270,8:PRINT"[CLR,GREY] %*#% THE THINKER
#%#[BRN1" : PRINT

40 PRINTTAB(25);:FORI=1TONC:PRINT" X"3:NEXT:PRINT:
REM SHIFTED X FOR GRAPHIC CHAR.

45 PRINTTAB(25) ; :PRINT"""; : FORI=1TONC*2-1:PRINT"="
s :NEXT:PRINT" "

130

46 REM USE CBM KEY AND A FOR FIRST CHARACTER, CBM
KEY AND S FOR THIRD UHARACTER

50 FORJ=1T09

60 PRINTTAB(25) "~ “;:FORI=1TONC—1:PRINT" "3:NEXTI
: PRINT"~"

62 REM USE CBM KEY AND @ FOR FIRST CHARACTER, CBM
KEY AND W FOR LAST ONE

65 PRINTTAB(25) "~ "::FORI=1TONC#2-1:PRINT"="3 : NEXT3
PRINT"~":NEXTJ

66 REM USE CBM KEY AND @ FOR FIRST CHARACTER, CBM
KEY AND W FOR LAST ONE

70 PRINTTAB(25)"~ ";:FORI=1TONC-1:PRINT" *;:NEXTI
:PRINT#~"

71 REM USE CBM KEY AND @ FOR FIRST CHARACTER, CBM
KEY AND W FOR LAST ONE

75 PRINTTAB(25) "~"3 s FORI=1TONC#2—-1:PRINT"="3 :NEXTs
PR I NT nA

76 REM USE CBM KEY AND Z FOR FIRST CHARACTER, CBM
KEY AND X FOR LAST ONE

80 PRINT"[HOME,2CD,BRN] START GUESSING!"

90 FORP=1T010

95 GS= 0n

100 FORI=1TONC

110 GETGUS: IFBUS=""THEN 110

120 FORJ=1TOLEN(C$) : IFGU$=MID$ (C$,J,1) THEN140

125 IFGU$=CHRS (20) THEN200

128 IF BU$="_*"THEN 1000:REM CHECK FOR LEFT ARROW
130 NEXTJ:BOTO 110

140 POKE 1928+I#2-2Z#80,30:POKE S56200+1#2-2Z#80,VA
L(BUS) -1

145 G$=B$+6US

146 GOSUB S000

150 NEXTI

165 REM END OF ROW

166 GETPPS$: IFPP$=CHRS (20) THEN200

167 IFPP$=CHRS (13) THENGUS$="14": GOSUB5000: BOTOS00: R
EM EVALUATE

168 GOTO 166

169 ZZ=27+1

170 NEXT P

180 REM END OF BUESSES

190 80TO 1000

200 FORI=1TONC:POKE S4200+I%2-ZZ#80,15:NEXT:GUS="~
331 60SUBS000: GOTO 95

500 REM CHECK THE GUESS'

505 Ci$=""3G1$=""3 X=O3Y=0

510 FORI=1TONC

520 IFMID$(B$,I,1)=MID$(B$,I,1) THENX=X+1:GO0TO 530
525 C1$=C1$+MID$(Bs$,1,1):61$=61$+MID$(6$,1,1)

530 NEXTI

540 IFX=NCTHENBOO:REM ALL CORRECT!

S50 FORI=1TOLEN(C1$)

131

555 FORL=1TOLEN(C1$)

S60 IFMIDS$ (G1%,1,1)=MID$(C1$,L,1) THENY=Y+1:G0OTO Sé
&

565 NEXTL

S66 Ci$=LEFT$(C1$,L~1)+MID$(C1$,L+1)

570 NEXTI

571 IFX=0THENS73

572 FORI=1TOX:POKE 1914+I%2-ZZ%80,122:POKE S56186+1
#2+77#80,0:NEXTI

573 IFY=0THEN&OO

S74 FORJ=1TOY:POKE 1914+X#2+J#2-2Z2#80,24:POKES6186
+X#2+J#2-7Z%80,0: NEXTJ

600 GU$="-12":GOSUB S000

605 GOTO 169

800 PRINT"[HOME,BRN,CRIYOU GUESSED IT ! ":PRIN
T:PRINT" THE CORRECT ANSWER 1S ="

805 GOSUB 4000

810 GOTO 1010

1000 PRINT"L[HOME,BRN,CRISORRY, YOU DIDN'T “:PRI
NT:PRINT" GET IT. THE ANSWER IS ="

1005 GOSUB 7000

1010 FORI=1TOS00:NEXT

1020 FORI=1TONC

1030 POKE 1024+104+I%2,30:POKE 55296+104+1#2,VAL (M
ID$(B$,I,1))-1

1040 NEXT

1050 PRINT"ICD] PRESS ANY KEY FOR ":PRINT" ANOTHER
GAME., "

1060 GETZ$: IFZ$=""THEN 1060

1070 POKE S53270,25:G0OSUB 2200

1075 2Z=0

1080 BOTO 30

2000 PRINT"HELCOME TO THE THINKER,AN IMPLEMENTATIO
NOF THE POPULAR BOARD GAME *

2010 PRINT:PRINT"[RVS,REDIMASTERMINDLOFF ,BRN] FOR
THE COMMODORE 64. "

2020 PRINT:PRINT"IN THIS GAME, YOU'LL HAVE TO GUES
S A COMBINATION OF 4,5 OR & PIECES.

2030 PRINT:PRINT"THE COMPUTER WILL SET UP A RANDOM
SET OFCHARACTERS FOR YOU TO GUESS."

2040 PRINT:PRINT"THESE WILL CONSIST OF THE FOLLOWI

N6 SIX COLOURS :=":PRINT

2050 PRINT"LBLKIBLACK C[REDIRED C[PURIPURPLE L[GRN
I6REEN [BLUIBLUE [WHTI¥HITE"

2060 PRINT™ [BLKI1~ [RED1~ [PUR1™ [6

RN1~ [BLUI~ [WHT1~"

2062 REM THE STRANBE MARKS IN THE LISTING REPRESEN

T THE UP-ARROW KEY'!

2070 PRINT:PRINT"LBRN1YDU CAN CHOOSE HOW MANY PIEC

ES TO HAVE (4 TO &), AND WHETHER "3

2080 PRINT"OR NOT COLOURS ARE REPEATED. " : GOSUB

3000

132

2100 PRINT“LCLR,BRNIENTER YOUR GUESS BY PRESSING T
HE APPROP-RIATE KEY ON THE “3

2110 PRINT"TOP ROW OF THE KEYBOARD"

2120 PRINT"FOR SXAMPLE, PRESS ‘1’ IF YOU THINK THE
NEXT SYMBOL 1S BLACK, ‘3° IF "3

2130 PRINT"YOU THINK IT°'S RED, AND SO ON.*

2140 PRINT:PRINT“JUST PRESS ‘INST/DEL’ IF YOU WANT
T0 CHANGE YOUR MIND.*

2145 PRINT:PRINT"PRESS ‘RETURN" TO ENTER YOUR BUES
s.” ‘

2150 PRINT:PRINT“THE COMPUTER WILL THEN MARK YOUR
GUESS, BY DISPLAYING ="

2160 PRINTsPRINT"RIGHT COLOUR RIBHT COLOUR
2170 PRINT"RIGHT PLACE HRONG PLACE CBLK1X"
2180 POKE 14678,122:POKES5296+654,0

2190 PRINT:PRINT"IBRNIAND NOTHING AT ALL IF IT'S T
HE WRONG COLOUR. "3 GOSUB 3000

2200 PRINT*L[CLR,BRN1¥OULD YOU LIKE 4, 5 OR 6 PIECE
8 (PRESS 4, 5 OR &) ?*

2210 GETCOS$: IFCO$=""THEN 2210

2220 IFCO$="4"THEN NC=4:80T0 2255

2230 IFCO$="S"THEN NC=5:80T0O 2255

2240 IFCO$="4"THEN NC=63G60TO 2255

2250 80TO 2210

2253 PRINT"L[BLKI"3NC;s "[BRN1"

2260 PRINT:PRINT"AND WOULD YOU LIKE COLOURS REPEAT

ED OR NOT (PRESS ¥ OR N) 7%

2270 GET CR$: IFCR$=""THEN 2270

2280 IFCR$="Y"THEN CR=1:PRINT"COLOURS TO BE REPEAT

ED. "1 GOTO 2300

2290 IFCR$="N"THEN CR=O0:1PRINT“COLOURS NOT REPEATED
- ":60TO 2300 ,

2295 6070 2270

2300 PRINT:PRINT"AND REMEMBER, IF YOU WANT TO GIVE
uP, JUST PRESS [BLK]1'__'CBRNJ*"

2305 C$="135672%:B$=""

2310 FORI=1TONC

2315 A=INT(RND(.5) #46+1)

2320 IFCRTHEN2340

2325 A$=MID$ (C$,A,1)

2330 FORJI=1TOLEN(BS): IFA$=MID$(B$,J,1) THEN231S

2335 NEXTJ

2338 B$=B$+A$:1NEXTI: GOSUB3I000: RETURN

2340 B$=B$+MID$(C$,A,1) 1 NEXT: B0SUBI000: RETURN

3000 PRINT:PRINT"CREDIPRESS SPACE TO CONTINUE."

3010 GETSP#: IFSP$<{>" “THEN 3010

3020 RETURN

5000 S=54272

5020 POKE S+3,8

5030 POKE S+35,24:POKE S+6,6
5040 POKE S5+24,15

5050 POKE S+4,65

133

5060 FORK=1T02S5

5070 POKE S+1,16+VAL (GUF) :POKE S5.13
S080 NEXTK

5090 FORL=0T024: FOKES+L .OsNEXT

5100 RETURN

6000 S5=54272

6010 FORL=0TO24:POKE S+L.,0:NEXT

6020 POKE &+3,8

&030 POKE S5+45,12:POKE S5+6,25

604G POKE S5+24,15

6050 POKE §+4,465

&060 FORK=1TO=

6070 FORI=1TO50: POKES+1 ,I1:POKES, It NEXT
6080 FORI=DOTOISTEP-1: POKES+1 ,1:POKES, Iz NEXT
64085 NEXTH

6090 FORL=0TO24: FOKES+L ,0: NEXT

6100 RETURN

7000 5=54272

7010 FORL=0TOZ24:FOKE S+L .Oz:NEXT

7020 POKE S+3,8

7030 POKE S5+5,32:POKE S5+6,72

7040 POKE S+24,15

7050 POKE 5+4,65

7060 FORK=1T04

7065 FORI=OTO33:POKES+1,I1:POKES, I:NEXT
7070 FORI=33TOOSTEP—-1:POKES+1,I1:POKES, I: NEXT
7083 NEXTK

7020 FORL=0TD24:POKES+L ,0: NEXT

7100 RETURN

Notes

There are a lot of graphical symbols to watch out for in this game,
in particular the left arrow key (line 2300 and line 128), the shifted letters
(which have appeared in italics), and the setting up of the board in
the first part of the program.

However, if you follow all the REMs then you should be all right.

Machine code routines

This is a collection of little routines, to be entered using the machine
code assembler/disassembler given at the back of the book. If you
haven’t got an assembler, and don’t wish either (a) to type it in, or
(b) to buy the accompanying cassette, then you’li have to calculate
all the memory addresses and all the machine code instructions, and
POKE it all in the long way.

134

The four routines given in this little potpourri wili set up a hi-res screen,
clear a hi-res screen, jump from a normal screen to a hi-res one, and
jump back the other way again. They're all accessed using SYS calls,
and in order they are:

SYS 49152, A, B sets up the screen, where A is 0 for an ordinary high
resolution screen, or 1 for a multi-colour one, and B is the colour
that you're going to get for both the border and the screen
background.

SYS 49183 puts you into a high resolution screen.
SYS 49241 clears a high resolution screen, and
SYS 49357 gets you back into a normal screen.
B

PC SR AC XR YR SP
.370CS 33 00 AD 00 Fé6

Co00 20 FD AE JSR $AEFD

CO03 20 EB B7 JSR $B7EB
Co06 8A TXA

C007 8D 20 DO STA $D020
CO0CA 8D 21 DO STA $D021
CoOD AS 14 LDA #14
COOF 85 FB STA $FB
Coi1 FO 02 BEQ@ $CO15
CO13 A2 00 LDX #$00

C015 20 59 Co JSR $CO05?
Co18 20 80 CO JSR $C080
CO1B 20 A6 CO JSR $COAb6

COlE A7 3B LDA #$3B
C020 8D 11 DO STA $Do11
C023 A9 1D LDA ##%1D
C025 8D 18 DO STA $DO18
€028 AS FB LDA $FB
CO2A FO 05 BEQ $CO031
Co2C A7 DB LDA #3$D8
CO2E 8D 16 DO STA $D0O16
CO31 A9 80 LDA #$80
COo33 85 38 STA %38
CO35 85 34 STA $34
CO37 AD 02 DD LDA $DD0O2
CO3A 09 03 ORA #3$03

CO3C 8D 02 DD STA $DDO2
CO3F AD 00 DD LDA $DDOO

1356

co42
Co44
Coas
CO49
CO4B
CO4E
CO30
COoS3
CO55
coss
c0S9
COSB
COSDh
COSF
Co61
CO63
CO65S
CD&7
C069
CO&6B
CO&D
Co70
Co72
Co74
C076
co78
Co7A
co7cC
CO7F
Co80
cog2
co84
co086
cogs
Co8A
Coge
co8b
COBF
CoF1
Co93
Co%&a
Co98
Co9A
Co9C
CO%E
COAD
COAZ
COAS
COA&
COAB
COAA
COAC

136

FC
01
00

88
aF

co

12

00
40
57

568
00

57
05
o7
63
58
S8

07
FF
57
63

(9]0

o7
87
S8

57
57
05
57

58
58
83
07
FF
57
8A

00
E7
57

DD

o2

o3

co

co

Co

CoO

AND
ORA
STA
LLDA
8TA
LDA
STA
LDA
STA
RTS
LDY
LDA
8STA
LDA
STA
LDA
STA
LDA
BE@
DEC
JMP
DEC
LDA
cMP
BER
LbA
STA
JMP
RTS
LDY
LDA
STA
LDA
STA
TXA
STA
LDA
BEQ
DEC
JMP
DEC
LDA
CMP
BER
LDA
STA
JMF
RTS
LDY
LDA
STA
LDA

#$FC
#201
$DDOO
#$84
$0288
#$4F
$0311
#3CS
$0312

#$00
#$40
$57
#$BF
$58
#£00
($57),Y
$57
$C070
$57
$C063
$58
$58
#S9F
$CO7F
#S$FF
$57
$CO63

#200
#$E7
£57
#+87
08

($57) ., Y
$£57
$CO96
$57
$CO8A
$58
$58
#$83
$COAS
#$FF
$57
$COBA

#£00
#EE7
$£57

#+DB

COAE
CoBO
coB2
CoB4
CoB&
€oBB8
CoBA
COBD
COBF
coC1
CoCc3
CoCS
coc7
coce
cocc
cocp
COCF
copz2
CODS
cobn7
CoDA
copc
CODF
COE1
COE4
COE6
COE9
COEA

co

02

DD

DD

DO

DO

DO

STA
LDA
8TA
LDA
BEQ

JMP
DEC
LDA

BEQ
LDA
STA
JMP
RTS
LDA
STA
LDA
AND
STA
LDA
STA
LDA
STA
LDA

RTS
BRK

$58
#3$00
($57),Y
$57
$COBD
$57
$COBO
$58
$58
#$D7
s$cocec
#SFF
$57
$COBO

#$04
$0288
$DDO2
#$FC
$DDO2
#$1B
$DO11
#$C8
$DO16
#$15
$D018

It all happens a lot faster than it does in Basic. Hopefully this will whet
your appetite for more machine code adventuring, starting with some

FILL and PLOT routines perhaps (PLOT is easierl).

We've already seen how to plot a point on the screen using high
resolution co-ordinates, albeit in Basic, so since you now know how
the code works in Basic, why not have a go at writing such a routine
in machine code?

137

7
General Introduction to Sound

Musical theory

The Commodore 64 is a virtually unrivalled piece of electronic
sophistication when it comes to its musical capabilities. As a synthesiser
on a chip it is easily capable of competing with dedicated synthesisers
that cost many times more than the Commodore 64. And, of course,
the 64 is still a computer.

The chip just referred to is of course the SID chip, technically known
as the 6581. We’'ll be going into more technical details about SID in
chapter eight, but we'll start by looking at some traditional musical
values.

It is true that you do not have to be a great musician to be able to
use the SID chip. Indeed, you hardly have to know anything about
music at all, which in some cases (mine) is probably just as well.

Electronic toy

It can be used purely as an electronic ‘toy’, although a very powerful
one, and it will give as much pleasure to the casual electronic tinkerer
as it will to the dedicated computer programmer or to a dedicated user
of a synthesiser.

However, since the practical side of using SID is going to be explored
in the next two chapters, this introductory chapter will concern itself
more with some traditional musical theory (it isn't essential, but it does
help, and you will get more out of this chip if you do know the
background to it all), and a look at just some of the possibilities
Commodore have presented us with.

139

Some musical terms

Presumably since the dawn of time, people have been making a noise
on one kind of musical instrument or another. Those instruments that
have survived the passage of time are those that have something
special about them, whether in terms of dynamic power, the range
of their musical coverage, their sound quality {usually referred to as
timbre), or whatever.

Over the years the ever-increasing degree of coaxing which people
have given to musical instruments has seen some astonishing advances
in both melodic and harmonic structure, since these are largely
dependent on the instrument itself, but what has perhaps not advanced
so much is the field of rhythmic structure, since that is much more
dependent on the skill of the person playing the instrument rather than
the instrument itself.

However, with the advent of computers like the Commodore 64 it has
become possible to play hitherto unplayable rhythms, and it is possibly
this more than any other reason that will eventually see the 64, and
others like it, accepted as genuine musical instruments.

Traditional music symbols

Fortunately for computer buffs and musicians alike, there is a great
degree of similarity between the binary system as used by computers
and the standard musical notation used to denote the length of time
for which a note will be played, or a pause will be held.

Just like computers, music takes its numbers in the form 1,2,4,8,16,32,
to denote a whole note, a half note, and so on, all the way down to
a thirty-second note, an extremely short note!

Thus whichever way you increase or decrease the tempo of the music,
you’re always going along in steps of two, like this:

140

© The WHNE pole

The HALF nele (two ks = one whde)
J The QUARTER nole. (fwoo X's = one %)
.b The EIGHTH niteé (two &'s = one)
ﬁ The SIXTEENTHAGL. (tun 765+ one B)

There are, inevitably, slight complications to this otherwise simple
picture, in the form of dotted notes, which are fifty per cent as long
again, like this:

3 J aFZJ.
3 JorZJ.
3 jerl)‘.
3 dborZOP.
3 }arl}.

Q. A dofled whole nols
J. # detled halg nole-
J._A WWI’M&
-P.A dotled eighthh nole
J\.A dotted. sixleanth nole

Rests, or pauses, can be regarded in the same light as the notes they
are named after, in that they too can be either whole periods of time,
or dotted, and the difference between whole rests is always a factor
of two. The symbols for rests look like this:

141

- WHOLE

- HALF
d QUARTER
Y EIGHTH

[S

Y QI/xTEENTH

_Rests.

Just to finish you off completely and destroy any illusions you might
have had that this was going to be all plain sailing, we sometimes have
to divide musical notes up into thirds, and these are known as triplets.
They are illustrated in the diagram below:

Trjplets.

-3

A%:nata(J) divided vits 3 parts sJU
A% nols (8) disided indo 3 parts is m
An %ma(})mmmz,wcmm

Movin’ in rhythm ‘

Now that we know what all the symbols are, how do we go about
using them? We could easily insert a whole lot of random notes into
the registers and see what happens, but the resulting cacophony would
convince you that there must be something more to music that merely
playing sound. There is, of course, and we haven’t iooked at any items
like melody, harmony, or rhythm.

142

Melody is in the ear of the listener, and what one person finds melodic
another may well not. However, that is usually a matter of personal
taste, and it is not at all derogatory to say that a piece of music ‘has
a nice melody’. Some wouid probably use that as a dismissal, but to
most composers it would be praise indeed.

Harmony is just one of the areas that can be explored perhaps more
easily on a computer than it can on many other instruments, particularly
when you have three independent voices to play with, and three
independently selectable waveforms. {(Four, if you count noise, but
as that is what we're trying to avoid producing we'll stick to the other
three.)

Movin’ in style

But it is as a rhythmic instrument that, as we said at the beginning,
the computer will probably become most widely acceptable. A few
simple experiments should serve to convince you that this could be
true.

Most people can keep to a fairly reasonable beat. Just try clapping
your hands together in a steady rhythm. However, when we move
on to, say, a four-one rhythm it gets a little more difficult, but not much,
and most people should again be able to keep a fairly steady two-one,
three-one or four-one rhythm going.

By four-one, we simply mean that for every fourth beat of, say, the
left hand, you also beat the right hand. A two-one would indicate a
beat of the right hand for every second beat of the left hand, and so on.

What distinguishes the musicians amongst us is the ability to keep
to a totally different rhythm, and then start to sub-divide that rhythm
up into several equal-length components.

You try doing a three-two beat! And then dividing that rhythm up into
four equal components, and so on. After a short while the hands go
totally out of synchronisation and you give up in disbelief that anyone
could ever possibly manage to beat in time.

But people do, as any music lover will know. However, there is a limit
to what even the most gifted musician can accomplish, and that is
why, as we said at the start, the Commodore 64 SID chip can score
over many a musical rival.

143

New horizons in sound

With three independent voices to play with, the 64 is capable, given
the right program, of playing something like a 4:7:9 rhythm, an
incredibly complex one that we mere mortals would never be able to
play properly. But just because it has never been played does not mean
that it will not sound pleasing to the ear.

We'll come back to rhythms in the next couple of chapters, but for
now, let’s take a brief look at the good and bad points of the 6581
SID chip.

SID chip overview
Technically, SID looks something like the diagram opposite.

As you can see from the diagram, SID comes equipped with three
voices, each of which has a tone generator to produce the sound, and
an envelope generator which affects the structure and hence the
volume of that sound. We can also combine some of these tone
generators to produce some quite complex sounds.

Most importantly, each voice can be routed through a filter, which
is what really sets the 6566 apart from just about any other home
computer available. The use of subtle filtering techniques ailows some
truly amazing sounds to be produced.

Another thing that all three voices have in common is a master volume
control, although this is to be decried rather than applauded. It would
have been so much better to have introduced separate volume controls
to give SID a truly synthesised polish, even though it would have made
programming the chip more difficult.

However, the extra difficulties are as nothing when it comes to trying
to hover the volume of one voice at an intermediate level by rapidly
switching it on and off.

Other features

There is an external audio output attached to the chip, which allows

it to connect up to other SID chips, or link up to some other device
like an electric guitar.

144

Nl %3 niod A1904

———
1Ll 0184 ¢ BOIVNINIG
-.3... A _.I W -1 :::..\[j.V\- 340134AN3 O
(26104
“ é [uu ¢ JetvaINIe
8 030 1IN
woLvINTIY P LIk
o . Joaittene | 17 —4 b 44
| - L
A4 HESTHAT
2408 b ¢o
2 BOLVNINDS m 2 i—beo
a— 4§ jd\c 040V IANT s n.o
- 1
2
IS, 10N L o 2 hpeo
? uuy T ¥0LYNINIG -
1 1% 7] e LVINOOH HI0 381 m L R-do
v P4 wn e | L1~ — Mkl -+34 a h-pr
e W WATHHAE —boo
vtav—————i|
t YOININTG
j.u\- 340134H
I —) % at10M
] gt} —1 1 0LVEINTG
[TC'7] ¥o1¥INgoH H30 F1auH m
/ Jonuwne [~ 3011 wase
H J A d HYZIHAE

TMOVLHOT $$IIV NI —

145

Also, you are given a couple of analogue to digital convertors as well,
but since these are not electronically wired up to anything else on the
chip we won't consider them any further. They could also be used
to hitch up some games paddles or something.

SID registers
As with most of this chapter, the real details will begin to come later,

but it's important that we get the most important terms sorted out
first of all, and know precisely what we're talking about.

Each voice has been given 7 registers, which control virtually everything
about that voice. In common with all the other registers on the
Commodore 64, these are all 8 bit ones, and selecting any combination
of bits for any individual register is almost bound to change the sound
that you're producing.

There are in addition to this another 8 registers set aside for controlling
filtering, master volume, mode selection and so on. Putting them all
together in one big map gives a result something like this:

Add ress DATA REG
D7 D6 D5 D4 pP3 D2 D1 OO NAME
Potce L
54272 Fr |Fc |Fs |Fs |Fs |F2 |Fa |Fo FREG O
54273 Fis [Fie |Fia [Fi2a [Fu |Fio [F8 [Fs | FREG WI
54274 PWT{Pwe | Puis | PWe [PWs | PW2 [PWa|PWo | PW Lo
54275 — = =1 — PwWu [PWNw PWsIPWe] PW Wi
S427¢ NOISE, TEsST ':;gg SWC|GATE | CONTROL REG

54277 ATK3 | ATK,[ATk | ATK, | DCY,5 [DO | DO, | DOYs | ATTACK] DECAY
54278 ST™N,| STN, [SIN, [STN. [RIS; [RLS, [RLS.[RLS. SOSTAN | RELEASE.
Lsrca 2

stce
54279 7 | Fe | Fs {Fa [Fs [F2 |[F1 |Fe | FREg Lo
54280 Fis [Fie | Fiza [Fi2 [Fu [Flo |[Fo |Fs | FRep ty
54281 PW7 | PWe| Pus| PWai PW3 [PW, [PW, [PWe | PW o
54282 e = 1 ~ [PWu [PWo|[PWs|PWe| P HI
54283 |NoisE] TST| RN Sye| GATE) ConTRoLREG-

S4284 (AT, | ATK| AW, [ATK, | DOV [OcY, [Dey, [Dove | ATmack joecay
54285 §|N3 STN,| SN, [8TN, RLS5,[RIS, [RLS [ARLS] sustain, m. 3
otce.
5428 ¥y |Fo i Fs |Fse |Fs |[Fa |Fu Fo FRESG Lo
54287 Fis [Fe |Fia [Fiz [Fu |[Fie [Fs [Fs FREG Wi
54288 Pwlg| PWe| Puis| Pwe| PWa | PWa [PW [PWe | PW Lo

54289 - - = 1 = [P l®Wg PWs|Pug | PwWHI

54290 NOISE| TEesST ﬁiggr SYNC | G6AIE | CONTROWREG-
54291 ATk | ATiG| ATK, | ATK e/ OCY3 [DCYa |OCY, [@CYs | ATTACK/DECAY
54292 3 [STNy| SN |STNG|[RLS 3 [RIS, RIS [RLS, | SUSTAINY RELEASE
54293 - -1 = -1 = [FC [T\ | e | FC Lo

S4294 o FCo| Rs |FCv | FCo [FCs [FT4+ | FCy | FC Wi

S4a95 RES, |RES, | RES, (RES, 2;" F':;’—T F}zLT F\ILT RES/ALT

54296 308F | HP | 8P | LP VOL3 MOL, V0L, [VOL MODE/ VoL,
[llesce,

54297 P, | PX | P Px[PX3 [PX, [PX, [PX, | POTX
54298 PYL I PY | PYs [PYa [PYs [Py [PY. [PY. POTY
54299 O7| Oc| Os[Oa | Cs 01 (O [Oa | 08C3/RANDOM
54 300 Ex | Es| Es | Ea [Ea |Ex [E. [Ee | ENVSE

146

You should refer to this diagram, at least in the early days, every time
you alter something in one of the registers, so that you can see precisely
what you're doing.

We made the point earlier that it is far better to:
POKE FRED, PEEK (FRED) OR BILL

than it is to:

POKE FRED, BILL

since POKEing FRED with BILL affects not only whatever register(s)
go to make up BILL, but also the rest of the ones in memory location
FRED as well. The first statement only effects the register(s) in BILL.

As can be seen from the control register diagram, haphazardly altering
certain registers can produce somewhat unpredictable results, although
there is always the vague possibility that you might stumble across
something interesting along the way.

Envelope generating

Each one of the three generators can be set to one of four different
waveforms, namely sawtooth, pulse, triangle and noise.

The latter one, noise, has no precise pitch and can come out sounding
like anything from the roar of a motor bike to the hissing of a snake,
from the sound of waves on the beach to the sound of a cymbal being
struck.

Triangle waves tend to give mainly mellow, flute-like sounds, while
sawtooth waves have lots of harmonics and are good for impersonating
brass or string instruments.

Pulse waves are the richest of the lot, depending on what kind of pulse
width you select. With a pulse width of almost zero {or 100 per cent),
you get a very thin sound like an oboe, but with a pulse width of around
50 per cent you get a square wave being produced, which sounds very
hollow, like a clarinet.

In between these you can produce just about anything, including

(provided you have the right filtering set) something remarkably like
a human voice.

147

Scales and ranges

The range of the 6581 chip is usually reported to be eight octaves,
although it can go further than that. Notes can be played so low that
you won't be able to hear them, even as low as a frequency of about
one cycle every 16 seconds. This is not a particularly useful set of notes
to play.

The actual frequency that it plays a note at is determined by two
registers, termed frequency low and frequency high. Since this gives
us a very good control over the frequency of the note that is being
played, it allows us to introduce such effects as glissando, by rapidly
incrementing or decrementing the frequency of the note so that it
appears to glide smoothly from one note to another.

Setting the three voices to be slightly out of tune with each other can
also produce some interesting effects, almost choral-like in quality.

Ring modulating and synchronising

Vastly different in name but fairly similar in resuit, these two techniques
allow the various voices to be combined with each other in a number
of interesting ways, to produce a mixture of the two tones being played,
along with some tones that weren’t even there in the first place.

You can only modulate or synchronise one voice with one other voice,
but despite that you can get some great effects using these facilities.
They make it very easy to simulate such metallic noises as gongs and
chimes, as well as producing some very good ‘scary science fiction’
noises. By varying the frequency of one of the voices while listening
to the signal being played, you can hear some pitches rising while
others fall.

You can only use ring modulation with the triangular waveform, while
synchronisation can be used with any of them, so you'll have to take
care if you want to try combining both effects.

Filtering

Mention this to any synthesiser player and he’ll begin to realise that
perhaps this little machine should be taken seriously after all!

148

Although filtering doesn’t by itself produce a musical note, it does allow
you to alter the tone that is being produced by the three voices.
Unfortunately you are not allowed to filter voices independently, as:
there is just the one filter. Still, you can always send two voices to
the main output and alter them by changing the pulse width, while
at the same time filtering just one of the voices.

There are three different types of filtering that we can use, and these
are termed low pass (which reduces in volume everything above a
certain cut-off frequency at a rate of 12 decibels per octave, while
passing through everything below that frequency as per normal), high
pass (which is the reverse, in that everything above a certain frequency
gets through as normal, while everything below gets reduced at the
12 decibel rate), and band pass (which passes signals fairly close to
a specified frequency and reduces everything else at the usual rate,
whether above or below that frequency).

You can also mix the low and high pass filters to produce what is
termed a notch filter. This rejects everything near to the specified
frequency, but lets through everything that is a certain frequency above
or below it; the opposite of band pass.

Finally, the filter also has a resonance control, which determines how
strong the effect will be. With a low resonance everything is fairly similar
to the effects produced by the tone etc. controls on a stereo (i.e. it
all happens gradually), but with a very high resonance the effect is
much more severe: like a rock guitarist’s wah-wah pedal, which is
nothing more than a band pass filter with a very high resonance.
Attack/decay/sustain/release

Together, the four terms listed above combine to form the envelope,
or shape, of a musical note, and it is this envelope which determines
the timbre of the note being played.

Any or all of these four can be changed for each voice, and in order
they do the following:

Attack measures the time it takes for a note to reach maximum volume.
Decay measures the time it takes to decline to an intermediate level.

Sustain holds the note at that level for as long as you want.

149

Release measures the time it takes for the volume of the note to reach
zero i.e. silence.

By varying these, many different musical instruments can be simulated,
as we shall see later on.

To conclude

There are other features that we haven't really looked at, such as those
attached to voice three that allow you to read the tone generator’'s
output and the envelope generator’s output. This could, for instance,
be used to produce a tremolo effect by setting voice three to be a
triangular wave of very low frequency, reading the waveform value
and then adding that to the frequency numbers for voices 1 and/or 2.

The rest is mainly up to you and your willingness to experiment.

However, as yet we don’'t know what memory locations to experiment
with, so without further ado ...!

150

8
Starting to Play with Sound

Introduction

From the preceding chapter it can readily be appreciated that we are
dealing with a rather special ‘dedicated’ chip, certainly something much
more complex than, say, the Sinclair Spectrum or the Electron sound
processors.

Many of the ideas explored in chapter seven will be explained in much
more detail in this and the next chapter, and there will be a number
of sample programs for you to type in, along with some more ideas
for your own experiments with this chip.

As always, however, you've got to walk before you can run, and so
some of the next few pages will be spent on giving you all the
information you'll need to know in order to start making SID ‘talk’ to
you.

As with the use of graphics on the Commodore 64, it isn’t always easy
to get started with sound, and some of the topics mentioned here will
get only a fairly brief mention. This is not to say that they are all
incredibly complex, because that simply isn’t true, but they are beyond
the scope of anything other than a book dedicated to music and sound
on the 64.

However, because the facilities exist they will be mentioned, and at
the end of this chapter there will be a round-up of all the features you
can find in this chip, what each and every register does, and what
most of the bits in these registers do as well.

Armed with that knowledge you can then start exploring the chip for
yourself. Filtering voices, synchronising them, moduilating them, and
generally producing a whole host of effects that will be all the better
because you produced them yourself.

Music is, after all, an art not a science, and if everything about music

161

could be fully explained then there wouldn’t be much point in playing
it any more!

Nevertheless, all art has got to start somewhere and we've got to start
with a bit of science, by giving you the SID chip memory map.
SID chip memory map

SID allows us access to 28 memory locations, starting at location 54272
and proceeding up to 54300. The table below indicates briefly what
each register is capable of controlling.

As usual, we’ll adopt our common policy of having a base register,
and then detailing everything above that as being the 5th register, 10th
register, or whatever. It makes it a lot easier to remember where

everything is!

Register Description
(54272 +)

00 Low frequency value of note for voice 1
01 High frequency value of note for voice 1

02 Low pulse rate for voice 1

&8

High pulse rate for voice 1

b

Waveform for voice 1
05 Attack/decay for voice 1
06 Sustain/release for voice 1

07 Low frequency value of note for voice 2

8

High frequency value of note for voice 2
09 Low pulse rate for voice 2
10 High pulse rate for voice 2

11 Waveform for voice 2

1562

12
13
14
15
16
17
18
19

24

Attack/decay for voice 2
Sustain/release for voice 2

Low. frequency value of note for voice 3
High frequency value of note for voice 3
Low pulse rate for voice 3

High pulse rate for voice 3

Waveform for voice 3

Attack/decay for voice 3
Sustain/release for voice 3

High frequency cut-off

Low frequency cut-off

Turn on filtering

Set volume for all three voices, plus
select filter type

Access to output of envelope generator
of voice 3

Access to Y potentiometer reading on pin
23

Digitised output from voice 3

Digitised output from envelope generator
number 3

So you see, there are a large number of things that we can do with
an extremely small number of registers.

But before we can even begin to start playing a note, there are a few
more things that we need to know.

153

If we just concentrate on voice 1 for now, the table above tells us that
the volume of that voice (and indeed all the others) is controlled from
register 24. So the first couple of lines of a simple program to play
a note become:

10 ¥=54272
20 POKE V+24,135

Having turned the volume on, we must then select the
Attack/decay/sustain/release settings for voice one, as controlled by
registers 5 and 6. The previous chapter told us what these settings
do, and a little bit about how different settings in each register can
affect both the quality and the volume of the note being played. We'll
be going into more detail about changing these registers later in the
section on envelope generation, but for now it is convenient to think
of them as two registers, each of which is split up into two separate
nibbles.

In other words, we can think of them as looking like this:
Bit 01234567

Value 12481248

where the first four bits control the decay (or release) of the note, and
the second four control the attack {or sustain) of the note.

If we decide that we want an attack of 4, and a decay of 2, then the
value that we must POKE into the appropriate register is found by
multiplying the attack value by 16, and adding on the decay value.
Hence in this example we’d have to POKE the register with (16*4 plus
2) or 66.

Different values can be combined, so that if we wanted an attack of
7 and a decay of b (thus altering bits 0, 2, 4, 5 and 6), we'd POKE
the register with (7*16 plus 5), or 117.

What do these numbers actually mean? The following tables will show
us precisely that.

ATTACK/DECAY RATE SETTINGS
ATTACK/DECAY HIGH MEDIUM LOW LOWEST HIGH MED. LOW LOWEST
SETTING ATTACK ATTACK ATTIACK ATTACK DECAY DECAY DECAY DECAY

VOICE 1 |54277 128 64 32 16 8 4 2 1
VOICE 2 {54284 128 64 32 16 8 4 2 1
VOICE 3 | 54291 128 64 32 16 8 4 2 1

154

SUSTAIN/RELEASE RATE SETTINGS

SUSTAIN/ RELEASE HIGH MEDIUM LOW LOWEST HIGH MED. Low LOWEST
CONTROL SETTING SUSTAIN SUSTAIN SUSTAIN SUSTAIN RELEASE RELEASE RELEASE RELEASE
VOICE 1 54278 128 64 32 16 8 4 2 1
VOICE 2 54285 128 64 32 16 8 4 2 1
VOICE 3 54292 128 64 32 16 8 4 2 1

We can combine these values in any way we choose, and for the
purposes of our program we’ll select an attack/decay setting of 68,
and a sustain/release setting of 70.

Thus the next two lines of our program become:

0 PDEE V+35,68
40 POKE V+5,70

Slowly but surely we're getting there! The next step is to select our
waveform, which is set by altering the content of register 4. This is
usually POKEd to be be one of the following four values:

17 : selects a triangle waveform
33 : selects a sawtooth waveform
65 : selects a pulse waveform
129 : selects the noise waveform

To play our masterpiece, we'll use the sawtooth waveform, and so
the next line of the program becomes:

S0 FPOKE V+4,33

POKEing that location with one less than the value given above will
turn the voice off, without affecting anything else, so that one can
rapidly oscillate from on to off.

All we need to know now is what note we are going to play. The two
registers that are affected are 0 and 1, and the following table will show
us what values to put into those registers for most of the audible notes
that SID is capable of producing.

155

Table of musical notes

156

Note Note—Octave Hi Freq Low Freq
0 c-0 1 18
1 C#-0 1 35
2 b-0 i 52
3 D#-0 1 70
4 E-0 1 90
5 F-0 1 110
6 F#-0 1 132
7 G-0 1 155
8 G#-0 1 179
Q A-0 1 205

10 A#-0 1 233
N B-0 2 [}
12 C-1 2 37
13 C#-1 2 69
14 D-1 2 104
15 D# -1 2 140
16 E-1 2 179
17 F-1 2 220
18 F#-1 3 8
19 G-1 3 54
20 G#-1 3 103
21 A-1 3 155
22 A#H -1 3 210
23 B-1 4 12
24 c-2 4 73
25 C#-2 4 139
26 D-2 4 208
27 D#-2 5 25
28 - 5 103
29 - 5 185
30 F#~-2 6 16
31 G-2 6 108
32 G#-2 <] 206
33 A-2 7 53
34 A# -2 7 163
35 B-2 8 23
36 c-3 8 147
37 C#-3 9 21
38 D-3 9 159
39 D#-3 10 60
40 10 205
41 — 11 114
42 F#-3 12 32
43 G-3 12 216

Note Note-Octave Hi Freq Low Freq

44 G#-3 13 156
45 A-3 14 107
46 A#-3 15 70
47 B-3 16 47
48 C-4 17 37
49 C#-4 18 42
50 D-4 19 63
51 D#—4 20 100
52 E-4 21 154
53 F—4 22 227
54 F#-4 24 63
55 G-4 25 177
56 G#-4 27 56
57 A-4 28 214
58 A#—4 30 141
59 B-4 32 94
60 C-5 34 75
61 C#-5 36 85
62 D-5 38 126
63 D#-5 40 200
64 E-5 43 52
65 F-5 45 198
66 F#-5 48 127
67 G-5 51 97
68 G#-5 54 (AN
69 A-5 57 172
70 A#-5 61 126
7 B-5 64 188
72 C-6 68 149
73 C#-6 72 169
74 D-6 76 252
75 D#-6 81 161
76 E-6 86 105
77 Fé 91 140
78 F#-6 96 254
79 G-6 102 194
80 G#-6 108 223
81 A-6 115 88
82 A#-6 122 52
83 B-6 129 120
84 c-7 137 43
85 C#-~7 145 83
86 D-7 153 247
87 D#-7 163 31
88 E-7 172 210
89 F-7 183 25
90 F#-7 193 252
14 G-7 205 133
92 G#-7 217 189
93 A-7 230 176

94 A#-7 244 103

From the above table we can select whatever note is required, and
POKE the values into the correct registers. To play note C from the
first octave, you can see that the high frequency has a value of 2, and
the low frequency a value of 37. So to play the note, we must add
the following two lines to our program:

60 FOKE V+1,.2
7o POKE V,3E7

Combining the whole program together, along with a delay line and
a closing line to turn everything off again, we get the following: a lot
of work for a single note.

10 V=S54272

20 POKE V+24,15

I0 POKE V+5,68

40 POKE V+6,70

50 POKE V44,33

&0 POKE V+1,2

70 FOKE V, 37

80 FORE=1T01000:zNEXTE

90 FORI=0TO24:POKE V+1,0:NEXT

Turning everything off when you’ve finished is always a good idea,
otherwise you'll rapidly be reaching for the headache tablets.

We can use this simple way of building up a note to get the computer
to play a little tune. For the time being we’ll only use one voice, but
even with that voice you'll still be able to get some idea of the effects
that the Commodore 64 is generating.

Musical tunes

One way of building up a tune would be to store our note data as data
statements, and then read it into a suitable set of variables. Then it
would only be a question of POKEing the correct locations with the
values stored in the variables, as in the following example.

10 V=54272
20 POKE V424,15
30 POKE V+5,68
40 POKE V+6,70
50 POKE V+4,33
S5 READ A,B,C

S6 IFAC1THENSS

158

60 POKE V+1,B

70 POKE V,C

80 FORI=1TOA*50:NEXTI

85 POKE V+1,0

90 BOTOSS

95 FDORI=0TO24:POKEV+I,0:NEXT

100 DATA 10,5,185,10,5,185,10,6,108,15,5,105,5,5,1
85,12,6,108

110 DATA 10,7,53,10,7,53,10,7,163,15,7,53,5,6,108,
12,5,185

120 DATA 10,6,108,10,5,185,10,5,105,15,5,185,0,0,0

A recognisable little tune.

If you study the listing, you'll see that we're reading in three different
variables each time, the second and third being the high and low
frequency, and the first just acting as a delay loop, telling us how long
to play each note.

From this basic idea, we can begin to play around with the data
statements, and the values we're putting into the appropriate registers,
to create a host of different sounds.

In this next listing, we're using the pulse waveform, so we've had to
put in two lines which set the low and high pulse rates for voice 1.
We've also upped everything by a couple of octaves as well.

10 V=54272

20 POKE V+24,15

30 POKE V+5,9

40 POKE V+6,0

45 POKE V+2,255

46 PODKE V+3,20

50 POKE V+4,55

55 READ A,B,C

56 IFAC1THENS7

60 POKE V+1,B

70 POKE V,C

80 FORI=1TDA#SO:NEXTI

95 FORI=0T023:POKEV+I,0:NEXT

96 BOTD 20

97 FORI=0T024:POKEV+I,0:NEXT

100 DATA S,22,227,5,22,227,5,25,177,10,21,154,2,22
2227 ,7+25,177

110 DATA 5,28,214,5,28,214,5,30,141,10,28,214,2,25
W177,7,22,227 .

120 DATA 5,25,177,5,22,227,5,21,154,10,22,227,0,0,
0 ,

159

From this, we can do all sorts of things.

The following lines are just some of the ideas that you could incorporate
into your own programs, and illustrate how easy it is to alter the sound
being produced by the Commodore 64.

10 V=54272
20 POKE V+24,15

30 POKE V+5,9

40 POKE V+6,0

45 1=1+15

46 POKE V+2,2:POKE V+3,Z

50 POKE V+4,45

55 READ A,B,C

56 IFA<1THENG?

60 POKE V+1,B

70 POKE V,C

80 FORI=1TOA*50:NEXTI

95 FORI=0TO23:POKEV+I,0:NEXT

96 GOTD 20

97 FORI=0T024:POKEV+I,0:NEXT

100 DATA S,22,227,5,22,227,5,25,177,10,21,154,2,22
2227 .7 ,25,177

110 DATA 5,28,214,5,28,214,5,30,141,10,28,214,2,25
W177,7,22,227

120 DbaTA 5,25,177,5,22,227,5,21,154,10,22,227,0,0,
0

10 V=54272

20 POKE V+24,15

30 POKE V+5,9

40 POKE V+6,0

50 POKE V+4,17

55 READ A,B,C

56 IFA<1THENS7

60 POKE V+1,B

70 POKE V,C

B0 FORI=1TOA*50:NEXTI

95 FORI=0T023: POKEV+I,0: NEXT

96 6OTO 20

97 FORI=0T024:POKEV+I,0:NEXT

100 DATA 5,22,227,5,22,227,5,25,177,10,21,154,2,22
222747 425,177

110 DATA 5,28,214,5,28,214,5,30,141,10,28,214,2,25
2 177,7,22,227

120 DATA 5,25,177,5,22,227,5,21,154,10,22,227,0,0,
o

160

Musical values

By now you may be wondering how we arrived at all the values listed
in the table of musical notes for the high and low frequencies of each
note. They are not just numbers plucked out of thin air, refined after
experimenting with the SID chip, but are rather based on the physics
of sound and the frequency in hertz of each note.

The following table lists the frequencies that can be achieved on the
64 (although the final one listed does go off the scalel).

MUSICAL
NOTE
ce
con

D=0 IRALOHN =D
w
2
*

FREQ

CHz)

1£.38
T.32
12.38
19,44
20,60
£1.82
3,12
24,50
oT.98
v.5e
5.4
38.87
2. 70
34,635
36,71
2. 89
41.23¢
43.8%
3,25
48,00
S1.91
5.0

o~
e 2T

0L Fn

<DECIMALY

T4
<1
30¢
por-3-3
34
258
o243
411
43S
4£]
49
Sie
S48
S8
B1l€
T2
€91
o
TPe

0sC #n
CHEXY
Q112
o133
2134
o143
915A
B16E
2184
o158
P1E3
1CD
QLE®
o2es
|2s
024
263

B

nREBNER

@W'l)'b(-:'(glio
WD QHid-}

SERERFRRRPEEEE SR SR T-2-EE b

o
»

ngRgRu333aJI0FRGARFRRLFINEYL

FREQ
CHz>
261.63
arT.18
293, 6¢
311.13
9. €3
249,23
3I7e.20
I92. 00
419,20
“43, 00
438, 3¢
4932, 2%

I$T1. 08

0$C Fn

(DECIMALS

4289
48SQ
48T
S0
sz3e
sgTe
S2OT
[1g
968
TIe2
TSSL

£I741

=2

g
“ESTTE

ost Fn
CHEX?
1128
1228
133
1464
189/
16E2
193F
1981

This table provides us with a quick and easy way of generating an
equal-tempered musical scale. However, since it would take up 192
bytes to store all this in memory, it is not the most memory-effective
way of doing things.

It might be better to store all the values for the frequency as one table
covering just one octave: this requires a mere 12 bytes to store it. Then,
using the fact that notes in different octaves have directly related
frequencies (move up one octave and all the frequencies are doubled,
move down one and they’re all halved), we could readily calculate the
frequency of any note in any octave.

This technique is used in one of the programs in chapter nine, where
the player of the musical keyboard is allowed to slide up and down
from octave to octave, and the computer just calculates whatever the
new frequencies should be.

How do we perform these calculations? Let’s have a look at some
physics.

The physics of music

The sounds that you hear generated by the 64 are nothing more than
a series of waves, similar to those of a pond when you throw a stone
into it. The ripples showing on the pond are analogous to those
produced by generating a sound.

The distance between successive peaks can be accurately measured
as a function of time. Thus we determine the interval between
successive peaks of the wave passing the same spot. If we call this
X seconds, then the frequency of the wave is denoted as (1/X).

In other words, the number of waves passing the same point in one
second is called the frequency. This is measured in cycles per second,
otherwise known as hertz.

For example, the table above tells us that the pitch for the note middle
C is 261.63 hertz. Anything above about 3000 hertz tends to get a little
bit painful after a while. Try playing the note A three octaves above
middle C (high frequency 230, low frequency 176), and you'll see, or
rather hear, what | mean.

To get from a value for the frequency to the values quoted for the
high frequency and the low frequency listed earlier, in other words

162

to get our two values which will determine which note is to be payed,
we have to do a little bit of mathematics.

If we call the frequency FQ, then the first stage of our equation is:
F=INT(FQ/0.05961)

Taking the value F, the high order frequency (call it FH) can be found
from the following equation:

FH=INT(F/256)

To find the low order frequency (call it FL), we need to repeat the above
equation, but don't take the integer part of the number, instead take
whatever part comes after the decimal point. So, if the result of dividing
F by 256 was something like 5.9856, the part that interests us is the
0.9856.

This is then used as follows:

FL = 256-256*0.9856

Using these equations we can then find all the high and low order
frequencies, and use them in our programs to produce precisely the

notes that we want.

But now, a program!

Musical Keyboard

This program turns the 64 keyboard into a musical one, and allows
you to play all three voices.

Any one, or all, of the voices can be altered simply by pressing the
return key, which takes you into another part of the program where
you alter the waveform of a voice, the shape of the envelope for that
voice, and so on. In this way you can experiment with the various
sounds that the machine can produce.

The three voices are predefined for you in a set of data statements,
but these can easily be changed as you see fit.

It is by no means turning the 64 into a true synthesiser, although it
is a step along the way, and we'll come back to this program in the

163

next chapter and make it do a whole lot more than it does at present.
But since this forms the bare bones around which we'll hang the flesh
of that later program, here it is.

Program notes

Line 5 : declare variable V, and turn voice 1 on {all voices are referenced
as VO)

Line 20 : go to subroutine to read all the musical data in.

Line 30 : go to subroutine to print on-screen instructions and keyboard.
Line 1000 : check for key press and shift/logo

Line 1010 : if it's all the same as last time then don't do anything.
Line 1020 : get frequency relating to key pressed.

Line 1030 : if no note then turn voices off.

Line 1040 : if numeric key pressed, then 3000.

Line 1045 : if Return pressed, then 4000.

Lines 1050-1060 : if shift or logo pressed, adjust frequency accordingly.
Lines 1070-1080 : calculate frequency.

Lines 1085-1130 : play note for relevant voices.

Lines 2000-2050 : turn voices off.

Lines 3000-3040 : turn on/off relevant voices.

Lines 4000-4024 : on-screen display for altering
voices.

Lines 4026-4029 : which voice.
Lines 4030-4036 : to which waveform.

Lines 4037-4250 : rest of alterations.

164

Lines 5000-5150 : on-screen instructions.

Lines 6000-6120 : data and set-up voices.

S v=54272:V0(0)=1

10 REM FROM AN DRI INAL IDEA BY RICHARD FRANKLIN
20 GOSUB&00O

30 GOSUBSO00

1000 K=PEEK(197) : PS=PEEK (653)

1010 IFK=LKANDPS=LSTHEN1000O

1020 F=N(K):1LK=K:LS=P8

1030 IF F=0 THEN 2000

1040 IF (F>OANDF<?) THEN 300C

1045 IF K=1 THEN 4000

1050 IF PS=1 THEN F=INT(F#2+(1/12))

1060 IF PS=2 THEN F=INT(F/27(1/12))

1070 F1=INT(F/256)

1080 F2=F-F1#256

1085 FOR I=20 TO 2

1086 IF VO(I)=0 THEN 1125

1090 POKE V+I#7+4,0

1100 POKE V+I#7+4 ,H(1)#16+RM(1) %4+5Y (1) %2+1

1110 POKE V+I*7,F2

1120 POKE V+I*7+1,F1

1125 NEXTI

1130 60TO 1000

2000 FOR I=0 70 2

2010 POKE V+I%*7,0

2020 POKE V+I#7+1,0

2030 POKE V+I*7+4 ,W(1)*16

2040 NEXT 1

2050 6OTO 1000

3000 F=F-1

3010 FOR I=0 TO 2

3020 VO(I)=(FAND2~1)/2"1

3030 NEXT 1

3040 GOTO 1000

4000 POKE .53280,14:POKE 53281, 1:PRINT"LPUR]"

4001 PRINT "ICLR] VOICE 1 VOICE 2 v
OICE 3"

4002 FORI=1TD10: GETKY#$: NEXT

4003 PRINT “"L[CDINAVEFORM"; TAB(12)3W$(0) 3 TAB(22) ;¢
(1) 3 TAB(32) s W$ (2)

4004 PRINT "ATT/DEC"3;TAB(13)3AD{(0);TAB(23)3AD(1);5T
AB(32) ;AD(2)

4006 PRINT “SUS/REL"3;TAB(13);SR(0); TAB(23)38R(1)3T
AB(32) ;SR(2)

4008 PRINT "PULSE HI";TAB(13)3PH(0)3;TAB(23)3PH(1)
TAB(32) ;PH(2)

4010 PRINT "PULSE LO";TAB(13)3PL(0)sTAB(23)3PL (1)
TAB(32);PL(2)

165

4012 PRINT "RING MOD";TAB(13);RM(0); TAB(23)3;RM(1);
TAB(32) ;RM(2)

4014 PRINT "SYNC ":TAB(13);SY(0) 3 TAB(23)38Y (1)
TAB(32) ;SY (2)

4016 PRINT"LCDIDO YOU WANT TO CHANGE ANY VALUES (Y
/N) 2"

4018 GETCHS$: IFCH$="N"THEN30

4020 IFCH#$<>"Y"THEN4018

4022 PRINT"LCDINHICH VOICE (i1, 2 OR 3)7?*

4024 GETVCS: IFVCS$=""THEN4024

4026 IFVC$="1"THENPRINT"VOICE 1":VC=0:G0TO 4030
4027 IFVC$="2"THENPRINT"VOICE 2":VC=1:6G0T0 4030
4028 IFVC$="3"THENPRINT"VOICE 3":VC=2:60T0 4030
4029 GOTO 4024

4030 PRINT "LCDIWAVEFORM (T, S, P, OR M) ?"

4031 GETWF$: IFWF$=""THEN 4031

4032 IFWF$="T"THENPRINT"TRIANGLE":W(VC)=1:W$(VC)="
TRIANGLE":GOTO 4037

4033 IFWF$="S"THENPRINT"SAWTOOTH": W(VC)=2: W& (VC) ="
SAWTAOTH":6G0TO 4037

4034 IFWF$="P"THENPRINT"PULSE": W(VC)=4:W$(VC)="PLL
SE":60TO 4037

4035 IFWF$="N"THENPRINT"NOISE" : W (VC)=B: W& (VC)="NOI
SE":G0OTO 4037

4036 GOTO 4031

4037 INPUT "ATTARCK/DECAY":AD((VC) : IFAD(VC) <OORAD (VC
) >235THENPRINT"L[2CU]":60TO 4037

4039 INPUT "SUSTAIN/RELEASE" ;SR (VL) : IFSR(VC) <DORSR
(VE) »255THENPRINT"[2CU1":GOTO 4039

4041 INPUT "PULSE HI":PH(VEC) : IFFH(VC) <O00ORPH(VC) »25

STHENPRINT®L[2CU]1":60TO 4041

4043 INPUT “PULSE LI";PL(VEC):IFPL (VL) <ZO0RFPL (VL) »25

STHENPRINT"[2CU1":G0TO 4043

4045 INPUT "RING MOD" :RM(VC) : IFRM (VL) <OORRM(VC) >15

THENPRINT"L[2CUI":GOTO 4045

4047 INPUT "SYNC”;3Y (VC): IFSY (VL) <00RSY (VL) »1STHEN

PRINT"[2CU1":G0T0 4047

4049 GOTO 4000

4250 RETURN

S000 POKE 53280,8:POKE S53281,0:POKE 53272,23

S00S5 PRINT"LYEL ,CLR ,RVSJ%%#%%%%%% SING—-A-LONG—-A-

&4 *Hunnnn%LOFFI"

S008 PRINT" LRVS J9##% %33 % 3% % % BY SID L2 L]

EZ 22 2 2 A

5010 PRINT" PLAY USING THE KEYS [RVSIQ@ W E R T Y U
x H

5020 PRINT"LCD] [RVSIA S D F G
H J K"

S030 PRINT"LCD1] tRVSiZ X C V B
N M "

Y
5040 PRINT"L[CD] TO COVER THREE OCTAVES."
5050 PRINT"ICD] USE THE [RVSISHIFTLOFF] KEY FOR A

SHARP , "

5060 PRINT" [RVSICBMLOFF1 KEY FOR A FLAT
“

5070 PRINT"LCDIUYSE THE KEYS [RVS10 1 2 3 4 5 6 710

FF1 TO"

5080 PRINT“CHOOSE ANY COMBINATION OF THE THREE"

5090 PRINT*VOICES. THEY ARE SET UP BY USING BINARY

5100 PRINT"ARITHMETIC. THEREFORE, VOICE 1 IS TURNE
D";

5110 PRINT"ON USING KEY 1, VOICE 1 AND 3 ARE TURNE
D“;

5120 PRINT"ON USING KEY S,ETC.*

5130 PRINT*ICDIUSE THE [RVSIRETURNLOFF1 KEY TO CHA
NBE THE VALUES"

5140 PRINT"OF THE VOICES.[HOME]"

5150 RETURN

6000 DIM N(64)

6005 FOR I=0 TO &4

6010 READ A

&01S N(I)=A

6020 NEXT 1

6025 DATA ,-1,0,0,0,0,0,0

6030 DATA 4,9854,4389,5,2195,4927

6035 DATA 11060,0,6,11718,5530,7,2765,585%9

6040 DATA 13153,2463,8,14764,6577,0,3288,7382
6045 DATA 16572,2930,0,17557,82846,1,4143,8779

6050 DATA 0,346%91,0,0,0,0,0,0,0,4389,0,0,0

6055 DATA 0,0,0,0,0,2,0,0,3,0

&060 DATA 0,8779,0,0

&070 FOR I=0 TO 2

6080 READ W(I) ,AD(I) ,SR(I) ,PH(I) ,PL(I) ,WS(I) ,RM(I)
+SYLID)

6090 NEXT

6100 DATA 1,102,108,0,0,"TRIANGLE",0,0

6110 DATA 2,96,108,0,0,"SAWTOOTH" ,0,0

6120 DATA 4,9,0,0,255,"PULSE",0,0

6122 FORI=0TO2

6123 POKE V+7#I+4 ,W (1) +RM(I)+SY (1)

6124 POKE V+7#1+45,AD(1):POKE V+7#1+46,SR(1):POKE V+
7#1+3 ,PH(I):POKE V+7#1+2,PL(I)

6126 NEXT

&128 POKE V+24,15

6130 RETURN

Notes

As usual, the up-arrow key causes us problems in a few places, notably
lines 1050,1060 and 3020.

167

The letters in italics are only so because the program has been written
in lower case mode, and should be entered as shifted letters when
you type the program in.

There are no graphics characters used, so there shouldn’t be any great
problems in deciphering the rest of the listing.

Of note (sorry!) is the way the frequency values are handled and
calculated. They are read in as a table from line 6000 onwards, and
are stored in the order of the values returned by PEEK(197) in an array
N. Thus if the nth key is pressed, the frequency is found from looking
at N(n). The numeric keys cause various voices to be switched on and
off, and hence the check in line 1040 to see if one of them has been
pressed.

Using multiple voices

You'll already have seen this kind if thing in action in the last program,
but for a few more details, read on.

The kind of principles used in that program, that of playing through
a loop and playing all the voices that way, the idea of another loop
to turn them all off again, can readily be appreciated, since we're not
doing anything too complex with any one voice.

However, playing with ring modulation and synchronisation, as we
shall see in the next chapter, can produce some very interesting results,
but alas they all require somewhat different techniques in playing the
notes.

The following three short examples all use either ring modulation or
synchronisation, and illustrate just one way in which these effects can
be utilised.

WEe'll be seeing more of this in the next chapter, but for now three
very different sounds. By playing about with the listings, and in
particular altering the waveform registers to include or cut out various
effects, you'll get a clearer understanding of the ways in which many
a strange sound can be produced on the 64.

168

10 V=54272

20 POKE V+24,15

30 POKE V+5,9:POKE V+48,255

40 POKE V+&6,0:POKE V420,70

45 POKE V+2,255

46 POKE V+3,20

S0 POKE V+4,67:POKE V+18,33

52 POKE V+14,5:POKFV+15,2

55 READ A,B,C

56 IFA<1THENS7

60 POKEV+1,B

70 POKE V,C

80 FORI=1TOA#50:NEXTI

95 FORI=OTO23:POKEV+I,0:NEXT

96 GOTO 20 -

97 FORI=0TD24:POKEV+I,0:NEXT

100 DATA 5,22,227,5,22,227,5,25,177,10,21,154,2,22
2227,7,25,177

110 DATA 5,28,214,5,28,214,5,30,141,10,28,214,2,25
,177,7,22,227

120 DATA 5,25,177,5,22,227,5,21,154,10,22,227,0,0,

10 Vv=54272

20 POKE V+24,15

30 POKE V+5,9:POKE V+19,255

40 POKE V+6,0:POKE V420,70

S0 POKE V+4,23:POKE V+18,33

52 POKE V+14,5:POKEV+15,2

55 READ A,B,C

S6& IFA<1THEN97

60 POKEV+1,B

70 POKE V,C

80 FORI=1TOAXSO:NEXTI

95 FORI=0T023:POKEV+I,0sNEXT

94 GOTO 20

97 FORI=0TD24:POKEV+I ,0:NEXT

100 DATA 5,22,227,5, 22 227,5,25%,177,10,21,154,2,22
2227 47 425, 177

110 DATA 5 28,214,5, 28 214,5,30,141,10,28,214,2,25
$177,7,22, 227

120 DATA 5,25,177,5,22,227,5,21,154,10,22,227.0,0,
o

10 V=54272

20 POKE V+24,15

30 POKE V+5, 9:PDKE V+19,255: POKE V+12,36
40 POKE V+6,0:POKE V+20,70:POKE V+13, 36
46 POKE V+3,A:POKE V+10,15

47 POKE V+2,20:PDKE vV+9,20

169

S5O0 POKE V+4,71:PDKE V+18,129:POKE V+11,129
60 FORI=10TO40:FOKE V+1,1:POKEV+15,3:POKE V+7,4:NE

70 A=A+10: IFA>250THENA=0
95 FORI=0TO23:POKEV+I,0:NEXT

96 GOTO 30
97 FORI=0T024:POKEV+I ,0: NEXT

And now, as a forerunner to the more complex features explored in
the next chapter, here is a fairly detailed breakdown of what each of
the sound registers in the SID chip actually does. Understanding what
the registers do is the key to unlocking the amazing features of the 6581.

6581 Register descriptions
We'll now spend a few pages going through each register in detail,
using location 54272 as our base register, or register 0, starting with:

Voice 1 : frequency low/frequency high

These two registers combine together to form a 16 bit number which
linearly controls the frequency of voice 1.

This frequency is determined by the following equation:
Fout = (Fn *Fclk/16777216) Hz

where Fn is the 16 bit number in the frequency registers, and Fclk is
the system clock applied to the 02 input, pin 6.

Since the Commodore 64 has a one megahertz clock, this formula
comes down to:

Fout = (Fn * 0.05961) Hz

It should also be noted here that the frequency resolution of the 6581
is such that sweeping from note to note on an even-tempered scale
is possible without any noticeable frequency steps.

This allows us to produce such effects as glissando and portamento,

where the note sweeps cleanly either up or down the scale, in the case
of glissando changing in steps of semitones.

170

Pulse width low and high

These two registers combine together to form a 12 bit number, which
linearly controls the pulse width of the pulse waveform of voice one.
Bits 4 to 7 of pulse high are not used, which is why we get just 12
bits and not 16.

This pulse width is determined by the following equation:

PWout = (PWn/40.95) %

where PWn is the 12 bit number in the PW registers.

Again, the pulse width resolution is such that the width can be
smoothly swept along without any noticeable stepping effects, as you'll

have seen in some of the example programs given earlier.

For constant pulse widths, a value of 0 or 4095 will produce a constant
DC output, while a value of 2048 will produce a perfect square wave.

Obviously these features cannot be used without having previously
selected the pulse waveform for voice 1. Conversely, setting the pulse

waveform for voice 1 and then not setting the pulse width registers
won’t produce very much in the way of sound either.

Control register

The most important register of them all, containing eight control bits
with the following functions:

Gate - bit 0

This controls the envelope generator for voice 1, and when this bit
is set to a ‘1" the envelope generator is triggered and the
Attack/Decay/Sustain (or ADS) cycle is begun.

When this bit is reset to a zero, then the release part of the cycle begins.
This envelope generator controls the amplitude of voice 1 as it appears
at the audio output, and must therefore be triggered in order for the

selected output of voice 1 to be audible.

171

Sync - bit 1

When set to a ‘1’ this synchronises the fundamental frequency of voice
1 with the fundamental frequency of voice 3, producing what are
known as ‘hard sync’ effects.

Varying the frequency of voice 1 with respect to voice 3 produces a
wide range of complex harmonic structures from voice 1 at the
frequency of voice 3: this was used in one of the example programs
given earlier.

In order for this to take place, obviously voice 3 must be set to some
frequency or other, preferably lower than that of voice 1, but naturally
higher than zero.

Nothing else connected with voice 3 has any effect on sync.

Ring mod - bit 2

When set to a ‘1’ this bit replaces the triangle waveform of voice 1
with a ring modulation combination of voices 1 and 3: obviously one
must previously have selected the waveform of voice 1to be a triangle
one.

Varying the frequency of voice 1 with respect to voice 3 produces a
wide range of non-harmonic overtone structures.

Again, nothing else connected with voice 3 has any effect on ring mod.

Test - bit 3

This bit, when set to a “1’, resets and holds voice 1 at zero until the
bit is cleared. '

The noise waveform of voice 1 is also reset, and if a pulse wave has
been selected this is held at a DC level.

Normally only used for testing purposes - hence the name - it can be
used to synchronise voice 1 to external events.

It can also have a couple of musical applications. Setting this bit to

172

a ‘1" instantly clears the voice, whereas using any other method takes
at least a couple of milliseconds.

In addition, you can use this to synchronise a number of voices to
start at exactly the same time. If, for instance, you were playing a set
of rhythms with the three voices, you'd want them all to start at
precisely the same moment, otherwise some very non-harmonic effects
might occur.

Triangle - bit 4

When this is set to a ‘1’, the triangle waveform is selected for voice
1. This is low in harmonics, and thus produces a mellow, reed-like note.

Sawtooth - bit 5

When this is set to a ‘1’, the sawtooth waveform is selected for voice
1. This is rich in harmonics, and thus produces a brassy, trumpet-like
note.

Pulse - bit 6

When this is set to a ‘1’ the pulse waveform is selected for voice 1.
The harmonic content of this waveform can be varied by altering the
pulse width registers, producing a wide variety of different musical
(and not so musical) sounds.

Sweeping through the pulse widths can produce some dynamic
effects, and can add a sense of motion to the sound. In the last of
the example programs given earlier, breaking into the program and
stopping it allows the noise voice to complete its cycle. This sounds
remarkably like a train rushing past you.

Rapidly altering from one pulse width to another can also be used to
produce some interesting harmonic effects.

Noise - bit 7

When set to a ‘1’, the noise waveform is selected for voice 1. This

is a totally random signal which changes at the frequency of voice
1, and thus is of most use in generating purely sound ‘effects’, like

173

missiles taking off, engines revving, or vast explosions.

The sound of waves lapping on the beach, or of a cymbal being rapidly
hit, can be achieved by sweeping through the different frequencies.

One of the above waveforms must be selected in order for voice 1
to produce any audible sound, although that sound can be turned off
without un-selecting a waveform, as the voice at the end is a function
of the envelope generator only.

Also, you cannot add more than one waveform together to produce
something totally different from the above four.

You are welcome to try, but the most likely result is that voice 1 will
be switched off, and can only be reset by the test bit, or by setting
pin 5 to low, or ‘0",

However, you certainly can combine a waveform with the ring
modulation, synchronisation, and other features of this register.

Attack/decay

Bits 4 to 7 of this register, known as ATKO to ATK3, select an attack
rate from O to 15 for the voice 1 envelope generator. The attack rate
determines how fast the output of voice 1 rises from zero to peak
amplitude, when the envelope generator is triggered.

Bits 0 to 3 of this register, known as DCYQ to DCY3, allow you to
select a decay rate from 0 to 15 for the envelope generator. The decay
cycle comes after the attack cycle, and determines how quickly the
output falls from the peak amplitude to some pre-selected intermediate
level.

Sustain/release

Bits 4 to 7 of this register, known as STNO to STN3, allow you to select
a sustain level from 0 to 15 for the envelope generator for voice 1.
The sustain cycle follows the decay cycle, and determines at what
amplitude voice 1 will remain as long as the trigger bit remains set.
This is all done on a linear basis, so, for example, a sustain level of
8 would cause voice 1 to sustain at exactly half the peak amplitude
reached by the attack cycle.

174

Bits 0 to 3 of this register, known as RLSO0 to RLS3, allow you to select
a release rate from 0 to 15 for the envelope generator of voice 1. The
release cycle follows the sustain cycle, and determines how rapidly
the amplitude of voice 1 will fall from the sustain level to zero amplitude.

The 16 release rates are identical to the decay rates, shown below.

Envelope rates

The cycling of this envelope generator can be altered at any point in
the cycle by the gate bit, as the generator can be gated and released
at any time, without restriction.

So if the gate bit is set while half way through an attack cycle, the
release cycle will begin immediately, and if the gate is reset again while
the release cycle is still continuing, another attack cycle will start from
whatever amplitude had been reached during release.

As you mightimagine, this gets a bit hairy after a while, but does allow
quite complex effects to be achieved.

Envelope Rates

Value Attack Rate Decay/Release Rate
Dec Hex (Time/Cycle) {Time/Cycle)
ms ms

0 0 2 6

1 1 8 24

2 2 16 48

3 3 24 72

4 4 38 114

5 5 56 168

6 6 68 204

7 7 80 240

8 8 100 300

9 9 250 750
10 A 500 1.5 sec
11 B 800 2.4 sec
12 C 1 sec 3 sec
13 D 3 sec 9 sec
14 E 5 sec 15 sec
15 F 8 sec 24 sec

176

Voices 2 and 3

Voice 2

The registers $07 to $0D control voice 2, and function in the same
way as registers $00 to $06 for voice 1, with the following two
exceptions:

1) When SYNC is selected, it synchronises voice 2 with voice 1.
2) When RING MOD is selected, it replaces the triangle output of voice
2 with the ring modulated combination of voices 2 and 1.

Voice 3

The registers $0E to $14 control voice 3, and function in the same way
as registers $00 to $06 for voice 1, with the following two exceptions:

1} When SYNC is selected, it synchronises voice 3 with voice 2.
2) When RING MOD is selected, it replaces the triangle output of voice
3 with the ring modulated combination of voices 3 and 2.

Combining these two effects of modulation and synchronisation can
produce some very odd results. You might like to try, for example,
synchronising voice 2 with voice 1, and ring-modulating voice 3 with
voice 2, or some other weird and wonderful combination of the two.

Filtering

Freq Lo/Freq Hi - registers $15 and $16

As bits 3 to 7 of register $15 are not used, these two combine together
to form an 11 bit number which linearly controls the cutoff, or centre
frequency of the programmable filter. The approximate cutoff
frequency is obtained from the following equation:

FCout = ((6.6E-8 + FCn * 1.28E-8)/C) Hz

where FCn is the 11 bit number in the above two registers and C is
the value of the two filter capacitors connected to pins 1 to 4, or in

176

our case 2200 picoFarads.
This gives an approximate filter range of 30 Hz to 12 KHz, according to:

FCout = (30 + FCn * 5.8) Hz

Res/Filt - register $17

Bits 4 to 7 of this register control the resonance of the filter, where
resonance emphasises components of the frequency at the cutoff
frequency of the filter, thus causing a sharper sound.

There are 16 resonance settings ranging linearly from no resonance,
when this is set to zero, or maximum resonance, when it is set to 15.

As we saw earlier, using a very high resonance is the basis behind
awah-wah pedal, as used by rock guitarists. Pressing the pedal down
will raise the cut-off frequency, and releasing the pedal will lower it
again. Try it on the 64 and see, by playing a note with very high
resonance, and varying the cut-off frequency.

Bits 0 to 3 determine which signals will be routed through the filter.
Bit 0: When this is set to zero, voice 1 appears directly at the audio
output, and there is no filtering effect. When set to 1, voice 1 is
processed through the filter, and the harmonic content of voice 1 is
altered according to the selected filter parameters.

Bit 1: Ditto for voice 2

Bit 2: Ditto for voice 3

Bit 3: Ditto for external audio input on pin 26.

Mode/Vol - register $18

We've already seen this one as the master volume control, but it
actually does a whole iot more. ’

Bits 0 to 3 are the actual volume settings, and allow you to select an
overall volume ranging from 0 (silence) to 15 (maximum).

Bits 4 to 7 select various filter modes and output options.

177

Bit 4 - When set to a ‘1, the low pass output of the filter is selected
and sent to the audio output. For a given filter input signal, all
components of the frequency below the filter cutoff are passed through
unaltered, while all those above the cutoff are attenuated at a rate of
12 decibels per octave. This is not as sharp as most dedicated
synthesisers (usually 24 decibels per octave), but the effect is still there.

Bit 5 - As above for band pass output, but attenuation above and below
the cutoff is at a rate of 6 decibels per octave.

Bit 6 - As above for high pass output, and attenuation below the cutoff
is back to 12 decibels per octave.

Bit 7 - When this is set to ‘1’ the output of voice 3 is disconnected
from the direct audio path, so setting voice 3 to bypass the filter and
setting 3 OFF to a ‘1’ stops voice 3 from ever reaching the audio output.
Thus voice 3 can be used for modulation purposes without any
extraneous noises coming out and ruining the magnum opus.

These filter modes are additive, in that one can combine a number
of different modes at the same time. Playing with, and understanding,
these frequency alterations is the key to getting the most out of the
6581.

178

9

Further Sound
Techniques

Envelope shaping

There are many terms in computing that bear more than passing
resemblance to terms in the outside world, and envelope shaping
immediately triggers off thoughts of caves hidden deep in a remote
valley in Wales, where for years men have gathered and secretly folded
envelopes.

However, it's all a bit more mundane on the Commodore 64, and here
envelope shaping is taken to mean designing and changing the shape
of the musical envelope for the notes that you wish to play.

All good synthesisers give you the ability to change envelope shapes,
and SID is no exception. The only difference here between SID and
a true synthesiser is that we have to do everything the long way, with
a piece of software, rather than just sliding a few dials around on a desk.

Before we talk about changing any envelopes however, it would be
a good idea to define a few terms first of all, so that we know precisely
what it is that we're altering.

Musical notes

A musical note goes through four distinct phases as it plays itself out.
First there is a rise to the highest volume, and this is termed the attack

of the note.

This is sometimes followed by a decay to some intermediate level of
volume, and this is indeed referred to as the decay of the note.

The third phase involves keeping at this intermediate volume for a fixed
period of time, and this is known as the sustain period of the note.

Finally, the note has to decay away to silence again, and we term this

179

the release period of the note.

Putting the four together, in a sequence usually referred to as ADSR
for the four initial letters of the words involved, gives us the envelope
of the note as played by the 64.

This is where synthesisers differ from musical instruments, in that
instruments characteristically are unable to alter the envelope of the
note that they are playing, at least to any great extent. They don't
have to: they are musical instruments precisely because they produce
the notes that they do.

Synthesisers, on the other hand, are always having to change envelope

shapes of notes as they seek to emulate other sounds, or indeed create
new ones.

Envelope shapes

A typical envelope shape for a musical instrument might look
something like this:

T Amplitude Decay Sustain

T,

’
|
|
l

i Attack

uration

(This sideis a
mirror-image of the top)

Here we see all four phases of the note looking roughly the same in
duration, and by altering one or all four of these characteristics we
can dramatically alter the timbre of the note that is being played.

180

It's good to see on a relatively inexpensive synthesiser like the SID
chip that we produce a linear siope for the attack period, but
exponential ones for the delay and release. These are built into SID
and you cannot alter the way in which they behave. Nevertheless it
is good to see that both of these curves are in the chip: most
synthesisers use either one or the other, they certainly don't offer you
both.

Waveforms
However, we can alter a lot more about a note than merely the shape
of its envelope. On the 64 we have control over the waveform of the
note as well, and the four waveforms, as we've seen, are termed

triangle, sawtooth, pulse and noise.

Graphically, they might look something like this:

This is a sine wave, and all waveforms can be broken down into a
number of different sine waves, all operating at different frequencies.

The triangular waveform looks like this:

181

and a sawtooth:

and a pulse wave:

}+— PULSE WIDTH —+

and finally the noise waveform, which is totally random, but might
look something like this:

The following short program should serve to demonstrate the principles
involved.

182

Attack/decay/sustain/release

This program is fairly straightforward, but we’ll go through it in detail
anyway.

It allows you to listen to any single note that the Commodore 64 is
capable of playing, before we start filtering, modulating or
synchronising other notes.

This is done just by getting ydu to press a few keys, and see the
differences made by everything that the SID chip is capable of altering.

The screen display is nothing complicated. Along the top you'll see
the words ATT ({for attack), DEC (for decay), SUS (for sustain), REL
(for release), FH (which stands for the high frequency), FL (for the
low frequency), and finally WF, which indicates the waveform that
is currently being used.

By pressing any of the keys ‘A’, ‘D’, ‘S’ or ‘R’ you will change
respectively the attack, decay, sustain or release of the note, and the
program will then play the new note.

The change in the value will also be shown on the screen for reference.

Pressing ‘W’ allows you to step through the four waveforms, and again
this change will be shown on the screen and the note played.

To alter the frequency of the note, we have a further four keys to play
with. Pressing the up-arrow key will increase the high frequency of
the note, pressing the “*' key will decrease it. Similarly for the low
frequency of the note, pressing ‘ + ' will increase it by one, and pressing
‘—" will decrease it by one.

Again, all these changes will be reflected up on the screen.

Program notes

Line 10 : set border, screen and character colours.
Line 20 : declare variable V to be start of video chip.
Line 30 : declare more variables, and GOTO 220.

183

Line 40 : turn volume to maximum.

Lines 50-60 : select ADSR of note.

Line 70 : check for pulse wave selection.

Lines 80-90 : select frequency of note.

Line 100 : select waveform.

Lines 110-210 : wave for keyboard input and respond accordingly.
Lines 220-230 : print up screen display.

Line 240 : update information on screen.

Line 250 : turn it all off before playing new note.

Line 280 : back to start of loop again.

10 POKE 53281,0:POKE 53280,9:PRINT"LCLR,YEL]"
20 Y=54272

30 WF=2:A=0:D=9:5=0: R=0: FL=0: FH=12: GOTO 220
40 POKE V+24,15

50 POKE V+5,A%16+D

60 POKE V+6,5%16+R

70 IFWF=4THENPOKEV+3,0: POKEV+2,255

80 POKE V+1,FH

20 POKE V,FL

100 POKE V+4,WF#1&+1

110 GETA$:

120 IFA$="+"THENFL=FL+1: IFFL>255THENFL=255
130 IFA$="""THENFH=FH+1: IFFH>255THENFH=255
140 IFA$="A"THENA=A+1: IFA=16THENA=O

150 IFA$="D"THEND=D+1: IFD=14THEND=0

160 IFA$="S"THENS=G+1: IFS=16THENS=0

170 IFA$="R"THENR=R+1: IFR=16THENR=0

180 IFA$="%"THENFH=FH-1: IFFH<OTHENFH=0

190 IFA$="W" THENWF=WF*2: IFWF=1&6THENWF=1

200 IFA$="—"THENFL=FL—-1: IFFL<OTHENFL=0

210 IFA$=""THEN110

220 PRINT"[HOMEIATT DEC SUS REL FH FL WF"
230 PRINT:PRINT"

240 PRINT"[HOME,2CD1"ATAB(4)DTAB(B)STAB(12)RTAB(14
JFHTAB{18)FLTAB(23)WF*16+1

250 FORI=0TO23:POKE V+I1,0:NEXT

280 G0OTO40

184

Notes

A straightforward program, but at least it illustrates the concepts
involved.

No graphics symbols are used, since this program is primarily
concerned with sound rather than graphics, although our usual friend
the up-arrow key makes a mess of things in line 120!

And more techniques

If you type that program in and run it you will soon appreciate that
there is an awful lot that you can do with your Commodore 64 without
ever having to resort to filtering, ring modulation, synchronisation and
the like.

The Basic settings for attack, decay, sustain and release can all be
altered very easily to produce a wide range of different sounds, and
varying the waveforms along with this can also produce some good
effects.

However, if we really wish to start turning the 64 into a synthesiser,
then we'll have to look a little bit further, so let’s start with a look at
filtering.

Filtering

We've already stated that there are three main types of filter on the
64, and these are the low pass, high pass and band pass, which let
through various frequencies in the tones but dismiss others according
to various parameters. '

We can combine a high pass and a low pass filter together to get what
is termed a notch filter, and with these four factors in mind, we can
also alter the resonance of the filter. A high resonance gives a very
intense effect, while a low resonance is altogether smoother.

By setting the resonance to be whatever we want, we can then set
up various types of filter and, by altering the cutoff frequency so that
differing frequencies come through whilst a note is playing, just one
note can produce some interesting noises.

185

And although we haven't got one of the features of some very
expensive synthesisers, namely an envelope generator that controls
the filter cutoff so that it can automatically rise and fall while the note
is playing, we can always get round this with a suitable piece of
software.

Finally, each voice can either go through the filter or by pass it
completely and go straight to the audio output.

The registers to look for are numbers 21, 22 and 23, as these are the
ones that control the cutoff frequency (21 and 22) and the resonance
(23).

if bit 0 of register 23 is set to a 1 (i.e. you POKE
V +23,PEEK{V +23)OR1) then voice 1 will be routed through the filter.
POKEing it with OR2 will set voice 2 through the filter, and POKEing
it with OR4 will put voice 3 through the filter.

On a scale of 1 to 15, the resonance is then selected by deciding on
what sort of resonance you want (15 being the maximum), and then
POKEing the register with your resonance value times 16, plus of course
the value for whatever voice, if any, you want to route through.

So, if you wanted maximum resonance and only voice 1 to go through
the filter, you would have to POKE V + 23 with 15 times 16 plus 1,
or 241.

The type of filter that is used depends on the content of register V + 24.
Normally just set to 15 to control the volume, the top four bits of this
register can be altered also to produce one of the four filter types.

Setting bit 4 (POKE it with 15 plus 16) selects low pass, bit 5 (POKE
it with 15 plus 32) band pass, and bit 6 (POKE it with 15 plus 64) high
pass. POKEing the register with 15 plus 128, i.e. setting bit 7, stops
voice 3 from reaching any audio output, although it is still actively
working away.

If we stop it going through the filter as well, then voice 3 never produces
any sound at all, but it can still be used for modulating other voices
without producing any odd noises of its own in the background.

Finally, to select the cutoff frequency you'll have to refer to the section
on that in chapter eight!

To illustrate graphically what's going on, here are a few illustrations

186

which point out just some of the effects that SID can achieve.

Low Resonance Maedisns Resaviance High Resomance
cuT oFF .
fus | '——‘*T“' ---
el N E |
BASS TRESLE
{ |
X | |
!
! 1
i 4
: |
Bard I S . l -
fass l i
X !
! i !
i ! |
I
Nebch ——s-?v /—VL‘ A 1
1 i

By careful adjustment of any or all of the parameters, the power of
SID will slowly begin to become apparent to you. Even if you only
produce noise at first, a noise is better than total silence. Well, usually!

Ring modulation and synchronisation

These two are very closely related, and refer to the way in which
different voices interact with each other.

We can set any voice to be modulated with any other voice, although
we are limited when it comes to choosing which voice will actually
do the modulating.

Similarly we can synchronise any voice with any other voice, but again
we are limited in which voice will be doing the synchronising. Still,
if you don’t suffer from the apparent dislike of voice 3 which some
people seem to do for some totally irrational reason (it is actually the
most powerful of the three, in that it can control more things that either
of the other two), these apparent drawbacks shouldn’t present you
with any problems.

187

itis best to let you find out about these two features for yourself, since
there isn’t much else to say about them really. They just do what they
do, and we've already told you which registers to set to get these
features going in the previous chapter. So, it's down to the keyboard
and a few programs which all produce some very odd noises, but do
show what happens when you, for instance, modulate one voice with
another one and then synchronise it with a third!

10 v=54272

20 POKE V+24,15

Z0 POKE V45,9:POKE V+19,255:POKE V+12,36
40 POKE V+6,0:POKE V+20,70:POKE V+13,36
446 POKE V4+3,A:POKE V+10,15

47 POKE V+2,20:POKE V+%9,20

50 POKE V+4,67:FOKE V+18,21:POKE V+11,35
60 POKE V+1,10+A:POKE V+8,15:POKE V+15,2
70 A=A+1: IFA>20THENA=O

80 GOTO 3C

97 FORI=0T024:POKEV+I O:NEXT

10 V=54272

20 POKE V+24,15

30 POKE V+5,9:FOKE VY+19,255:PDKE V+12,36
40 POKE V+6,0:POKE V+20,70:POKE V+13,36
45 POKE V+3,A:POKE V+10,15

47 POKE V+2,20:POKE V+9,20

50 POKE V+4,67:POKE V+18,23:POKE V411,35
60 POKE V+1,10+A: POKE V+8,25-A:POKE V+15,50-A
70 A=A+1: IFA>20THENA=O

80 GOTO 30

97 FORI=0TOD24:POKEV+I,0:NEXT

10 Vv=54272

20 FOKE V+24,15

30 POKE V+5,9:FOKE V+19,255:POKE V+12,36
40 POKE V+6,0:POKE V+20,70:POKE V+13,36
46 POKE V+3,20:POKE V+10,15

47 POKE V+2,20:POKE V+9,20

50 POKE V+4,71:POKE V+18,23:POKE V+11,39
60 POKE V+1,10+A:POKE V+8,25-A:POKE V+15,10
70 A=A+1: IFA>20THENA=O

80 60TO 30

97 FORI=0T024:POKEV+I,0:NEXT

Only by experimenting with all the registers will you get the most out
of SID.

Puise widths

This comes under more or less the same category as synchronisation,
since we can tell you what registers to alter to set it in motion, and
warn you that not setting pulse widths when choosing the pulse
waveform (and vice versa) will cause a few problems, but there’s not
a lot else to say about it.

It simply modifies the wave pattern of the note being played, and thus
causes a different type of note to be produced.

One of the previous example programs did this, by steadily increasing
the value stored in the pulse-high register.

It's up to you to find out what values for pulse width suit the type
of sounds that you want to make, so again experimentation is the
answer.

Musical instruments

What, a chapter about synthesised music that dares to mention musical
instruments?! Well, since one of the primary functions of a synthesiser
is to emulate musical instruments, we might as well try to emulate
a few.

lilustrated below are the ADSR diagrams for just a few instruments
that you might like to try your hand at, followed by a few suggested
settings for the ADSR parameters themselves.

Also important, apart from setting the parameters and getting the
envelope right, is the key at which you play the instrument, and the
waveform in which it is played. It's no use attempting to play a passable
impersonation of a flute with a sawtooth wave: the sound will just
not come out right at all!

As usual, experimentation is the key.

189

VOLUME

QUIET

oFF ATTACK,

Loup |ATTACK

SUSTAIN

| 7rurgpet

iaaz»se

ATTACK

T SOSTAIN

'
1
{
l
'
|
\

TIME

RE\EASE

Possible settings for musical instruments

Instrument
Piano
Harpsichord
Trumpet
Flute
Xylophone
Organ

Accordian

190

©

9
96
96

9

©w

102

0

o O

o

240

Att/Dec Sus/Rel Waveform

Pulse
Sawtooth
Sawtooth
Triangle
Triangle
Triangle

Triangle

Pulse

Lo=255

And now for a few more programs.

Advanced Keyboard

This is a variation on the program listed earlier which turned the
keyboard into a musical one. This will actually give you some of the
power of a synthesiser, although it certainly doesn't go as far as some
of the more successful commercially available musical synthesisers
{(Romik and Quicksilva, for example, have produced good packages
for the 64).

Still, it should get you on the right track, and so here goes, with our
usual program notes.

Program notes

Line 5 : declare variable V, and turn voice 1 on (all voices are referenced
as VO), as well as setting the octave number.

Line 15 : go to subroutine to read all the musical data in.

Line 20 : go to subroutine to print on-screen instructions and keyboard.
Line 25 : check for key press and shift/logo

Line 28 : if not a special key, then 85.

Line 30 : if DEL key pressed, switch off voice 1.

Line 35 : if CLR key pressed, switch off voice 2.

Line 40 : if pound sign pressed, switch off voice number 3.

Line 45 : if ‘-’ pressed, toggle volume.

Line 50 : volume back to normal again.

Line 55 : if '+ pressed then 420.

Line 60 : if ‘O’ pressed then toggle ring modulation and go to 450.

Line 65 : if ‘@’ pressed, then step down an octave

191

Line 70 : if up arrow pressed, then step up an octave.

Line 75 : if "*' pressed then toggle fake glissando mode.
Line 80 : if ‘=" pressed, then increase fake glissando speed.
Line 85 : if it's all the same as last time then don’t do anything.
Line 90 : get frequency relating to key pressed.

Line 95 : if no note then loop back again.

Line 100 : if numeric key pressed, then 225.

Line 105 : adjust frequency if necessary.

Line 110 : check for fake glissando.

Line 115 : if return pressed, then 250.

Lines 120-125 : if shift or logo pressed, adjust frequency accordingly.
Lines 130-135 : calculate frequency.

Lines 140-180 : play note for relevant voices.

Line 185 : remember old frequency.

Lines 190-215 : turn voices off.

Lines 225-240 : turn on/off relevant voices.

Lines 250-300 : on-screen display for altering voices.

Lines 315-340 : which voice.

Lines 345-375 : to which waveform.

Lines 380-415 : rest of alterations.

Lines 420-445 : turn on ring modulation.

Lines 450-500 : fake glissando effect.

Lines 505-530 : on-screen instructions.

192

Lines 595-715 : data and set-up voices.

5 v=54272:V0(0)=1:0C=4

10
15
20
25
28
30
35
40
45
20
S5
&0
&5
70
75
80
85
20
95
100
105
110
115
120
125
130
135
140
145

150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230

REM FROM AN ORIGINAL IDEA BY RICHARD FRANKLIN
60SUBS95
60SUBS03
K=PEEK (197) : PS=PEEK (&53)

IFK<3S5AND (K=3460RK=370RK=390RK=47) THENSS5
IFK=0THENPOKEV, 0: POKEV+1,0: GOTO25
IFK=51THENPOKEV+7 ,0: POKEV+8,0: 607025
IFK=4BTHENPOKEV+14,0: POKEV+15,0: 50T025
IFK=43THENR=1-R: POKEV+24 ,R#15: GOT025
POKE V+24,15

IFK=40THEN420

IFK=35THENRM=1-RM: GOTO 450
IFK=46THENOC=0C/2: IFOC<1THENOC=1: GOTO25
IFK=04THENOC=0C%2: IFOC>64THENOC=64: GOTO25
IFK=49THENGL=1~-GL
IFK=S3THENGR=GR+1 : IFGR>BTHENGR=0
IFK=LKANDPS=LSTHENZ25
F=N(K) : LK=K:LS=PS

IF F=0 THEN 25

IF (F>OANDF<9)THEN 225

F=F*{4/0C)

IFGLANDGR >0ANDZ < >FANDVO (0) =1 THEN4S5

IF K=1 THEN 2350

IF PS=1 THEN F=INT(F*2~(1/12))

IF PS=2 THEN F=INT(F/2°~(1/12))

F1=INT (F/25&)

F2=F-F1%256

FOR I=0 TO 2

IF VO(I)=0THENPDKE V+I#7,0:POKEV+I*7+1,0:G0OTOL

POKE V+I%#7+4,0

POKE V+I#7+4 ,W(I) *16+RM(I)#4+5Y (1) %2+1
IFRM=1THENPOKEV+4 ,W(0) ¥16+4
POKE V+1I#7,F2
IFF1>255THEN180

POKE V+I#7+1,F1

NEXTI

Z=F

GOTO 25

FOR I=0 TO 2

POKE V+1%7,0

POKE V+I%#7+1,0

POKE V+I*7+4 ,W{I)*16

NEXT 1

GOTO 25

F=F—1

FOR I=0 TO 2

193

235 VO(I)=(FAND2"~I) /21

240 NEXT I

245 GOTO 25

250 PDKE 53280,14:POKE S3281,1:PRINT"CFURI"

255 PRINT "[CLR] VOICE 1 VODICE 2 vO
ICE 3"

260 FORI=1TO10:BETKY$:NEXT

265 PRINT "L[CDINAVEFORM"; TAR(12) ;W (0) ; TAB(Z2) s W (
1) : TAB(32) s W (2)

270 PRINT “"ATT/DEC";:TAB(13);AD(0): TAB(23);AD(1):TA
B(32);AD(2)

275 PRINT “SUS/REL":TAB(13)3SR(D); TAB(23):SR(1);TA
B(32) :SR(2)

280 PRINT "PULSE HI";TAB(13):;PH(0);TAB(23) :PH(1):T
AB(32) ;PH(2)

285 PRINT "PULSE L0":;TAB(13):PL(D);TAB(23);PL(1);T
AR(I2) ;PLAD)

290 PRINT "RING HOD";TAB(13);RM(0); TAB(2I)sRM(1):T
AB(32) ;RM(2)

295 PRINT "SYNC “sTAB(13) ;5Y(0) ; TAB(2T) ;SY (133 T
AB(32);8Y(2)

300 PRINT"ICDIDO YOU WANT TO CHANGE ANY VALUES (Y/
Ny 7"

305 GETCH$: IFCH$="N"THEN20

310 IFCH$<>"Y" THEN3IOS

315 PRINT"LCDIW#HICH VOICE (1, 2 OR 3)7?"

320 GETVCS: IFVC$=""THEN320

25 IFVC$="1"THENPRINT"VOICE 1":VC=0:G0TQ 345

330 IFVC$="2"THENPRINT"VOICE 2":VC=1:G0TO 345

335 IFVC$="3"THENPRINT"VOICE 3":VC=2:GOTO 345

340 GOTO 320

345 PRINT “[CDIWAVEFORM (T, S, P, OR N)7?"

350 GETWF$: IFWF$=""THEN 350

355 IFWF$="T"THENPRINT"TRIANGLE":W(VC)=1:W$(VC)="T
RIANGLE":GOTO 380 ‘

360 IFWF$="S"THENPRINT"SAWTOOTH" : W(VC)=2: W$ (VC) ="S
AWTOOTH" : GOTO 380

365 IFWF$="P"THENPRINT"PULSE":W(VC)=4:W$(VC)="PULS
E":60TO 380

370 IFWF$="N"THENPRINT"NOISE":W(VC)=8:Ws (VC)="NOIS
E":60T0 380

375 GOTO 350

380 INFUT "ATTACK/DECAY";AD(VC) : IFAD (VC) <OORAD (VC)
>2SSTHENPRINT " [2CU1": 6OTO 380

385 INPUT "SUSTAIN/RELEASE" ;SR (VC): IFSR (VC) < OORSR (
VC) >2SSTHENPRINT "L 2CU1":GOTO 385

390 INPUT "PULSE HI"3;PH(VC): IFPH(VC)<OORPH (VL) >255
THENPRINT"[2CU1": GOTO 390

395 INPUT “PULSE LI";PL(VC):IFPL (VC)<OORPL (VC) >255
THENPRINT"[2CU1": 60TO 395

400 INPUT "RING MOD"3RM(VC) : IFRM(VC) <OORRM (VL) >1S5T
HENPRINT“L2CU1": GOTO 400

194

405 INPUT “SYNC";SY(VC): IFSY (VC)<ODRSY (VC) >1S5THENP
RINT"L2CU]I":60TO 405

410 GOTO 250

415 RETURN

420 FORI=0TO2

425 IFVO(I)=0THEN43S

430 POKEV+I*7+4 ,W(I)*16+2

435 NEXTI

440 IFPEEK(197)=64THEN420

445 GOTO25

450 W(0)=1:POKEV+4,W(0)*#1&64+5:V(2)=1:60T0O25

455 IFZ>FTHENFR=-1:G0T0465

4460 FR=1

4465 FORI=ZTOFSTEPFR*GR*&64

470 F1=INT(1/256)

475 F2=1-F1%256

480 IFRM=1THENPOKEV+4,W(0) *%146+5

485 POKE V,F2

490 IFF1>2550RF1<0THENS00

495 POKE V+1,F1

S00 NEXTI:Z2=1:60T0130

505 POKE 53280,8:POKE 53281,0:POKE 53272,23

510 PRINT"ILYEL ,CLR,RVSI*%%#&%%%%% SING—-A-LONG—-A-&
L) LAt 222t A

S15 PRINT" [LRVS] %% 3% %% %% %% BY SID N NN
L2 2 2 2 o

520 PRINT" PLAY USING THE KEYS ERVSIQ WE R T VY U
I L]

925 PRINT"LCD] [IRVS]JA S DF B
H J K"
S30 PRINT"LCD1 [RVS]1Z X C VB
N M ”

L]
535 PRINT"L[CD] TO COVER THREE OCTAVES."
540 PRINT"ICD] USE THE [RVSISHIFTLOFF] KEY FOR A S
HARP , "
S45 PRINT" [RVSICBMLOFF] KEY FOR A FLAT.

550 PRINT"LCDIUSE THE KEYS [RVS1I0 1 2 3 4 5 6 7LO0F
Fl TO"

955 PRINT"CHOOSE ANY COMBINATION OF THE THREE"

560 PRINT"VOICES. THEY ARE SET UP BY USING BINARY"
565 PRINT"ARITHMETIC. THEREFORE, VOICE 1 IS TURNED

570 PRINT"ON USING KEY 1, VOICE 1 AND 3 ARE TURNED
L

575 PRINT"ON USING KEY S,ETC.*"

980 PRINT"ICDIUSE THE [RVSIRETURNIOFF]1 KEY TO CHAN

GE THE VALUES"

985 PRINT"OF THE VOICES.[HOME]®

590 RETURN

595 DIM N(64)

600 FOR I=0 TO &4

195

605 READ A

610 N(I)=A

615 NEXT I

620 DATA ,-1,0,0,0,0,0,0

625 DATA 4,9854,4389,5,2195,4927

630 DATA 11060,0,6,11718,5530,7,2765,5859
635 DATA 13153,2463,8,14764,6577,0,3288,7382
640 DATA 16572,2930,0,17557,8286,1,4143,8779
645 DATA 0,3691,0,0,0,0,0,0,0,4389,0,0,0

650 DATA 0,0,0,0,0,2,0,0,3,0

655 DATA 0,8779,0,0

660 FOR I=0 TO 2

665 READ W(I) ,AD(I),SR(I) ,PH(I) ,PL(I) ,W$(I) ,RM(I),
SY (1)

670 NEXT

475 DATA 1,102,108,0,0,"TRIANGLE",0,0

680 DATA 2,96,108,0,0,"SAWTOOTH",0,0

685 DATA 4,9,0,0,255,%PULSE",0,0

690 FORI=0TO2

695 POKE V+7#1+4,W(I)+RM(I)+8Y (1)

700 POKE V+7#I1+5,AD(I):POKE V+7%I+6,SR(1):POKE V+7
*#I+3,PH(I) :POKE V+7#I+2,PL (1)

705 NEXT

710 POKE V+24,15

715 RETURN

Notes

As usual, the up-arrow key causes us problems in a few places, notably
lines 120,125 and 235.

The letters in italics are only so because the program has been written
in lower case mode, and should be entered as shifted letters when
you type the program in.

There are no graphics characters used, so there shouldn’t be any great
problems in deciphering the rest of the listing.

Of course, it isn't a synthesiser, but it does introduce some of the
concepts involved in writing one (which should really be done in
machine code}, and so that is why it is here.

Deathtrap

A variation on an old friend, this has been re-written to take into
account some of the features we’ve covered in this book.

196

The program uses user-defined graphics to display all the characters,
and there is also a variety of sound, ranging from rich base notes to
explosions, with a motor-bike type sound that has been made by
playing about with pulse widths and altering them according to the
state of the game.

in the game you control a little shape that wanders about the screen,
using the ‘A’ key to move left, the ‘D’ key to move right, the ‘I' key
to move up, and the ‘M’ key to move down. Pressing any other key
will halt the game and give you time to think of a strategy. Just press
one of the movement keys to get going again.

As your shape wonders about, he leaves behind a trail on the screen.
You must not bump into the trail, as this is the end of your life and
the end of the game. To make it more interesting, the computer is
also controlling a different shape that is moving about the screen at
the same time as you are. This too leaves a trail behind it, and needless
to say you can’t bump into that either.

The first player who manages to get his opponent to crash into either
of the trails wins the game, and a running score is kept throughout.

Obviously the tactic to use is to trap your opponent in a box, but this
is frequently easier said than done.

Program notes

Line b : set screen, border, and print a little message.

Line 10 : go to routine to set up characters.

Line 15 : and then print the screen instructions.

Lines 20-25 : place the opponents on the screen.

Line 30 : set up sound.

Line 35 : select direction of computer's move, and set you going
downwards.

Lines 40-65 : detect change of direction.

Lines 70-100 : moving down.

197

Lines 105-135 :
Lines 140-170 :
Lines 175-205 :

Lines 210-265 :

and moving left.
this time moving to the right.
and finally moving up the screen.

musical introduction.

Line 270 : you lose!

Lines 275-280 :

select direction of computer’'s move.

Line 282 : update noise and play if necessary.

Lines 285-310 :

move computer’s piece.

Line 315 : ohoh! Can’t go that way.

Line 320 : you win!

Lines 325-360 :
Lines 365-395 :
Lines 400-440 :
Lines 445-475 :
Lines 480-585 :

Lines 590-660 :

update noise and play.

computer panicking as it gets boxed in.
explosion as game ends.

update score and next game.

intro and set up game and screen.

define and set up user defined graphics characters.

Line 665 : data for intro tune.

5 POKES3280,9:POKE 53281 ,0: PRINT"LCLRK,YELIJUST HAN
G ON A LITTLE MOMENT, PLEASE...!

10 GOSUBSP0

15 6070480

20 I1=500:POKE S50176+1,128:POKESS296+1 ,6

25 J=250:P0OKE 50176+3,129:POKE 355296+J3,5

30 BOSUB 325

35 Q$="UDLR":W$=MID$ (B$,RND(. 4)%3+1,1) :60T070
40 A=PEEK({203)

45 IF A=36THEN70O

50 IF A=10THEN10S

55 IF A=18THEN140

198

IF A=33THEN173

&5 GOTO 40

IFI >960THENI=I-1000

75 FORD=1TODE:NEXT

IF PEEK(50176+1+40)<>46 THEN 270
I=1+40: POKESO176+1,128: POKE 55296+1,6

90 GOSUB 280
925 A=PEEK (203) : IFA=64THEN70

100
105
110
115
120
125
130
135
140
145
150
155
160
1465
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
282
285
290
295
300
HEN
305

GOTO45
IF INT(I/40)=I/40THENI=I+40

IF PEEK(S50176+1-1)<>46 THEN 270
FORD=1TODE : NEXT
I=1-1:POKESO176+1,128: POKE 55296+1,6
GOSUB 280

A=PEEK (203) : IFA=64THEN105

GOTOA4S

IF INT((I-39)/40)=(I1-39) /40THENI=1-40
FORD=1TODE: NEXT

IF PEEK(S50176+1+1)<>846 THEN 270
I=I+1:POKES0176+1,128: POKESS296+1,6
GOSUB 280

A=PEEK (203) : IFA=64THEN140
A=PEEK (203) : GOTO45

IFI<40THENI=I+1000

IF PEEK(S50176+1-40)<>46 THEN 270
FORD=1TODE: NEXT

I1=1-40: POKESO176+1 ,128: POKESS296+1 ,6
GOSUB 280

A=PEEK (203) : IFA=64THEN175

GOTO45

v=54272

POKE V+14,0:POKE V+4,0:POKEV+S,0: POKEV+6,0
POKE V+5,190

POKE V+6,0

POKE V+24,15

READA,B

FORI=1TOS00: NEXT

IFA=OTHENRETURN

POKE V+4,33

POKE V+3,1:POKE V+2,1

POKE V+1,A:POKE V,B

60T0235
PRINT*LCLR,GRNITOUBH ! *: C=C+1:GOTO 400
Q$="UDLR" : W$=MID$ (Q$,RND (. 4) #3+1,1) :
K=INT (RND(.S) #10) : IFK>8THEN275

XY=XY+13: IFXY/25=INT (XY/25) THENGOSUB352
@=J

IFW$="U"THENJ=J~40: IFJ<OTHENJ=J+1000
IFW$="D"THENJ=J+40: IFJ>1000THENJ=J~1000
IF W$="L"THENJ=J-1:IF INT((J+1)/40)=(J+1)/40 T
J=J+40

IF W$="R"THENJ=J+1:IF INT((J-40)/40)=(J-40)/40 *

~

199

THEN J=J-40
310 IF PEEK(50176+J)=46 THEN POKES0176+J,129:POKE
55294+J ,5: 5=0: RETURN
315 GOTO 365
320 PRINT"ICLR,GRNIGRRR...":H=H+1:60TO 400

325 V=54272:2=0
330 FORL=0T024:POKE V+L,0:NEXT

335 POKE V+3,SN
340 POKE V+5,40:POKE V+6,146

345 POKE V+24,15
350 POKE V+4,45

352 7=7+10

355 POKEV+1,1:POKEV,Z

360 RETURN
365 P$=W$

270 IFP$="U"THENW$="D":J=0: GOTD28S

375 IFP$="D"THENW$="L":J=0: GOT0285

380 IFP$="L"THENW$="R":J=0:G60T0285

385 IFF$="R"THENS=5+1

390 IFS=4THENS=0:GOTO320

I95 WE="U":J=0:GOTO285

400 POKE 53280,12:POKE S53281.1

405 Y=54272

410 FORL=0TO24:FOKE V+L,0:NEXT

415 POKE V45,17:FPOKE V+&,130

420 POKE V424,15

425 POKE V+3,129

Z0 FOKE V+1.3

475 FORP=250TDOSTEP-1:POKE V,P:FORPP=1T0S:NEXTPP.P
440 FORL=0TO24:POKE V+L,0:NEXT

445 PRINT"[2CDISCORE NOW STANDS AT YOU "3H::PRINT:
FRINT"AND THE COMPUTER ";C*

450 FORI=1T010:GETF$:NEXT

455 PRINT"LCDIANOTHER GAME (Y OR N)"

360 GET F$:IFF$="" THEN 460

465 IF F$="Y"THENS20

470 IFF$="N" THEN PRINT"[CLRIBYE":FORI=0T024:POKE
V+1,0:NEXT:END

475 GOTO 460

480 PRINT"[CLR,YELIWELCOME TO THE GAME OF DEATHTRA
PII

485 GOSUR 210
490 FRINT"CCDITHE OBJECT OF THE GAME IS TO TRAP TH
['
495 PRINT"COMPUTER SO THAT IT CAN'T MOVE"
500 PRINT*[CDIOF COURSE, IT IS TRYING TO DO THE Sa
MEII
505 PRINT"TO YOU'!®
S10 PRINT"LCDIPRESS M TO MOVE DOWN. A LEFT, D RIGH
T, 11
515 PRINT"AND I UP"
520 PRINT"LCDIDO YOU WANT A FAST, MEDIUM OR SLOW G

200

AME"
525 POKES3280.9:POKE 53281,0

530 PRINT"PRESS F, M, OR S"

535 GETD$: IFD$=""THEN 535

540 IF D$="F"THENPRINT"FAST'":DE=0:SN=8: G0T0S60
545 IF D$="M"THENPRINT"MEDIUM!":DE=125: SN=10:GOTOS
&0

SS0 IF D$="S"THENPRINT"SLOW!":DE=250: SN=14:60T0 56
o

555 GOTO S35

560 PRINT"[CDIPRESS SPACE BAR TO START"

565 GETSD$: IFSD$<>" "THEN 565

570 PRINT"CCLR,YEL1":

575 FORI=0TO998:PRINT".";

S80 NEXT:POKES1175,46:POKE 56295,7

585 GOTO 20

590 POKE 56333,127

595 POKE 1,51

600 FORX=0TD1023

605 POKE S3248+X,PEEK (53248+X)

610 NEXT

615 FORX=0TO15

620 READA: POKES4272+X,A

625 NEXT

630 POKE 1,55

635 POKE 56333,129

640 POKE 648,196

645 POKE 56576,4

650 POKE S53272,21

655 DATA 24.90,102,24,24,36,36,36,66,36,189,126,60
160,566,129

660 RETURN

665 DATA4,208,5,103,4,73,2,6,3,54,0,0

Notes

Amazingly enough, there are no graphics characters used, not even
an up-arrow, and since the program is entirely in upper case, we haven’t
got any strange italicised characters either.

So there should be no problem entering this one.

201

10

Adding
Commands to Basic

Introduction

In this chapter we’ll be looking at some of the ways in which you can
enhance the existing Basic in your Commodore 64. Although the
method used in this chapter is by no means the only way in which
this can be done, it at least has the virtue of working!

There are a number of routines presented here as well, and these could
readily be incorporated into one complete package, instead of
consisting of a lot of separate little programs as they do now.

Having read this chapter you should be in a position to devise some
new commands of your own, and insert these into whatever spare
memory space you see fit. Here most of the routines have been written
to start at location 49152 (or $C000), since this is a conveniently empty
block of memory on the Commodore 64 at power on.

The commands are presented in the form of machine code
disassemblies, in order to give you a better chance of understanding
how they work. Basic loaded programs are just so many
incomprehensible numbers, whereas these have the machine code
mnemonics beside them. Thus a hitherto seemingly random set of
numbers turns out to be, in reality, a jump to an internal ROM
subroutine, for instance.

If you've got the tape that accompanies this book, or you've typed
in the listing for Extramon in the last chapter and got it all working,
it will obviously make life easier when it comes to entering the code.
However, if your wallet or fingers aren’t up to it, then you can still
use the commands by converting the numbers as shown in the listings,
and hand POKEing them into the machine.

Alternatively, you can convert them into Basic loaders yourself by
working out what all those hexadecimal numbers mean, turning them
into decimal and storing them as a set of data statements.

203

Either way, you’ll still be able to use them. However, an assembler/
disassembler is a powerful tool for the machine code programmer,
whether beginning or advanced, and | strongly recommend that one
way or another you get that program working.

To aid you in the conversion, here’s a handy hex to decimal convertor.

D

E

F

HEDOQE»OOIOWMFEWUNDRO E

16
32
48
64
80

112
128
144
160
176
192
208
224
240

245

22
38
54
70
86
102
118
134
150
166
182
198
214
230
246

23
39
55
71
87
103
119
135
151
167
183
199
215
231
247

10

42

58

74

90
106
122
138
154
170
186
202
218
234
250

13
29
45
61
77
93
109
125
141
157
173
189
205
221
237
253

14

46
62
78

110
126
142
158
174
190
206
222
238
254

15
31
47
63
79

111
127
143
159
175
191
207
203
239
255

These neat little programs will allow you to convert from hex to decimai
and back again, and from decimal to binary, although the latter is
restricted in size to numbers lying between 0 and 225.

1) Decimal to Hex, where D contains the decimal number, and H$ =""
before calling this routine. On exit, H$ contains the hex value : =

10 IFDTHENA = INT(D/16):H$ = MID$("0123456789ABCDEF”, 1 +
D-A*16,1) + H$:D = A:GOTO10

2) Hex to Decimal, where H$ contains the hexadecimal value, and D
holds the decimal value on exit : =

10
D=0:IFH$>""THENFORI = 1TOLEN(H$):A = ASC(MID$(Hs,1,1))-48
:D=D*16+ A+ (A>9)*7:NEXT

3) Decimal to Binary, where B is the decimal number lying between
0 and 225, and A$ contains the binary value on exit : =

10 A$="":FORI=0TO7:T =B-INT(B/2)*2:IFT =0THENAS$ = "0" + A$
15 A$="1"+A$:B=INT(B/2):NEXTN

204

For now, let's take a look at what Commodore Basic has and hasn’t
got.

Commodore’s Basic

The deficiencies inherent in Commodore Basic are well known. But
it's interesting to trace these deficiencies back through time to the very
early Commodore machines.

The first Commodore PET, as well as coming complete with its own
cassette deck and monitor, and having a paltry 8K of RAM (and also
costing some £625 when it first appeared back in 1979!), had what
Commodore themselves termed Basic 1.

As a Basic language it was fine at the time, but there were a number
of things missing from it. For example, there was no way of accessing
the machine code monitor, as it didn’t have one built in.

A utility to overcome this soon came on the market, but this took up
precious space from the meagre amount of RAM that you had, and
so Commodore followers had to wait a couple of years before Basic
2 appeared.

Basic 2

When it did appear it caused instant confusion among the Commodore
ranks, since some people were calling it Basic 2, and others referred
to it as Basic 3. Seemingly the so-called 'Basic 2’ never appeared, and
although this particular version of the language was always called Basic
2, theoretically it should have been referred to as Basic 3.

Still, whatever number you gave it it was a great improvement over
its predecessor, and did have access to a machine code monitor.
Moreover, the ROM installed was now capable of looking after disk
drives, something that the earlier machines could not do.

Time went by, Basic 4 appeared, and for a long time it was rumoured
that there was to be a fifth version of the language as well, with all
the features that existing ones had lacked, of which more in a moment.

However, at the time of writing Basic 5 is in the realms of fantasy,
and is not likely to appear now.

64 Basic

This brings us to the Commodore 64, sidestepping the Vic along the
way.

The version of Basic that they've installed in the machine is that which
we referred to earlier as Basic 2/3, although Commodore have
apparently now decided that it should be called Basic 2, and indeed
this is what the machine greets you with when you turn it on.

However, not only have Commodore taken a retrograde step and
installed an oid version of their popular Basic language, but they've
also managed to take out a great deal of what was already in there.

So we see no machine code monitor - and hence the need for programs
such as Extramon and the like.

What we are left with instead is an extremely flexible memory
management system, but a very poor Basic with which to manage it.

The memory architecture looks something like this:

206

Commodore-64 Architecture Map

SFFFF (65535) .
8K HI RAM
KERNAL ROM 2’" 1‘::;0001)
1 = KERNALROM
o SED00 (573 —— ..
CHARACTER SET CIA 1. CIA 2 (5, Bus, PUP) K RAM
(bit 2 of $0001) $DCOO 153320) -
0 = CHAR ROM $D800 Colour Ram Nibbles maps to $D000 when
= 1LS) bits 0 & 1 of $0001 = 0
1 = /0 ROM/RAM VIC i, SID
$D000 (53248} oo ..
4K RAM
$C000 (49152) o
BASIC 8K LO RAM
INTERPRETER o"’" 2:;“000”
ROM -
1 = BASIC ROM
$A000 77—
EXROM
8K ROM Cartridge
maps here
s&00 | e
(32768)
BASIC
User RAM
$4000 (38912Bytesy |)
{16384)
HI-RES Screen
maps here
$2000
VIC 11 Chip sees (8192)
this 16K block
on power-up
$0800 (2048) PP
Screen (1K) HI-RES Colour Table ~|
30400 (1024) ——rmg -
Workspace (1K)
""" Processor Reg ($0/1)

30000

To look after all this requires a lot of work, and to understand it all
properly requires even more!

Still, what you buy is what you get, so let’s see precisely what we
have got.

207

Basic advantages

The version of Basic in the Commodore 64 is a pretty standard version
of what is usually referred to as Microsoft Basic.

This is based on the original Beginners All-purpose Symbolic Instruction
Code, from which the language takes its name. This language was
devised a number of years ago, and the cracks are now beginning to
show, but for a beginner it is still possibly the easiest of languages
to learn.

Apart from the interface to machine code, which is not good, the
commands you have at your disposal are not too difficult to understand
and get to grips with, and owing to the great similarity between Basic
words and English words, most beginners can soon start writing
programs in Basic.

And disadvantages

However, most beginners also soon come to realise that the version
of Basic as supplied by Commodore is sadly lacking in a number of
departments.

The concepts of structured programming, the computer flavour of the
month, are impossible to simulate on the 64, and there is a distinct
lack of such commands as PRINT AT, PRINT USING, and so on.

In particular, when it comes to using graphics and sound, the number
of commands is strictly limited to two : PEEK and POKE. No other
commands exist to cope with the vast number of PEEKs and POKEs
needed to set up a high resolution screen and draw things on it, or
to play a few musical notes, or do just about anything with either
graphics or sound.

If you want to make music, or display various images on the screen,
it has all got to be done the long way, by using a laborious series of
POKEs.

Given that this version of Basic is so appalling in these particular

departments, it is no wonder that people go to great lengths to try
to improve it.

208

There are now many packages on the market that, in a variety of
different ways, have set out to try to improve on the language that
we are originally offered.

Whether they succeed in their chosen aims is, of course, a completely
different matter, but what they all have in common is that they are
adding commands to the existing version of Basic, and through those
commands are seeking to make life easier for the person using the
machine.

The rest of this chapter will be devoted to showing you one way in
which commands could be added, as well as giving you a number of
routines to try out for yourself.

But first, the concepts involved.

Adding commands: the concepts

There are many different ways in which you can add commands to
Commodore’s existing command set. Commands can be added either
as words or symbols, or indeed we could also use the function keys:
re-define them to be able to accept existing Basic keywords, and then
put our new words (or symbols) in their place.

We'll be looking at the two simplest options in this chapter, namely
defining various symbols to act as commands, rather than adding new
words, and re-defining the function keys to accept these symbols.

These are certainly easier than trying to add new command words to
Basic, as this involves altering a lot more things than we are going
to do, and for the first time user can seem to be incredibly complicated.
So complicated in fact that you probably wouldn’t even want to try it!

Still, what we are going to do is fairly straightforward, and shouldn’t
present any major difficulties.

Getting a character

Anything that you type onto the screen is interpreted and executed
by the Commodore 64 as soon as you press the return key. Once this
key has been pressed there are a number of routines built into the 64
which will act upon everything that you typed in, and depending on -
precisely what you typed a number of things will happen.

209

You can generate a syntax error, and a subroutine exists within the
Basic ROM to print out a suitable message and return to await your
next input. Since it is in ROM {it starts at location $AF08) we can't
alter it, but there’s nothing to stop us copying this ROM into RAM
and altering it there, so that SYNTAX ERROR becomes something
a lot more meaningful. Or a lot more rude, if you're feeling in that kind
of mood!

You could have entered a line of a program, in which case you won't
get any error messages (or for that matter any other messages) coming
back at all, but a great many pointers inside the machine will have
been altered to cope with the new line.

You might have entered a direct command, and in this case the
machine will just execute whatever it was that you typed in.

Character get routine

How does the machine know what to dor in other words, how does
it interpret what you've typed in? Understanding this is the key to
generating our own commands, because if we can intercept the Basic
routine that looks after all the commands and alter it, we are then well
on the way to adding our own commands into the machine.

The machine knows what to do because of the ROM that’s built into
it, but there must be a routine somewhere in the machine that looks
at what you've typed in and thinks ‘ahah!’, and then does {or attempts
to do) whatever you've told it.

There is indeed such a routine, which lives in locations $0073 to $008A
{or decimal locations 115 to 138), and this is usually referred to as the
CHARGET routine, or character get.

This is the routine that gets a character that you’'ve typed in and acts
upon that character.

The routine looks, in its original form, like this:

210

CHARACTER

B*

FC SR
. :8FEB 33

0073
0075
0077
0079
007C
00O7E
0080
0082
0084
o083
o087
o088
0O08A

E&
DG
Eé6
AD
ce
BG
ce
FO
38
E?
38
E9
&0

7A
o2
7B
31
ZA
OA
20

EF

0

DO

GET ROUTINE BEFORE

AC XR YR SF
00 DT 00 Fé

INC
BNE
INC
o2 LDA
CHMP
BCS
CHF
BEG
SEC
SBC
SEC
SBC
RTS

*7A
30079
¥7B
$0231
#+3A
$0084A
#£20
*$0073

#$30

#+DO

211

What we are going to do is alter that routine so that it no longer behaves
in quite the same way.

As it stands at the moment, it interprets everything in the following
way:

Locations $73-$77 : update the pointer in memory
locations $7A and $7B.

Locations $79-$7B : this is the pointer.

Locations $7C-$7F : if it's a colon or greater,
then end.

Locations $80-$83 : if it's a space, then loop
back to start again.

Locations $84-$8A : set flags for character type,
and return from subroutine.

Comments

This routine is the key to adding commands to Basic, since by altering
it we can make it jump to some code of our own which will check
for a special character, and if that character has been entered then
do something! If we find that a special character has not been typed,
then it’s back to the routine again and carry on as normal.

We'll see later on how we can actually load a program into the
computer which, when executed, alters the routine to behave in the
way we want.

Instead, a couple of JSRs (jumps to subroutines) will be incorporated
in it, and when we've finished with it it will look like this:

212

AND AFTER!

B*
PC SR AC XR YR SP
«37FCS 33 00 AD 00 Fé&

0073 E6 7A INC $7A

0073 DO 02 BNE $0079
0077 E& 7B INC $7B
0079 AD 1E 02 LDA $021E
007C C? 3A CMP #$3A
007E FO OA BER $008A
0080 C? 20 CMP #3$20
0082 FO EF BEQ #0073
0084 20 00 C2 JSR $C200
0087 20 00 C1 JSR $C100
008A 60 RTS

213

It would be wise, at this point, to make an effort to get Extramon typed
up and loaded into the computer, since this will make life a lot easier
from now on. Without it we can still proceed with a lot of POKEs,
but in order to see precisely what is happening, Extramon is a great
help.

Altering the CHARGET routine

When everything is running normaily, on pressing the Return key the
system will come out of ROM into this routine to fetch the next
character of Basic text, then trundle back into ROM again to ponder
on its next move.

What will happen now is that the system will come out of ROM, to
our changed subroutine, and when it hits the first JSR command it
will jump to the routine sitting at location $C200 onwards. This will
determine whether or not we're going to be interpreting a special
command, and if we are jump somewhere else to process it.

If we're not, then the system goes back to the altered CHARGET
routine, and finds that it now has to make yet another jump, this time
to location $C100. This is simply a direct copy of what used to exist
in the portion of CHARGET that we have changed, so that execution
can continue as normal in the event of a special character not being
found.

After that, it returns into ROM again to work out what will happen next.
The program to alter the CHARGET routine sits at locations $C10B

onwards, and together with the direct replacement for the altered parts,
which starts at location $C100, it all looks like this :

R*

FC SR AC XKk YR SF
LIBFER T3 OO DI Q¢ FS
Cl100 C9 ZA CMF #3$7A
C1a2 RO 06 BCS #C1OA
Clo4 3 SEC
C105 E9 30 SBC #%30
Ci107 =8B SEC
Cc108 E9 DO SBC #+DO
Cl0A 60 RTS
CiOoB A% 20 LDA #¥20
C10D 85 84 STA %24

214

ClOF 85 87 STA £87

€Ci1l1 A% 00 LDA #200
C113 85 85 STA 85
CiiS 85 88 STA #88
Cl117 A9 C2 LDA #$C2
Ci119 85 86 STA $86
CiiB A9 C1 LDA #$C1
Ci1iD 85 89 STA 89
C11F A9 FuO LDA #$FO
Ci21 85 7E STA $7E
C123 A9 04 LDA #$04
Ci25 85 7A STA £7A
Ci127 85 7B STA $7B

The next routine that we need is the one to separate the extra code
and the processing of that code from ordinary Basic. In this routine
we check the current character being processed against a table stored
at locations $C300 onwards, and if we find what we’re looking for,
branch to the appropriate subroutine by reading the most significant
byte and least significant byte of the subroutine address from a table
which is stored immediately after the character data.

B*
PC SR AC XR YR SP
.3371A 33 00 02 00 Fé

C200 08 PHP

C201 86 04 STX %04
C203 A2 04 LDX #$04
C205 DD 00 C3 CMP #$C300,X
€208 FO 07 BEQ #C211
C20Aa CA DEX

C20B 10 FB BPL $C205
C20D A6 04 LDX $04
C20F 28 PLP

C210 &0 RTS

C211 BD 06 C3 LDA $C3I06,X
C214 8D 1E C2 STA $C21E
C217 BD 08 C3 LDA $C308,X
C21A 8D 1F C2 STA $C21F
C21D 20 00 CO JSR $CO00
C220 20 74 A4 JSR $A474

215

To explain what's happening, the program first of all saves the current
status register onto the stack, and the current value held in the X
register into location $0004 in the event of not finding a special
character.

If that is the case, then everything is read back into the appropriate
registers and it's off to the CHARGET routine again.

Finding special characters

However, if a special character is found then we branch out to location
$C211 where we get the least significant byte and the most significant
byte from our table. These are then stored at the appropriate registers,
and then the program branches off to the subroutine to carry out the
command.

The characters, and their LSBs and MSBs look like this :

B*
PC SR AC XR YR Sr
-326F4 33 00 DC OO0 F6

C300 SF ?2?

C301 21 21 AND ($£21,X)
C303 21 21 AND ($21,X)
C305 00 BRK

C306 00 BRK

C307 CO CO CPY #s$CO

This may not look very sensible as a disassembly, but it’s the data that
we're after, not the annotations.

The only thing we need now is a routine to execute, and in this case
we've used an OLD routine. This can be used without the rest of this
code by just typing in SYS49152, and it will then recover any program
lost after a NEW command had been issued.

On the other hand, there’s something infinitely more satisfying about

seeing your own code being executed at the press of a key, rather
than typing in boring old SYS commands all the time.

216

B%
PC SR AC XR YR SP
.36F9F 33 00 87 00 Fé&

CO00 AS 2B LDA $2B
C002 A4 2C LDY $2C
C004 85 22 STA $22
COo06 84 23 STY $23
coo8 A0 03 LDY #303
CooA C8 INY

CooOB BiI 22 LDA ($22),Y
CooD DO FB BNE $COOA
COOF C8 INY

Co10 98 TYA

Coil 18 CLC

C012 &5 22 ADC $22
Coi4 A0 00 LDY #$00
Co16 91 2B STA ($2B),Y
Coi8 AS 23 LDA %23
Co1A 69 OO0 ADC #$00
coiC Ccs8 INY

CoiD 91 2B STA ($2B),Y
CO1iF 88 DEY

Co20 A2 03 LDX #£$03
€022 Eb6 22 INC $22
C024 DO 02 BNE $C02Z8
Co26 E& 23 INC $23
co28 B1 22 LDA ($22),Y
coz2A DO F4 BNE $C020
Cco2C CA DEX

COo2D DO F3 BNE $C022
CO2F AS 22 LDA $22
CO31 69 02 ADC #£02
CO33 85 2D STA $2D
CO035 AS 23 LDA %23
CO37 69 00 ADC #$00
CO3Z9 85 2E STA $2E
COZB &0 RTS

Now that we've got everything together, it only remains to run the
program by going to the various parts of it, and then, just by pressing
the left arrow key and Return, we can instantly recover any program
that may have been lost due to an accidental NEW.

To add yet more commands, you’'ll need to store more data for

characters, and more data for LSBs and MSBs at locations $C3000
and onwards (or anywhere else for that matter, as long as the program

217

is pointed to the correct location!). The data for the characters is just
the ASCII code for that character.

If, however, your forte is typing words rather than symbols, the
following program shows how you might use the word BAK to get
back a program, rather than typing in the left-arrow key.

B*
PC SR AC XR YR SP
.38D35 31 72 9F QO Fé

€200 08 PHP

C201 86 04 STX $04
€203 A2 00 LDX #3$00
C205 DD 00 C3 CHMP $C300,X
C208 FO 26 BEQ $C230
C20A CA DEX

C20B 10 F8B BPL $C205
C20D AL 04 LDX $04
C20F 28 PLP

C210 60 RTS

€211 BD 06 C3 LDA #C306,X
C214 8D 1E C2 STA $C21E
€217 BD 08 C3 LDA $C308,X
C21iA 8D 1IF C2 STA $C21F
C21D 20 CO FF JSR $FFLCO
C220 E6 C9 INC $C9
€222 DO 02 BNE $C226
C224 E6 CA INC $CA
C226 28 PLP

€227 A2 00 LDX #$00
C229 A1 C9 LDA (#C?,X)
C22B A6 04 LDX $04
C22D &0 RTS

C22E 00 BRK

C22F 00 BRK

C230 E&6 7A INC $7A
C232 DO 02 BNE $C236
€234 E6 7B INC $7B
C236 A2 00 LDX #$00
€238 A1 7A LDA (£7A,X)
€23A 38 SEC

C23B E? 41 SBC #$41
€23D FO 03 BER $C242
C23F 4C 5A C2 JMP $C25A
C242 E6 7A INC $7A
C244 DO 02 BNE #$C248
C246 B4 7B INC $7B
C248 A2 00 LDX #%$00
€24a A1 7A LDA (£$74,X)

218

C24C 38 SEC

C24D E9 4B SBC ##$4B
C24F FO 03 BEQ $C254
C251 4C 08 AF JMP $AFOB
C254 20 00 CO JSR $C000
C257 20 74 A4 JSR $A474

Early experiments

You could start your experiments with adding commands by trying
to interface the graphics routines given earlier to act at the press of
a key. Where commands will need parameters added to them, you
could have another table of addresses to interpret things like 11, 12,
13 and so on where, having found that an ‘! symbol has been entered,
you then check to see what the next number is and go to the correct
subroutine.

Where you'll need other parameters to be separated by commas, it
is most practical to go to the internal ROM routines and let them do
the checking, as was done with the graphics routine for setting up
a high resolution screen in a suitable colour.

Function keys

We said earlier that we’d be giving you a program to use the function
keys, and here it is. As it stands, it allows you to define the function
keys to be any of the existing Basic keywords, although of course if
you add your own commands you can also define a key to be one
or more of those as well.

When you run the program by typing in SYS 49152, the prompt F1?
will appear, at which point you enter whatever you want function key
1 to be (e.g. PRINT). if you want to make it equivalent to typing in
PRINT and then hitting the Return key, enter PRINT followed by the
left arrow key, which has been used in this program to stand for the
Return key.

219

B

FC SR AC XR YR SP
-387D8 33 00 CO 00 FA4

COo00
€002
Co03
CO06
Co0%
CooC
CooD
COOF
cot1
co13
C01S
€017
co19
CO1B
Co1D
CO1F
Co22
Co24
Co27
Co29
coz2C
CO2ZE
Co31
CO33
Co36
COo3?
CO3A
Co3C
CO3E
Co40
Co41
Coas
Co4s
Coasg
co4A
Co4C
CO4E
COoS50
CO53
Co56
Co59
COoSB
CoSDh
COSF
Co61
Co62
Co64
Co&6

220

A
AR
2D
9D

00

00
00
00

c2
Cc3
C4

FF

FF

FF

FF

FF
FF

co

LDA
TAX
STA
STA
STA
INX
BNE
STA
LDA
STA
LDA
STA
LDA
STA
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
LDA
JSR
JSR
PHA
LDY
LDA
STA
PLA
JSR
CMP
BE@
CMP
BNE
LDA
STA
JSR
JSR
JMP
INC
LDA
AND
BNE
CLC
LDA
ADC
8TA

#$00

$C200., X
$C300, X
$C400, X

$CO003
SFB
#2C2
$FC
#3$31
$FD
#4$85
$FE
#£0D
$FFD2
#3446
$FFD2
$FD
$FFD2
#$3D
$FFD2
#$3F
$FFD2
$FFCF

#3$00
$FE
($FB) ,Y

$C085
#$0D
$C059
#$5F
$CO4E
#$0D
($FB) ,Y
$Co8S
$FFCF
$C044
$FD

$FD
#$01
$CO6B

$FE
#3$04
SFE

Co48
Co4&B
Co&6C
CO&E
co70
co72
Co74
Co76
co78
Co79
COo7B
CO7E
coso
co8e3
cos4
co8s
cog7
cos9
cosB
Co8D
CoBF
C090
Co92
Co94
Co%6
co98
Co9A
co9C
CO%E
€oA0
CoA2
COA4
COAS
COA7
COAB
COAA
COAD
COAF
COBO
cob2
CoB4
COoB6
coes
COBA
CoBC
COBE
coco
coc2
coc3
CocS
coc7
coce

03

o3

Q2

JMP

$C072

$FE
#$03
$FE
$FD
#$39
$CO1D

#$90
$0314
#$CO
$03153

$FB
NSFF
$Co8D
$FC
$FB

$CS
$FE
$CODO
#3503
$CODO
#$07

. $CODO

$SFE
#$03
$COA7

#$04

#3$81
+028D
$COoB2

#$04
$FD
#$00
#$C2
$FC

$FB
($FB) ,Y
$FD
$CODS

$COBC
$FC
$FC
#$C5

221

COCB
coch
coDo
CoD2
COoDS
COoDé&
cops
cobA
conc
CODE
COEO
COE2
COES
COE&
COEB
COEA
COED
COFO
COF2
COF 4
COF6
COoF8
COFA
COFC
COFF
cioz2
C10S5

And that’s all there is to adding commands. Just intercept the Basic
routines that usually look after everything, and write your own to do

EF
31
FE
31

08
FC
FC

F2
FB
oD
oA
cé
Cé
77
DS
00
DE

07
8D
03
31
D2
DS

EA

EA

02
co

EA
FF
co

the job instead.

As your knowledge of machine code grows, so can the complexity
and indeed the number of the commands that you wouid want to add.

Perhaps one day we’ll see a ‘Smith’s Basic’ on the market for the

Commodore 64!

BNE
JMP
STA
JMP
INY
BNE
INC
LDA
CHMP
BE@
LDA
cMpP
BNE
INC
LDX
STA
JMP
CMP
BER
cMP
BMI
CMP
BFL
JMP
JSR
JMP
BRK

To conclude

$COBC
$EA31
$FE

$EA31

$COEO
$FC
$FC
#3$CS
$C0D2
($FB) ,Y
#$0D
$COFO
$Cé6
$C6
£$0277,X
$CODS
#$00
$COD2
#$85
$COFF
#$8D
$COFF
$EA31
$FFD2
$CODS

Appendix
An assembler/d‘isassembler

Introduction

A familiar little program, presented here for the first time in
disassembled form, so that you can get a better idea of how it works,
and also make it a lot easier to type in, if you choose to undertake
the mammoth task involved.

The monitor can be accessed at any time with a SYS 2176 command,
but if you want to move it to somewhere else in memory, just use
the Transfer Memory feature and put Extramon anywhere you like.

Make a note of where Extramon now lives, if you do move it, so that
you'll know the correct SYS call to give.

And now, it's time to get the fingers tapping!

B

PC SR AC XR YR SP
.387D8 33 00 CO 00 Fé

0880
0882
0884
0886
0888
088A
088C
088k
0890
0892
0894
0896
0898
089Aa
087C
08%E
0O8A0
0BA2
08A4
08As
08AB
08AA
OBAC
O8AE
o8B0
o8B2
08B4
08B6
08B7
o889
0OBBA
08BC
08BE
08BF
08C1
08C3
08CS
08C7
08Cs8
08CA
08CB
oscc
08CE
08D0O
08D2
o8Dp4
08D5
08D7

224

2D
22
2E
23
37
24
8
25
00
22
02
23
22
22
3C
22
02
23
22
22
21
26
22
02
23
22
22

24

26
25

37
02
38
37

37

LDA
STA
LDA
STA
LDA
8TA
LDA
STA
LDY
LDA
BNE
DEC
DEC
LDA
BNE
LDA
BNE
DEC
DEC
LDA
BEQ
8TA
LDA
BNE
DEC
DEC
LDA
CLC
ADC
TAX
LDA
ADC
PHA
LDA
BNE
DEC
DEC
PLA
STA
TXA
PHA
LDA
BNE
DEC
DEC
PLA
STA
CLC

$2D
$22

$2E

$£23

$37

$24

£38

$25
#300
$22
$0898
$23

$22
($22) ,Y
$O8DA
$22
$0BA4
$23

$22
($22),Y
$08CE
$26

$22
$08B2
$23

$22
($22),Y

$24

$26
%25

%37
$08CS
$38
$37

($37),Y
37
$08D2
$38

$37

($37),Y

08D8
08DA
08DC
08DE
0BEO
08E2
0BE4
08E6
OBE9
OBEA
O0BEB
0BEC
OBED
08F0
08F1
OBF4
O8F7
08F8
OBFB
08FD
0900
0901
0902
0903
0904
0907
0908
090B
090C
O090F
0910
0913
0914
0915
0916
0917
0918
0919
091B
0F1E
091F
0921
0922
0925
0926
0929
092C
092D
092F
0931
0934
0935

B6
ED
37
33
38
4

3E

3C

3B

o2
3A

00

39

00

FF

03
FF

03

FF

02

02

02

02

02

02
FD

FA

BCC

BNE
LDA
STA
LDA
STA
JMP
??7?
?7?
rarers
??7?
LDA
BRK
STA
LDA
BRK
STA
LDA
JSR
BRK
BRK
CLD
PLA
STA
PLA
8STA
PLA
sSTA
PLA
STA
PLA
TAX
PLA
TAY
SEC
TXA
SBC
STA
TYA
SBC
BRK
STA
TSX
STX
JSR
BRK
LDX
LDA
JSR
BRK
LDA

$0890
#$4F
$08CB
$37
$33
£38
$34
($0037)

$FFES6

$0316
$FFE7

$0317

#$80
$FF90

$023E

$023D

$023C

$023B

#$£02
$023A

#£00

$0239

$023F
$FDS7

#£42
#$2A
$FAS7

#$52

225

0937
0939
093B
093D
093F
0941
0943
0944
0947
0949
094B
094C
094D
094F
0952
0954
0955
Q957
0959
095R
095E
093F
0961
0964
0967
0948
096A
09&C
096E
0970
0972
0975
0976
0978
0979
Q974
097B
097E
097F
980
0983
0984
0985
0986
0987
0989
098C
a98D
098F
0992
0994
0997

226

DO

DO

DO

34
C1
06
c2
02
26

CF
oD
F8

Q0
D2
00

26
oD
2E
57

oS
D2
3E
2E
Fe
20
FS
B7

oC

€7

Cé

EC
ED

C1
ZA
c2
39

FF

FF

FA

FF
F8

FF

FF

FF

FA

02

02

BNE
INC
BNE
mc
BNE
INC
RTS
JSR
CMP
BNE
PLA
PLA
LDA
JSR
LDA
BRK
STA
LDX
LDA
JSR
BRK
LDA
JSR
JB8R
BRK
CMP
BEQR
CMFP
BER
LDX
CMP
BRK
BNE
TXA
ASL
TAX
LDA
BRK
PHA
LDA
BREK.
PHA
RTS
DEX
BPL
JMP
BRK
LDA
STA
LDA
8STA
RTS

$096D
$C1
$0943
$C2
$0943
$26

$FFCF
#+0D
$0943

#$90
$FFD2
#300

$£26
#$0D
#E2E
$FAST

#305
$FFD2
$FB3E

#$2E
$0965
#$20
$09465
#$0E
$FFB7.X

$0984

$FFC7,X

$FFC6, X

$0975
$FAED

$C1
$023A
$C2
$0239

0798
099A
0929C
099E
O99F
0942
0943
09AS
09A8
09A9
0O2AC
09AD
O9AF
09R1
0o9B2
09BS
09B6
0988
09BA
O9BB
09BD
09BF
09C1
09C4
09CS
a9Cs8
09Ce
Q9CBb
09CC
09CE
09DO
09D2
09D4
09D6
o9D7
o9D8
o9D9
o9DC
09DD
O9DE
O9EO0
09E3
09E4
O9EH
09E?
09EB
O9EC
O9EF
09F0
o9F3
09F4
09F &6

08
iD
00
S4

ci
48

33

iD
F1

88

1D

ZB

ci

c2
05

57

2E

57

90

00

EA

D2

16
FS

FD

FA

F8

FA

FA

F8

FD

FA

FF

FF

FF

LDA
8STA
LDY
BRK
JSR
BRK
LDA
JSR
BRK
JSR
BRK
DEC
BNE
RTS
JSR
BRK
BCC
LDX
BRK
sSTA
CMP
BEQR
JMP
BRK
JSR
BRK
DEC
RTS
LDA
8TA
LDA
STA
LDA
RTS
TYA
PHA
JSR
BRK
PLA
LDX
JMP
BRK
LDA
JSR
LDX
BRK
LDA
BRK
JSR
INX
PX
BNE

#308
$1D
#$00
$FDS4

($C1) ,Y
$FA4B

$F833

$1D
$09A2

$FABS

$09C3
#$00

($C1,X)
($C1,X)
$09C4
$FAED
$FB33
$1D
#$3B
$C1
#3$02

$C2
#$05

$FDS7
#$2E
$FAS7
#$90
$FFD2
#$00
$FFEA, X
$FFD2

#£16
$09ED

227

O9F8
09FA
O9FD
O9FE
OA01
OAO4
OAOD
OADB
OAOB
OAOC
OAOF
OA10
OAL13
0Al14
OAl16
OAl19
OAlA
OA1D
OAlE
O0A20
OA23
OA24
0A27
OA28
OA2B
OA2ZC
OAZE
0A31
0A32
OA34
OA37
OA3A
OA3C
OA3E
OA40
0A42
0A44
0A4s6
OA4B
OA4A
OA4C
OA4F
OASO
O0AS3
OAS4
0AS7
OAS8
OASA
OASD
OASE
OA61L
0R62

228

3B
c2

39
ag

3A
48

B7

8D

SC
3E

79

33
&7

3E

79

EO
ED

79

F8

02
FA

02
FA

F8

Fa

F8

FA

FA

F8

FA

FA

FF
FF

FB8
FA

F8

FA

FA

LDY
JSR
BRK
LDA
JSR
BRK
LDA
JSR
BRK
JSR
BRK
JSR
BRK
BEQ
JSR
BRK
JSR
BRK
BCC

#$3B
$F8C2

$0239
$FA48

$023A
$FA48

$F8B7

£F88D

$0A72
$F83E

$FA79

$0AS3
$SFALY

$FB3E

$FA79

$0AS6
$FALT

#$90
$FFD2
$FFE1
$0A78
$26
$0A78
$C3
$C1
$C4
$C2
$0A78
#$3A
$FBC2

$FA41

$FB88B

$OA3A
$FAED

$FA79

$0AL7

OAL4
0AL7
0OALS
OAbLB
OALC
OAGE
0A71
OA72
0A74
OR76
OA78
0A7B
OA7C
OA7F
0ABO
oAs2
0A8S
0ABs
0A8?
0A8B
0OABD
OABF
0A91
0OA94
OA9S
0A97
OA?A
OA9B
OAID
OAAQ
OAA3
OAA4
OAAS
OAASB
OAAT
OAAC
0AAD
OABO
OAB1
OAB4
OAB7
OABA
OABB
OABD
OACO
OAC3
OAC4
O0AC7
OAC?
OACB
OACD
OACE

39
3A
3B
3c
3E
90
D2
3F
02

o1
BA

B7

FB8

FB

FA

Fa

F8

Fa

FF

FA

F8

FF
02
02
02
02
02

02
02

FF
02

Ao

JSR
BRE
JSR
BRK
BNE
JSR
BRK
BCC
LDA
8TA
JSR
BRK
JSR
BRE
BNE
JMP
BRK
JSR
crpP
BE®
CHMpP
BNE
JSR
BRK
BCC
JSR
BRK
L.DA
JSR
LDX
TXS
SEI
LDA
PHA
LLDA
PHA
LDA
PHA
LDA
LDX
LDY
RTI
LDA
JSR
LDX
TXS
JMP
LDY
sSTY
sTY
DEY
sTY

£F880
$F8B7

$0A7S
$FA79

$0ASF
#2508
$1D
$F83E

$FBA1

$0A7A
$FB47

$FFCF
#$0D
$0A99
#$20
$ORL2
$FA79

$0A%A
$F880

#$90
$FFD2
$023F

$0239
$023A
$023B
$023C
$023D
$023E
#$90
$FFD2
$023F
($A002)
#$01
$BA
$B9

$B7

OADO
0AD2
OAD4
OAD6
OADB
OADA
OADC
OADF
OAE1
OAE3
OAES
OAE7
OAE?
OAERB
OAEE
OAFO
0AaF2
OAF4
OAF &
OAF8
OAFA
OAFB
OAFD
OAFF
0oB0O2
OBO3
0BO6
0BO8
OBOA
OBOC
OBOE
OB11
oB12
OB14
OB16
oB18
OB1A
0OB1C
OB1F
0B21
0B22
0B25
oB28
OB2ZB
oB2C
OB2E
OB30
OB33
OB3S
OB36
0B39
OBZA

230

FF

FF

FA

FF

FA

FF

F9

STY
8sTY
LDA
STA
LDA
STA
JSR
CMP
BEQ
cMP
BEQ
CMP
BNE
JSR
CMP
BEQ
CMP
BEQ
sSTA
INC
INY
CcPY
BNE
JMP
BRK
JSR
CMP
BEQ
cMP
BNE
JSR
BRK
AND
BEQ

BEQ
STA
JSR
cmP
RTS
JMP
JMP
JSR
BRK
BNE
LDA
JSR
LDA
BRK
JSR
BRK
LDA

$90
$93
#$40
$BB
#$02
$BC
$FFCF
#$20
$0ADC
#$0D
$0B1F
#$22
$OAFF
$FFCF
#$22
$0B0O2
#$0D
$OB1F
($BB) , Y
$B7

#$10
$OAEB
$FAED

$FFCF
#$0D
$0B20
#$2C
$0AEA
$FABB

#$OF
$OAFF
#$03
$OAFF
$BA
$SFFCF
#$0D

($0330)
($0332)
$F996

$0BO2
#$90
$FFD2
#$00
$FIEF

$90

OB3C
OB3E
0B40
QB43
0B44
0B47
0OB48
OB4A
0OB4C
OB4F
0BS5S0
OBS3
ORS4
aBS7
OBG9
OBSE
ORSE
OBSF
OB61
QB&3
OB6S
OB&7
OB&A
OR6R
OB6&E
OR70Q
0OB72
0B74
OB77
OB7A
OB7B
OB7E
OB7F
OB81
OBB4
0B85
0B87
oBg88
0BB89
oB8A
OBBB
oB8cC
OB8F
QB0
0B91
aB92
0oB24
OB97
0B98
0oB99
0OB9A
OB9D

10
47
@6
2C
79
62
CF
2C
AD
79
ci
AE
cz2
AF
&9
CF
oD
78
Q0
D2
F2
47

c2
48

Ci

&0

OF
&0

D2

F8

F9

FA

FA

FF

FA

FA

FF

FF
Fo

F8

FA

FA

Fp

FF

AND
BNE
JMP
BRK
JSR
BRK
CMF
BNE
JSR
BRE
JSR
BRE
JSR
CMP
BNE
JSR
BRHK
LDA
STA
LDA
STA
JSR
BRk.
JSK
CMP
BNE
LDA
JSR
JSR
BRK
JMP
BRK
LDA
JSR
BRI
LDA
PHA
LSR
LSR
LSR
LSR
JER
BRK
TAX
PLA
AND
JSR
BRI
PHA
TXA
JSR
PLA

#$10
$0B04
$F847

$F996

#$2C
$0ROS
$FA79

$FALT

$FFCF
#$2C

$0BOB
$FA79

$C1
$AE
2
TAF
$F ALY

$FFCF
#3£0D

$0BOA
#3590

$FFD2
$FIF2
$F847

$C2
$FA48

$C1

$FALO

#+0OF
$FALD

$FFD2

231

OB9E
OBA1
0OBA3
OBAS
OBA7
OBA9
OBAA
aBAC
OBAE
OBAF
OBB1
0BB3
OBB4
OBB&
OBB7
OBRY9
OBBA
QOBBD
OBBE
OBCO
OBC2
OBCS
0BCé6
0BC8
OBCA
OBCB
OBCD
OBCE
0OBDO
OBD3
OBD4

OBDé&.

OBDS
OBDB
OBDC
OBDE
OBEO
OBE1
OBE2
OBES
OBE&
OBE7
OBES
OBE®?
OBEA
OBEC
OBEF
OBFO
OBF3
OBF 4
OBF &
OBF7

232

D2
30
ZA
02
0&6

02
co

c2

co

c2

88

02

88

02
Ci

00

2A

20

3E

20
OE

AF

2A

AF

2A

FF

FA

FA

F8

F8

FA

F8

FA

JMP
ORA
CMP
BCC
ADC
RTS
LDX
LDA
PHA
LDA
STA
PLA
8TA
DEX
BNE
RTS
JSK
BRK
BCC
STA
JSR
BRK
BCC
STA
RTS
LDA
BRK
STA
JSR
BRK
CMP
BNE
JSR
BRK
CMP
BNE
cLE
RTS
JSR
BRK
ASL
ASL
ASL.
ASL
STA
JSR
BRK
JSR
BRK
ORA
SEC
RTS

$FFD2
#4$30
#$3A
£0BAT9
#3206

#$02
$CO, X

$C2, X
$CO, X

$C2, X
FOBAC
$FABB
$0BC2
$C2

$FABS

$0OBCA
3$C1

#£00

$2A
$FB3E

#$20
$0BE1
$F83E

#$20
$0BEE

$SFAAF

$2A
$FB83E

$FAAF

$2A

OBFB8
OBFA
OBFC
OBFE
0Co0
0Co1
0Co3
0Co6
0Cco7
0co9
0COB
oCoD
OCOF
oc11
oci3
0C15
oc16
oc19
oc1A
ocic
OC1E
OC1F
oc21
ocz2
0C25
0c27
OC2A
0c2D
OC2E
oc31
0oc32
oCc34
oc3s
oc3e
oc39
oc3C
oc3D
OC3F
ocaz
0ca3
0cas
0cas
OC4A
oc4p
0Cso
oCcs1
ocsa
ocss
ocse6
ocss
ocse
oCSB

09

3E

79

FA

c3
02

00

F8

00

Q0
FA

FA

F8

FA

02

FF

FF

FD

CMP
BCC
ADC
AND
RTS
LDX
BIT
BRK
LDY
BNE
LDY
BNE
INC
DEC
DEC
RTS
JSR
BRK
cMP
BEQ
RTS
LDA
BRK
STA
ORA
cPY
JSR
BRK
JSR
BRK
BCC
RTS
JSR
BRK
JSR

BCS
L.DX
XS
LDA
JSR
LDA
JSR
JMP
BRK

BRK
DEX
BNE
RTS

BNE

#$3A
$0BFE
#£$08
#$OF

#$02
$00A2

$C1,X
$0C13
$C2,X
s$0C11
$26

$C2,X
$C1,X

$FB3E

#$20
$0C17

#3500
$0000
($20,X)
$OOFA
SFABF
SFA7C
$0C3D
$FE3E
SFA79

$0C1D
$023F

#$90
$FFD2
#$3F
$SFFD2
$F847

$FD54

$0CS52

$C3
$O0CSF

oCsDh
OCSF
oC&0
0cse2
oc64
0ces
oCa7
oca9
OCHA
oceC
oC&D
OC&F
oC70
oc72
oc74
oc75
oc77
oc79
oC7A
oc7c
OC7E
oc8s0
ocs3
ocs4
ocss
oces
ocee
oCsB
ocsD
OCS8E
oC%0
oco1
oce3
oco4
ocs7
ocos
oCcoB
ocsC
OCSF
oCAO
OCA3
ocA4
OCA7
OCAB
OCAB

OCAF
OoCBO
0oCB2
0oCB4
OCBé&
ocB?

234

ca

02
co

27
co

27

F3

&9

ES

oc

ES

2F

FB

FA

FA

FA

FB

FA

FB

FA

FB

INC
RTS
LDX
LDA
PHA
LDA
STA
PLA
sTA
DEX
BNE
RTS
LDA
LDY
SEC
SBC
BCS
DEY
BCC
LDA
LDy
JMP
BRK
LDA
LDY
SEC
SBC
STA
TYA
SBC
TAY

RTS
JSR
BRK
JSR
BRK
JSR

JSR
BRK
J8R

JSR
BRK
JSR

BCC
LDX

J8R
BRK

$C4

#$02
$C0, X

$27,X
$CO, X

$27,X

$0C62

$C2

$1E

$FAD4
$FALY
$FAES
$FBOC
$FAES
$FB2F
$FA<
$0CC7
$26

$0D1A
$FB28

oCBA
OCBC
OCBE
0CCo
OCC3
oCC4
OCC7
occs
OCCA
0oCCD
OCCE
OCCF
OCD1
0oCD3
OCDS
OCDhé6
ocDs
OCDhA
oCcDD
OCDE
OCEO
OCE2
‘OCE4
OCE&
OCE®?
OCEA
OCEC
OCEF
OCFO
OCF3
OCF4
OCF7
OCF8
OCFB
OCFC
OCFF
ODOO
ODO3
0oDO4
oDO7
obDos
ODOB
OoDOC
ODOF
oD10
oD12
oD14
OD16
oDis
OD1B
oDic
OD1E

SF
(9 1
Cc3
0S5
33

EB
28

BB

7D

D4

&9

ES

&9

3E

FB

F8

FB

FB

FB

FA

FA

FB

FA

FA

FA

FA

F8

FA

FB

BCC
LDA
STA
JER
BRK
JSR
BRK
BNE
JSR
BRK
CLC
LDA
ADC
STA
TYA
ADC
STA
JSR
BRK
LDX
BNE
LDA
STA
JSR
BRK
BCS
JSR
BRK
JSR
BRK
JMP
BRK
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
BCC
8TA
LDX
BNE
JSR
BRK
BCC
LDA

$0D1B
($C1,%)
($C3,X)

$FBOS

$F833
$0CBS
$FB28

$1E
$C3
$£C3

$C4
$C4
$FBOC
$26
$0D1F
($C1,X)
($C3,X)
$FB28

$0D20
$FABB

$FABB
$FB7D
$FAD4
FFALD?
$FAES
$FAL?
$FB3E
$FAB8
$0D26
#1D

$26

$0D29
$FB2F

$0D2A
#1D

235

obh20
oD22
oD25
0oD26
ob28
on2e
ob2C
OD2F
oD30
OoD33
oD34
oD37
on3s
OD3R
oD3cC
OD3F
oD4ao
oD43
obDa4
oD46
oDa7
ob4A
OoD4B
0oDA4D
ODA4F
oDS2
OoDS53
oDS6
oDns7
OD5A
oDSC
ODSE
0D&0
Ob62
oD64
ons7
on&9
OD&A
oDé&B
OoD&C
OD&E
oD71
oD72
OoD75
ob77
oD79
oD7C
OD7D
OD7F
oD81
onss3
oD8S

236

Ct
33

EE
ED

47

D4

&9

ES

69

3E

00

3E

F8

FA

F8

FA

FA

FA

FA

F8

F8

F8

02

FF

00

02

FF

FéA

STA
JSR
BRK
BNE
JMP
BRK
JMP
BRK
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
LDX
BRK
JSR
BRK
CcMP
BNE
JSR
BRK
sSTA
INX
JSR
CHMP
BEQ
CPX
BNE
BEQ@
STX
ORA
?7?
?7?7?
BRK
BCC
STA
INX
JSR
cMpP
BE®
JSR
BRK
BCC
CPX
BNE
8TX
LDA

($C1,X)
$FE33

$0D1&
$FAED

$F847
$FAD4
$FAL?
$FAED
SFAL?
$FB3E
#$00

$F83E

#$27
$0D63
$FB3E

$0210,X

$FFCF
#$0D
$0D80
#$20
$0DS3
$0D80
$0000
($20,X)

$0D34
$0210,X

$FFCF
#$0D

$0D82
$FAB8

$0D35
#£20
$0D&F
$£1C
#$90

ong7
obeA
ongb
OD8E
0D90
0D?1
oD?3
oD%4
oD%6
oD99
oD9B
oD9C
oD9D
OD9F
ODA1
ODA4
ODAS
ODA8B
ODA9
ODAC
ODAD
ODAF
ODB1
ODB4
ODB5
ODB7
ODBA
0oDBB
ODBE
ODBF
oDC1
oDC3
oDCS
oDC7
oncs
ODCA
obcc
ODCF
ODD1
OoDD4
oDD6
oDDs
oDDB
oDDC
ODDF
ODEO
ODE2
ODE4
ODE&
ODES
ODEA
ODED

D2
57

00
00
c1
oc
1c
F3
a1
s4

33

FF
FD

02

FA

FD

F8

FB

F8

FA

FF

FF

FC

FC

FF

JSR

$FFD2
$FDS7

#$00
#$00

($C1),Y
$0210,X
$0DA7

#1C
$0D94
$FA41

$FDS4
$F833

$26
$0D3E
$FB2F

$0D%4
$F847

$FAD4

$20
$C2
$21
#3500

28
#$93
$FFD2
#$90
$FFD2
#$16
*1D
$FC6A

$FCCA

$Ci1
$C2
$1D
$0ODDA
#$91
$FFD2
$FB847

237

ODFO
ODF1
ODF3
ODF &
ODF7
ODFA
ODFB
ODFE
ODFF
OEO02
OEO3
OEQS
OEO6
OEO8
OEOB
OEOC
OEOD
OE1Q
OE11
OE12
OE1S
OE16
OE18
OE1lA
QE1C
OE1LE
OE20
OE22
OE24
OE26
OE28
OE2B
OE2C
OE2D
OE2F
OE31
OE33
OE36
OE37
OE3A
OEZB
OE3E
OE3F
QE41
OEA44
OE4S
OE46
OE48
OEA49
OEA4AC
0OEAD
OE4E

238

2C
c2

54
a1
54
00
Ct
D9

iF

AS
30
03
AS
DS

€D

F8

FD

FA

FD

FC

FD

FD

FC

FF

FD

FF

FD

FC

BRK
LDY
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
LDX
BRK
LDA
JSR
BRK
PHA
JSR
BRK
PLA
JSR
BRK
LDX
CPX
BNE
LDY
BEQ
LDA
CMP
LDA
BCS
JSR
BRK
DEY
BNE
ASL
BCC
LDA
BRK
JSR
BRK
LDA
BRK
BEQ@
JSR
BRK
DEX
BNE
RTS
JSR
BRK
TAX
INX

#$2C
$FBC2

$FDS4
$FA41L
$FD54
#$00
($C1,X)
$FCD9

$FD1F

$FD35

#$06
#$03
$OEZE
$1F
$OE2E
$2A
#$EB
($C1),Y
$OE44
$FCC2

$0E21
$2A0
$0E41
$FF2A,X
$FDAS
$FF30.X
$0E44
$FDAS
$0ELD

$FCCD

OEA4F
OES1
OES2
OES3
OES6
O0ES7
OESS
OESA
OESD
OESE
OE&O
OE61
OEL3
OE64
OE&S
OE&67
OE&LY
OE&A
OE&C
OE&E
OE&F
OE70
OE71
OE72
OE74
OE7S
OE77
OE79
OE7B
OE7D
OE7F
OEBO
OEB1
OEB84
OE8S
0OE87
OoES8
OE89?
OEBA
OESB
OEBD
OESF
OE91
CEF3
OE94
OE9S
OE?8
OE99
OE9B
OE9D
OE9F
OEAO

01

icC
48

1c

iF

c2

01

C1
01

2A

iF

aF

FC

Fa

FE

FF

BNE
INY
TYA
JSR
BRK
TXA
STX
JOUR
BRK
LDX
RTS
LDA
SEC
LDY
TAX
BPL
DEY
ADC
BCC
INY
RTS
TAY
LSR
BCC
LSR
BCS
CMP
BE@
AND
ORA
LSR
TAX
LDA
BRK
BCS
LSR
LSR
LSR
LSR
AND
BNE
LDY
LDA
BRK
TAX
LDA
BRK
STA
AND
STA
TYA
AND

$OES2
$FCC2
*1C
$FA48
#$1C
$1F
$C2

$OE6A

$C1
$OE&F

$0E7F

$0EBE
#$22
$0EBE
#$07
#£80

$FED9, X

$0EBB

#$0F
$OEQ3
#5580
#$00

$FF1D,X
$2A
#3503
$1F

#$B8F

239

OEA2
OEA3
OEA4
OEA&
OEAB
OEAA
OEAB
OEAD
OEAE
OEAF
OEB1
OEB2
OEB4
OEBS
OEBé6
OEBS8
OEBY?
OEBB
OEBE
OEBF
OEC1
OEC4
OECS
OEC7
OECS8
OECA
OECC
QECE
OEDO
OED1
OED2
OEDS
OED&
OED8
OEDB
OEDC
OEDE
OEEO
OEE1
OEE3
OEES
OEE7
OEESB
OEE®?
OEEB
OEED
OEFO
OEF1
OEF3
OEFS
OEF8
OEFB

240

03
8Aa
OB

08

20

FA

F2

€1
cz2

01
FE

iF

F1
03
o4

37

28
77

29
00

05
29
28

F8
3F
D2

EC
A9

D2
D4

FC

FA

FF

FF

FF

oD
FF
Fa

TAX
TYA
LDY
CPX
BER®
LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
LDA
JSR
BRK
LDX
JSR
BRK
CPY
INY
BCC
LDX
CPY
BCC
RTS
TAY
LDA
BRK
STA
LDA
BRK
STA
LDA
BRK
LDY
ASL
ROL
ROL
DEY
BNE
ADC
JSR
DEX
BNE
LDA
BIT
JMP
JSR

#$03
#£8A
$0EBS

$0EBS

#$20

$0EAE

$0EAA

($C1),Y
$FCC2

#4$01
$FAFE

$1F

$0OEBB
#$03
#$04
$O0EC2

$FF37,Y

$28
$FF77,Y

$29
#$00

#$05
$29
$28

F$OEE3
#$3F
$FFD2

$OEDF
#$20

$0DA9
$FFD2
$FAD4

OEFE
OEFF
OF02
OFO03
OF 06
OF 07
OFOA
OFOB
OFOD
OFOE
OF 10
OF12
OF15
OF18
OF 19
OF1C
OF 1D
OF20
OF21
OF23
OF 25
OF28
OF 2A
OF2D
OF 2E
OF30
OF33
OF 34
OF37
OF38
OF3A

OF3C

OF3F
OF40
OF43
OF44
OF 46
OF48
OF 4A
OF4C
OF4E
OF51
OFS52
OF54
OFS6
OFS9
OF5A
OF5SD
OF3E
OF 61
OF62
OF&S

69

ES

&9

00

28

D2
57

72

D4

&9

11
03

FF
FD

FC

FC

FF

FB

F8

FA

F8

F8

FC

FF

FA

FA

02

BRK
JSR
BRK
JSR
BRK
JSR
BRK
LDX
BRK
STX
LDA
JSR
JSR
BRK
JSR
BRK
JSR
BRK
STA
8TY
JSR
BEQ
JSR
BRK
BCS
JMP
BRK
JSR
BRK
LDA
STA
JSR
BRK
JSR
BRK
BNE
LDA
sTA
LDA
STA
JMP
BRK
CMP
BEQ
JSR
RTS
JSR
BRK
JSR
BRK
STX
LDX

$FALT

$FAES

$FALY9

#$00

$28
#$90
$FFD2
$SFDS7

$FC72

$FCCA

$C1
$C2
$FFE1
$OF2F
$FB2F

$OF19
$F847

$FAD4

#$03
#1D
$F83E

SF8A1

$OF3E
$20
$C1
$21
$C2
$FC46

$28

$OFS9
$FFD2
$FAD4
SFAL?

$0211
#$03

41

OF &7
OF 6A
OF&B
OF6C
OF&D
OF &F
OF71
OF72
OF73
OF75
OF77
OF78
OF 7B
OF7E
OF 7F
oF81
OF82
oF84
OF8&
oF89
OF8B
OF8D
OF 8F
OF91
OF94
OF9S
OF97
OF9A
OF9B
OF9D
OF 9F
OFA1
OFA3
OFA&
OFA7
OFAA
OFAB
OFAD
OF AF
OFB1
OFB2
OFB4
OFB6
OFB8
OFBA
OFBC
OFBD
OF BF
OFC1
OFC4
OFCS
OFC7

242

cc

F9
03

3F

0S5

11
10

Fé

FA

02

FF

FE

FA

02

02

FC

JSR
BRK
PHA
DEX
BNE
LDX
PLA
SEC
SBC
LDY
LSR
ROR
ROR
DEY
BNE
DEX
BNE
LDX
JSR
CMP

CMP
BER
JSR
BRK
BCS
JSR
BRK
LDy
8TY
STA
LDA
STA
INX
STA
INX
BNE
STX
LDX
BRK
STX
BEQ@
INC
BEQ
LDX

8TX
LDA
JSR
BRK
LDX
STX

$FACC

$OF 68
#$03

#$3F
#$05

$0211
$0210

$OF77

$OF71
#$02
$FFCF
#$0D
$OFAB
#$20
$OFB6
$FEDO

$+OFAL
$FA9C

$C1

$C2

$C1
#$30
$0210,X

$0210,X

$0F 88
$28
#£$00

26
$0FBA
$26
$+102F
#$00

$1D
26
$FCD9?

$2A
$29

OFC?
OFCA
OFCD
OFCE
OFD1
OFD2
OFDS
OFD&
OFD8
OFDA
OFDC
OFDE
OFEO
OFE2
OFE4
OFE6
OFES8
OFEA
OFED
OFEE
OFFO
OFF3
OFF4
OFF &6
OFF7
OFF9
OFFB
OFFD
1000
1001
1004
1005
1008
1009
100B
100C
100E
1010
1013
1014
1016
1019
101A
101C
101E
1020
1022
1025
1026
1028
102A
102C

37

77

B?

B?
BS
D1

oA
B8

FF

FF

EE

FE

FE

FF

FF

FE

FE

FE

FA

TAX
LDY
BRK
LDA
BRK
JSR
BRK
BNE
LDX
CPX
BNE
LDY
BE@
LDA
CMP
LDA
BCS
JSR
BRK
BNE
JSR
BRK
BNE
DEY
BNE
ASL
BCC
LDy
BRK

BRK
JSR
BRK
BNE
DEX
BNE
BEQ
JSR
BRK

JSR
BRK

‘BNE

LDA
cMP
BNE
JSR
BRK
LDY
BE@
LDA
CMP

$FF37,X
$FF77,X
$SFEB9

$0FBB
#3046
#$03
$OFF7
$1F
$0§F7
£20
#$EB
#$30
$100B
$FEBF

$0FBC
$FEC1

$0OFBD

$OFE4
$2A
$1008
$FF30,X

$FF2A,X
SFEB9
$OFCO

$OFDF
$101A
$FEBS

$OFC1
$FEBB

$OFC2
%28
#1D
$OFC2
$SFAL?

$1F
$1052
$29
#$9D

243

102E
1030
1033
1034
1036
1037
1039
103B
103D
1040
1041
1042
1044
1046
1048
104A
104C
104F
1050
1052
1053
1055
1057
1059
105C
105D
105F
1061
1063
1066
10468
106B
10&C
106F
1070
1073
1074
1077
1078
107A
107D
1080
1081
1082
1085
1086
1088
1089
1088
108D
108F
1092

244

54

05

BO

BF

11

OE
ic
1D
10

FB

FA

00

FC

FF

F8

FD

FA

FD

FF
FD

FE

02

BNE
JSR
BRK
BCC
TYA
BNE
LDA
BPL
JMP
BRK
INY
BNE
LDA
BPL
LDY
BNE
LDA
BRK
8TA
DEY
BNE
LDA
STA
JSR
BRK
STA
STY
LDA
JSR
LDY
JSR
BRK
JSR
BRK
JSR
BRK
JSR
BRK
LDA
JSR
JMP
BRK
TAY
JSR
BRK
BNE
TYA
BEQ
STX
LbX
CMP
PHP

$104A
$FB1C

¥1040

$103D
$1E

$1047
$FAED

$103E
$1E
$103E
$1F
$104F
$00C2,Y

($C1),Y

$104D
$26
($C1),Y
$FCCA

$C1
$C2
#$90
$FFD2
#$41
$FBC2

$FDS4
$FA41
$FDS4
#3005
$FFD2
$FDBO
$FEBF
$1099
$1099
#1C

*1D
$0210,X

1093
1094
1096
1098
1099
1094
109¢C
109E
10A0
10A1
10A2
10A3
10A4
10AS
10A7
10A9
10AA
10AC
10AD
10AF
10B1
10B2
10B4
10B5
10B7
10B9
10BA
10BC
10BD
10BF
10C1
10C2
10c4
10CS
10Cs
1007
10C8
10CA
10CB
10ce
10CD
10CF
10D0
10D1
10D3
10D4
10D5
10D7
1008
10D9
10DB
10DC

03
08

30

33
o8

40

33

40

B3
o8

00

8c

22

8c

22

08

10

INX
8TX
LDX
PLP
RTS
cMP
BCC
CMP
RTS
SEC
RTS
RTI
rardrd
EOR
BNE
RTI
ORA
?7??
EOR
BNE
RTI
ORA
?7?7?
EOR
BNE
RTI
ORA
27?7
EOR
BNE
RTI
ORA
BRK
???
??7?
?7?7?
BNE
rarers
BRK
BRK
DRA
???
?7?7?
BNE
?77?
TXS
BPL
rarars
Farers
BNE
RT1
ORA

#1D
$1C

#$30
$10A1
#$47

$03
$10B1

#$30

$33
$10B9

#$40

$33
$10C1

#$40

$B3
$10C9

#$00

$1056

($22),Y

$105F

$10F9

$10E3

#$10

245

10DE
10DF
10EO
10E1
10E3
10E4
10E6
10E7
10E8
10EA
10EB
10ED
10EE
10EF
10FO
10F1
10F2
10FS
10F&
10F8
10FA
10FD
10FE
10FF
1101
1102
1103
1104
1106
1107
1108
1109
110A
110B
110C
110F
1111
1112
1115
1116
1119
111A
111C
111F
1122
1123
1124
1125
1127
112A
112B
112C

246

o8

62

00

81

4D
4A

9D
29

59

24

8B

23
Al
19

69
23

93
Al

21

2C

1B

9D

00

A8
24

00

?7??
2?2?77
?7??
BNE
RTI
ORA
??77?
SE1
LDA

AND
27?7
BRK
BRK
BRK
BRK
EOR
2??
STX
8TA
BIT
Farars
PLP
BIT
BRK
BRK
CLI
BIT
BRK
BRK
???
TXA
7?7
?7?7?
EOR
LDA
TXA
ORA
?7?7?
ORA
BRK
AND
LDX
ORA
77?7
?7?7?
???
BIT
ORA
BRK
?7??
?7?7?

$10EB

#5462

#$00

(81 ,X)

$214D.Y
$4A

$9D
$2C29

$59

$24

$1BB8B. X
($9D,X)

$9D23, X
$00A1, X
#$19

$ABLY
$2423,Y

$53
$00A1,Y

112D
1128
1130
1132
1135
1138
1139
113A
113B
113C
113E
1141
1143
1144
1146
1147
1149
114B
114D
114E
114F
1150
1152
1154
1155
1156
1157
1158
1159
115A
115B
115D
115E
1160
1162
1164
1167
116A
116B
116D
1146E
116F
1170
1172
1173
1174
1175
1176
1177
1178
1179
1174

&9
24
AE
29

9C
29
13
AS

D8

A2

A8
00

AS

Fa
72

277
LDA
BIT
LDX
LDA
BRK
277
BRK
BRK
ORA
ADC
aDc
277
STY
277
ORA
ADC
LDY
2?77
277
PHA
ROL
STY
277
2772
INY
?77?
PLA
777
INX
STY
BRK
LDY
sSTY
LDY
ROR
cPY
277
LDY
BRK
BRK
TAX
LDX
277
297
277
2?77
297
PLA
277
277

$69
$24
$ABAE
$0029

$9C, X
$AS9C
#$29

$13
($AS) ,Y

#$23
#$D8

$62

$00, X

$08,X
%74

$28,X
$F474
$7244A

$8A

#$A2

247

117B
117C
117D
117E
117F
1180
1181

1182
1184
1185
1186
1187
1188
118A
118C
118D
118
1190
1191

1192
1193
1196
1199
119B
119C
119E
11A0
11A3
11A6
11A7
11A8
11A9
11AA
11AB
11AD
11AE
11AF
11B2
11BS
11B6
11B7
11BA
11BB
11BC
11BD
11BF
11Co
11C1

11C2
11C3
11Ca
11C7

248

26

CA

48

cs

Fo

00
00

FB

FB

58
54

35
cC

Fa
oc

00

00 8A
00 AC

BRK
BRK
297
BRK
BRK
2722
272
ROL
272
277
DEY
INY
CPY
ROL
277
272
LDX
272
277
277
EOR
JIMP
LSR
277
BVC
EOR
SBC
SBC
SED
BRK
277
SED
BRK
LSR
BRK
2?72
SBC
SBC
277
BRK
ROL
277
2722
BRK
CPY
BRK
SEC
277
BRK
777
SBC
SBC

$26

$CA
48

#$C8

£5847
$5453
#48

$11CA
($42,X)

$3500,Y
$CCOO0,Y

$F9,X

$F400,Y
$0C00,Y

$OOFB, X

#$FB

$8A00, X
$ACO00, X

11CA
11CD
11CE
11CF
11DO
11D1
11D2
11D5S
1108
11DB
11DE
11DF
11E2
11ES
11E8

00

46

SBC
SED
BRK
?27?
77?7
BRK
SBC
ORA
JSR
JSR
??7?
JSR
JSR
JSR
JSR

$4600, X

$00F7
$2020
%4350
$5320

$4341
$5258
$5259
$5053

249

Extramon: A Machine Code Assembler

100
110
120
130
140
150
160
170
180
1920
200
210
220
230
240
250
260
270
280
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
S00
S10
520
550
560
&00
610
&620
630
&40
650
&60
&70
&80

250

FRINT"TINY PEEKER/POKER"
X$="%"z INPUTX$: IFX$="%"THENEND
BOSUBS00

IF E GOTO280
A=Y

IFJ *LEN (X$) GOTO300
FORI=0TO7?
P=J: GOSUBSS0
C(I)=V

IF E GOTD 280
NEXTI
T=0
FORI=0TO7
POKE A+1,C(I)
T=T+C (1)
NEXT I
PRINT"CHECKSUM=";
G0TO110
PRINTMIDS$ (X$,1,J): "??":G0TO110
T=0
FORI=0TO7

V=PEEK (A+1)

T=T+V

v=V/16
PRINT " ™
FORJ=1TO2
vr=y

= (U-VYL) %16

IFVL 9 THENVL=VZ+7
PRINTCHRS (V%+48) 3
NEXT J

NEXT 1
PRINT "/";T
50TO110

P=1

L=4

GOTOL00

P=J

L=2

E=0
V=0
FORJ=F TO LEN(X$)
X=ASC (MID$ (X$,J))
IFX=32 THEN NEXT J
IFJ>LEN(X$) THEN790
P=J
FORJ=PTOLEN (X$)
X=ASC (MID$ (X$,J))

670
700
710 FORK=PTDJ-1

iF

720 X=ASC (MID% (X$,K))

730 IF X<{358 THENX=X-4B
740 IF X>64 THEN X=X-55
- B

750 IF X<0 OR X>15 THEN790
760 V=V#1&6+X
770 NEXT K
780 RETURN
790 E=-1
800 RETURN
L10800 0L 1A OB 64 VO 99 22 93 02 20
.:0808 12 1D 1D 1D 1D 53 S5 50 20 48
.10810 48 S2 20 36 34 2D 4D 4F 20 8D
10818 4E 0G 31 08 &€ GO 99 22 Fa8 oo
0820 11 20 20 20 20 20 20 20 20 &9
0828 20 20 20 20 20 20 20 20 20 79
083 OO 4B UB 78 LD 99 22 11 FA 00
0838 20 2E 2E A 49 4D 20 42 El FF
0840 55 S4 54 45 52 46 49 45 AS C3
0848 4C 44 00 &6 VB B2 GO FE 90 2E
LUB5O 28 C2 28 34 IT 29 AA 32 20 a1
0858 35 36 AC C2 28 34 34 29 FO EOQ
0860 AA 31 32 37 29 00 00 00 +30A60 FA 0O
0868 AA AA AA AA AR AA AR AA .:0A6B 20 B7
.:0B70 AA AA AA AA AA AR AR AA A70 FA OO
. 30878 AR AA AA BA AA AR AR AA .:0A78 20 3E
2D 85 22 AS 2E 8% 23 -30RB0O DO F8
37 85 24 AS 38 65 25 OABB FF C9
00 A5 22 DO 02 C6& 23 OA%0 D1 20
22 B1 22 DO 3C AS 22 0A98 BC FB
Dy 92 C6 23 C6 22 Bl 22 OAAD AE 3F
FO 21 85 26 AS 22 DO 02 OARE 48 AD
Cé 27 Cb& 22 B1 22 18 &5 OABD 48 AD
24 AA AS 26 65 25 4B AS OABB 3E 02
37 DO 02 Cé& 38 Cé& 37 4B 0ACO AE 3F
91 37 BA 48 AS 37 DO 02 0ACB 01 B4
Cé 38 C6 37 68 91 37 18 OADO 84 90
90 B& C9 AF DO ED AS 37 OADB A9 02
85 33 AS 38 85 34 6C 37 ORAED 20 FO
00 4F 4F 4F 4F AD E& FF -:10AEB 22 DO
o0 8D 16 0Z AD E7 FF 0O «:DAFY FO 1O
8D 17 3 A% 80 20 90 FF «:0AFB E& B7
00 00 DB 48 BD 3JE 02 68 FA
8D 3D 02 68 8D 3C 02 &8 16
BD 3P UZ 68 AA 6B AB 3B 00
8A E9 02 8D 3A 02 98 E9 ES
o0 o 8d 39 02 BA BE 3F b0
02 20 57 FD 0O AZ 42 A9 26
2A 20 S7 FA 00 A9 52 DU D2
X4 E6 C1 DO 06 E&6 C2 DO o0
02 £6 26 60 20 CF FF C9 47
D DO FB 68 68 A9 906 20 2c
02 FF A% 00 00 85 26 A2 &9
op A9 2E 20 57 FA 00 A9 Do
05 20 D2 FF 20 TE FB 00 85
C9 26 FO F9 C9 20 FO FS FA
A2 OE DD B7 FF 00 DO OC 98
BA GA AR BD L7 FF 00 48 F9
.:0980 BD C6 F¥ OO 48 60 CA 10 20
) > 4C ED FA OO A5 C1 8D an
02 A5 C2 8D 39 92 60 &8
08 85 ID AC OO VO 20 7Y
FD OO B1 C1 20 4B FA 09
20 I F8 0O €6 1D DO &0
&0 20 88 FA OO 90 OB 95
¢ 00 81 C1 C1 C1 FO &0
4C ED FA 00 20 33 FB cz
Cé6 1D 60 A9 3B BS CI c1
02 85 C2 A7 05 &0 98 3E
20 57 FD 00 &8 A2 2€ 3E
57 FA 00 A% 90 20 D2 60
A2 00 OO BD EA FF 0O OA
D2 FF EB £0 16 DO FS AF
38 20 C2 F8 OO AD 39 3A

X<>32 THEN NEXT J
IF J-P<>L THEN 790

o0
ce
29
85
6C
F9
FE

F8
DO
FA
AD

a0
A9
o0

FA
Lelal
o0
7%

oG
0

00

00

47
FO
FA
AT
A
02
02
AT
A
8a
93
BC
ce
20
oD
co

20
2Cc

BA
30
©0
AT
90

BA

20
As
20
90
ac

FA
an
OF
D2

a2z
68
a8
88
A9
00
o0

2A
00
02

00
20
Fo
FA
20
90
20
RS
AS
20
20
FA
20
Do
A9
20

FB
oc
0o
20
78
48
AE
90
&C
-
a7
20
oD
CF
FO
10

CF
[+1]
Fo
20
03

00
29
20

20
79
c2
CF
20
a7

00

21

20
FF

5
FA
FA
0
ce
ce
FA

0s
69

AD
B7
5C

2E
28
D2
24
ca
c2
8B
o0

07

Al

FF
oc
E?
CF
6C
D4
o0
10
b

CF
Fa
85
FF
D2
]

AS
&0
60
68

co
€2
Qo

(44
20
20
00

2A
(<]

3A

20

Fe

A9

C78

OB
ncese

4C

- 1UCEQ
.:0CEB

20
90

on3e

oz
-30D78

. 10DBO

00

86

- zODEL
. 1ODES
ODF

DF 8

&0 AZ 02
€1 DO OB
6 D6 C2
FB o0 .9
00 00 8D
FA 00 20
FA 00 90
e 20 79
IF 02 9A

IF

0D 20 54
60 E6 C3Z
A2 02 BS
CO &8 95
AS C3 A4
OE 88 %0

B ES C1
RB 05 1E
20 &9 FA
20 OC FB
20 2F FB
90 15 As
FB 00 90
20 OS5 FB
DO EB 20
1E 65 C3
85 C4 20
DO ID Al
FB 00 BO
20 BB FA
20 D4 FA

20 ES FA

3E
14

20 2F FB
81 Ct 20
4C ED FA
20 D4 FA

IE FB 0
3E FB8 N0
CF FF C9
DO F1 Fo
20 BF FA

EB

09 20 B8

bo

D2 FF 20

A

a2 po oC
F3 20 43
00 20 3T
BD 20 2F
47 FB 00
20 A% C2

z8

0 20 D2
20 6A FC
85 C1 84
A% 91 20
00 AG 20
54 FD 00

B4
Ea
3E
Ag
cc
7€
Fa
AE
FF
F8
FA
&0
95
40
BO
29

2C A2 00 00
B4 CT DO 02
D& C1 60 20
20 FO F9 60
VO 00 0L 20
8F FA 00 20
09 60 20 3E
FA 00 By DE
A9 90 20 D2
D2 FF aC 47
FD 00 CA DO
DO 02 E& C4
Co 48 BS 27
27 CA DO FZ
C4 38 E9 02
OB AS 28 A4

20

FB 00 AS CZ A4
85 tE 98 ES
6020 D4 FA
00 20 ES FA
00 20 ES FA
00 20 &% FA
26 DO 64 L0
SF A1 Ct 81
09 20 II FB
28 FB O0 18
85 CZ 98 65
OC FB 00 A6
Ci 81 CX 20
34 20 BB FA
DO 4C 7D FB
Qe 20 69 FA

c4
c2
o0
00
00
o0
28
c3

AS
ca
26
28
o0
D]
o

00 20 &9 FA
00 20 88 FA
1D A& 26 DO
00 90 OC AS
33 F8 00 DU
00 4AC 47 F8
00 20 &9 FA
00 20 &9 FA
00 A2 00 0O
C9 27 DO 14
90 10 02 E8
oD FO 22 EO
i1C 8E 0O 00
o¢ 90 Cé& 9D
CF FF C9 0D
FA ©O 90 B6

-
85

20

EC 86 1C A9 90
57 FD 00 A2
00 B1 C1 DD
€8 EB E4 1C
FA 00 20 34
FB 00 A6 26
FR 00 BO DD
20 D4 FA 00
a5 21 Az
93 20 D2 FF
FF A% 146 8BS
00 20 CA FC
C2 Cé 1D DO
D2 FF 4C 47
20 C2 F8 00
20 41 FA 00

00

AP

251

54 FD L A2 OO 00 AL CY
20 D9 FC QG 48 20 1IF FD
o0 68 20 35 FD oo A2 06
EQ 03 DO 12 A4 IF FO OE
A% 2A C9 E8 B1 C1 BO iC
20 CZ FC 00 88 DO F2 06
2A 90 OE BD 2R FF 00 20
AS FD 00 BD 3¢ FF 00 FO
03 20 A5 FD 00 CA DO D5
&0 20 CD FC 00 AA EB DO
01 CB 98 20 C2 FC 00 BA
B6 IC 20 48 FA 00 A& IC
&0 AS 1F I8 A4 C2 AA 10
Qi 88 &5 C1 90 01 €8 &0
O AB 4A 90 OB 4A BO 17 C9
22 FO 13 29 07 09 BO 44

ED A2 02
FO LE C9
FE 0O BO
A4 C1 84
90 10 02
DO DR 86
26 Fo 04
00 00 86
FC 00 A6
37 FF 00

03 PO 19
26 C? EB

90 OB BC

-:t0ESD AA BD D9 FE OU BO 04 4R 11000 00 BD 24 FF 00 20
DO U4 AO .21008 00 DO BS CA DO D1
BD 1D FF .:1010 20 B8 FE OU DO AB
85 IF 98 .:1018 FE 00 DO A& AS 26
03I EO BA 31020 DO AU 20 &9 FA 0O
4A 4A 09 -31028 FO 28 AS 29 C? S0
88 DO F2 .21030 20 1C FB 0O 90 0A
FC 00 A2 .:1038 04 AS 1E 10 OA 4C
Ca 1F C8 31040 00 C8 DO FA RS 1E
04 90 F2 .:1048 A4 1IF DO 03 BY C2
o 85 28 .11050 91 C1 88 DO FB8 AS
29 A% 00 .:1058 C1 20 CA FC 0C¢ 85
26 28 2A .31060 C2 A9 90 20 D2 FF
20 D2 FF +311068 20 C2 F8 00 20 54
-10EFO CA DO EC A9 20 2C A7 OD «31070 20 41 FA 00 20 S4
-:0EFB 4C D2 FF 20 D4 FA 00 20 .31078 A? 05 20 D2 FF AC

:OFO0 &9 FA 00 20 ES FA 00 20
OF0B 69 FA 00 A2 00 00 86 28
OF10 A% 90 20 D2 FF 20 57 FD
OF18 00 20 72 FC 00 20 CA FC
OF20 O0 85 C1 84 C2 20 E1 FF
ok28 F 05 20 2F FB 00 BO E9
<3DF30 4C 47 FB 00 20 D4 FA 0O
-10F38 A% O3 B85 1D 20 3E F8 00
~sOFA0 20 A FB OO DO FB A% 20
.10F48 65 C1 AS 21 85 C2 AC 44

00 AB 20 BF FE 0O
98 FO OE 86 iC A6
10 02 0B EB 86 1D
28 60 CF 30 90 03
&0 38 &0 40 02 45
08 40 09 30 22 45
08 40 09 40 02 45
OB 40 07 40 02 4S5
08 40 09 00 00 22

33 DO B8C 44 9R 10
«:0F58 FF 60 20 D4 FA 00 20 69
-3UF&0 FA 00 BE 11 02 A2 O3 20
.30F68 CC FA QO 48 CA DO F? A2
«30F70 03 68 38 E? 3IF AD 05 44
OF78 6E 13 02 &F 106 02 88 DO

33 DO 08 40 09 &2
A9 00 00 21 81 82
00 Q0 59 4D 91 92
85 9D 2C 29 2C 23

Instructions for entering and using Supermon&é

Entering the program

Enter in immediate mode:
POKE B192,0:POKE 44,32:NEW <return

This moves the start of Basic to decimal 12800,
and gives us room to put in Supermon. Now tvpe in
Tiny Pesker/Poker.

Run the program, and in answer to the question
prompt type in the memory address and memory
contents as given in the 20 blocks of data at the
end of this section. You can look at memory just
by entering the memory address.

When you've finished, type in immediata mode :
POKE 44,08;CLR <raturn>

which puts Basic back to normal again. You can
now save Supermon by using a normal Basic SAVE.
Before running it, you'll need to check that its
all there, s0 in immediate mode, enter the
following line (you'11 newd to use Basic
abbreviations e.g. ‘7' for PRINT, F shifted E for
PEEK, and so on, to fit it all in):

252

CF
FoO

-31100
+11108
«stito
.31118
<1120
.31128
«11130
11138
«21140
-21148
.11150
.:1158
31160
-31168
11170
.11178

21180
.11188
.11190
31198
11180
«111R8
.:11BO
.311B8
.s11CO
.111C8
.211D0
.311D8
-111ED
.211E8

59
1c
0
00
23
Al
24
00
-
AS

B2

1A
ca
30
54
F9
F7
w0
FB
38
00
F7

a1
20

on
1c
10
29
53
o

Rl
29
23
94
E®
B4
F2
74
B2

24
SD
9D

23
58

15
84

s4
oE
74
00
72
47
F9
oc
oo

FD
a8

52
80

24
8B
88

24
SB
AD
9C
13

44
74
72
22
72
a3
2c
00
FA
co
F8
53

20
01

00
1B
1D

29
&D
34
c8
Fa

44
o0

22

M=1:FORJ=0TO18: FORI=2048+1284#NT02047+128+N: A=A+
PEEK (1) s NEXT1PRINTA; J:A=0: N=N+13:M=M+1:NEXTJ

This should display the following numbers on your
screen, together with the block number :

10021, 13841, 14762, 15283, 14641, 16091, 16771,
13076, 15720, 14716, 14189, 135165, 14543, 150St,
14669, 16467, 16259, 9633, 11241

although they'll be in column form on the scressn.
Due to the vagaries of Basic the first number
might differ (I got 12205 once'!}), but running the

check again should sort it out. I+ one of your
numbers disagrees, we'l]l need to go back to the
beginning with Tiny Peeker again. So, enter the

first set of POKEs again (Supermon will still be
thaere), enter or re-load Tiny FPeeker, and check
each incorrect block. The last block will have to
be checked by hand.

When you've done that, enter POKE 44,08:CLR again,
re-SAVE Supermon, and run the checking program.
When you’'be finally got it right, the 64 is yours
for the disassembling!'

Using Supermon 64

This will be given in the form COMMAND, +followed
by the syntax.

1) Simple Assembler
-A 2000 LDA#12
start assembly at 2000 hex.

2) Disassembler
.D 2000
disassemble hex from 2000 onwards.

3) Printing Disassembler
.P 2000,2040
engage printer beforehand with DPEN4,4:CMD4.

4) Fill memory

-F 1000 1100 FF

fill memorv from 1000 to 1100 hex with the bvte
FF.

5) Go run
-6 1000
go to hex 1000 and execute program there.

6) Hunt memory
«H CO00 DOOO °READ
look #rom COOO to DOOO for the ASCII1 string READ.

7) Load
.L "FRED",08

8) Memory display
+M 0800 0820
display memory from hex 0800 to OB20.

9) Register display

«R

displavs register values when Extramon was
entered.

10) Save

-5 "O#FRED",08,0800,0820

save memory from hex 0800 to 0B20 onto device 08
drive 1, and call that portion of memorv FRED.

11) Transfer memory

=T 1000 1100 S000

transfer memory in the range hex 1000 to 1100 and
start storing it at hex 5000 onwards.

12) Exit to Basic
return to Basic ready mode. Perform a CLR before
doing anything.

253

Index

6566 Video Interface Chip, 78-94

6581 video chip description, 170-8

Adding commands to Basic, 203

Adding commands: concepts, 209; characters, 216, 217

Advanced keyboard listing, 193-6

Alpine Slopes listing, 67-70

Android Nim, 34, 35; listing, 36-41

ASCIl characters, 31, 32

Assembiler listing, 224-9

Assembiler: Basic program, 250-1; hex dump, 251, 2562;
commands, 252, 253

Attack/decay/sustain/release/listing, 184

Attack/decay settings, 154

Background colours, 21

Bit map code, 82-4

Bits, 12,13, 14

Border colours, 21

Bouncing blob listing, 20, 21

Bytes, 12, 13, 14

Character display mode, 78-80

Character memory map, 97, 98

Character selection, 98

Character set: altering, 100-2

Character generator listing, 112-15

Character Get routine, 210, 211; alteration, 214, 215

CHRS$ characters, 28, 29, 30

Colour selection, 27, 28

Colours available, 19

Commodore 64 Basic, 206, 208

Commodore Basic, 205

CTRL key, 20

Cursor codes, 22

Deathtrap listing, 198-201

Decimal, 12, 13,14

Dec/binary convertor, 204

Duckworth duck listing, 51

Envelope generating, 147, 149, 150, 179

Envelope rates, 175

Envelope shapes, 180

Extended colour mode, 81, 82, 109

Filtering, 148, 149, 176-8, 185, 186

254

Function keys, 26, 219-22

Graph plotting, 33, 34

Graphics modes, 105, 106

Hexadecimal, 12, 13, 14

Hex/dec convertor, 204

High Resolution introduction, 121

High resolution m/c routines, 134-7

Interrupt registers, 90, 91

Keyboard tour, 25, 26

Keyboard tricks, 33

Light pens, 90

Lower case, 30

Memory interfacing, 93, 94

Memory banking, 99

Memory architecture, 207

Movemaze listing, 116-19

Multiple voice manipulation, 168, 169

Multi-colour char. mode, 80, 81, 106

Multi-colour bit mapping, 126

Music: some physics, 162, 163

Musical symbols, definitions, 140-2

Musical notes table, 156, 157

Musical tunes, 158, 159

Musical values, 161, 162

Musical keyboard listing, 165-7

Musical instruments, 189-90

OLD command listing, 217

OR command, 14

Pulse widths, 189

Raster register, 90

Ring modulation, 148, 172, 187-8

Screen resolution, 15

Screen locations, 18

Screen colours, 19

Screen blanking, 88

Screen scrolling, 89, 90

Screen: row & column select, 89

SID chip overview, 144, 145

SID registers, 145, 146

SID memory map, 152, 163

Sound: an introduction, 139-44

Space Battle listing, 56-9

Sprite resolution, 43

Sprite memory, 44, 50, 87, 88

Sprite data map, 46, 47

Sprite generator listing, 61-5

Sprites: an introduction, 43;
multi-coloured, 44, 45, 52; defining them, 48, 48, 85; positioning them, 52,
53, 84; priority, 53, 54, 86; turning off, 54, 84; multi-colour listing, 72-7

Standard character mode, 80

Standard bit mapping, 122-6

Sustain/release settings, 155

Synchronisation, 148, 172, 187-8

The Thinker listing, 130-4

User-defined graphics:introduction, 95, 96; defining them, 96, 97; re-defining
keys, 97-103; storing them, 103

Upper case, 30

Voice 1, 170-5; filtering, 170; pulse width, 171;
control register, 171-3

Voices 2and 3, 176

Waveform selection, 155

Waveforms, 181-2

255

DUCKWORTH
HOME COMPUTING

All books written by Peter Gerrard, former editor of Commodore
Computing International, author of two top-selling adventure
games for the Commodore 64, or by Kevin Bergin. Both are regular
contributors to Personal Computer News, Which Micro? and
Software Review.

THE COMPLETE 64 ROM DISASSEMBLY
by Peter Gerrard and Kevin Bergin
This book is for anyone who has ever wondered how the
Commodore 64 really works. Intended for the serious programmer,
it includes fundamental memory maps, memory architecture maps,
the disassembly itsef and (for reference) the complete 6510
machine code instruction set. £5.95

ADVANCED BASIC & MACHINE CODE FOR THE
64
by Peter Gerrard

For the more serious user of the Commodore 64, this book teaches
you all about programming in Machine Code, with sections on
double precision arithmetic and animation, along with a series of
chapters on using the special features of the Commodore 64.

The all-important link to Basic is not forgotten, and the opening
chapters form a guide to improving your Basic programming
techniques, along with many program examples. £6.95

Other titles in the series include Using the 64, 12 Simple Electronic

Projects for the VIC, Will You Still Love Me When I'm 64, Advanced

Basic & Machine Code Programming on the VIC, as well as

};',ooc'cl;elt BHandbooks for the VIC, 64, Dragon, Spectrum and BBC
el B.

Werite in for a descriptive leaflet (with details of cassettes).

L 1 4}
DUCKWORTH

The Old Piano Factory, 43 Gloucester Crescent, London NW1 7DY
Tel: 01-485 3484

Duckworth Home Computing

SPRITES & SOUND ON THE COMMODORE 64
by Peter Gerrard

This is a complete guide to the best features of the 64. There
are chapters on sprites, user-defined graphics, hi-res plotting,
advanced sound programming techniques such as ring
modulation and filtering, adding commands to Basic and a
disassembly and explanation of Extramon. There is also a full
explanation of the chips responsible for the 64's graphics and
sound: the 6566 Video Interface Chip and the 6581 Sound
Interface Device. Sections on how to program your own
musical instruments and how to produce sprite and
programmable character animation make this the essential
guide for anyone who wants to get the most from the 64’s
special features.

Peter Gerrard, former editor of Commodore Computing
Internatijonal, is the author of two top-selling adventure games
for the Commodore 64 and a regular contributor to Personal
Computer News, Which Micro? and Software Review and
Commodore Horizons.

ISBN 0-71.56-1781-8

A

780715"61

Duckworth ISBN 07156 1781 8
The Old Piano Factory

43 Gloucester Crescent, London NW1 IN UK ONLY £6.95 NET

