22444

ommodore 64/128
Assembly Language
Programming

Mark Andrews

Commodore 64/128
Assembly Language
Programming

Commodore 64/128

Assembly Language
Programming

by Mark Andrews

Howard W. Sams & Co.

A Division of Macmillan, Inc.
4300 West 62nd Street, Indianapolis, IN 46268 USA

© 1985 by Mark Andrews

FIRST EDITION
THIRD PRINTING — 1986

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with
respect to the use of information contained herein.
While every precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-22244-5
Library of Congress Catalog Card Number: 85-61476

llustrated by: Jill Martin

Printed in the United States of America

Commodore 64 Macro Assembler Development System
is copyrighted by Commodore Business Machines, Inc.
Merlin 64 is a trademark of Roger Wagner Publishing,
Inc.

Panther C64 is a trademark of Panther Computer
Corporation.

Contents

W o0 N OO »U &« o

10
11

Introduction: Ahoy, Commodore!
How This Is Different from Other Assembly
Language Programming Books

Part One
Principles and Techniques of Assembly Language
Programming

Introducing Assembly Language
What Assembly Language [s and What It's For

By the Numbers
The Binary, Hexadecimal, and Decimal Notation
Systems

In the Chips
Inside Your Commodore

Writing an Assembly Language Program
Three Popular Commodore Assemblers

Running an Assembly Language Program
From a BASIC Program and on Its Own

Addressing the Commodore
Telling Your Computer Where to Go

Looping and Branching
GOSUBs and GOTOs in Assembly Language

Programming Bit by Bit
Single-Bit Operations on Binary Numbers

Assembly Language Math
Addition, Subtraction, Multiplication, and Division

Part Two
Assembly Language Graphics and Sound

Memory Magic
The Memory Map of the Commodore

High-Resolution Commodore Graphics
Joystick Operations

19

35

45

69

91

109

129

143

161

163

185

vi

Commodore 64/128 Assembly Language Programming

12
13
14
15

Drawing Pictures in High-Resolution Graphics
Some Advanced Features of Assembly Language

Customizing a Character Set
Copying Characters from ROM into RAM

Programming Sprites in Assembly Language
Animating Sprites on the Screen

Commodore 64/128 Music and Sound
An Introduction to Interrupt Operation

Appendix A
The 6510 Instruction Set

Appendix B
Additional Programs

Bibliography

Index

201

219

241

261

281

295

314

315

Introduction
Ahoy, Commodore!

How This Is Different from Other
Assembly Language Programming
Books

This book is different from others you may have seen in several ways:

e This is the first Assembly language book written for owners of both the

Commodore 64 and the Commodore 128, the newest tull-size computer
in the Commodore line. All the programs, instructions, and examples
in this book are applicable both to the Commodore 64 and to the Com-
modore 128, when the C128 is used in its C64 mode. Most of the pro-
grams will also run on the Commodore 128 in its C128 mode, since the
main microprocessors in the C64 and the C128 are compatible. The
C128 does have certain new and advanced features, such as 80-col-
umn color graphics and a built-in machine-language monitor, that are
not specifically covered. However, this book will provide you with a
thorough understanding of Commodore computers in general and the
C64 and C128 in particular, so that you should have no trouble mas-
tering the C128's special features on your own later.

This book contains a large collection of Assembly language routines,
many of them graphics-related, that are extremely useful, as well as
interesting and entertaining. All these programs can be typed, assem-
bled, and executed on either @ Commodore 64 or a Commodore 128. If
you type and assemble them while you read this book, as we suggest
you do, you will have a usetul library of Assembly language routines
that you can incorporate easily into your own BASIC and Assembly
language programs. There are programs for designing your own char-
acter sets, for writing joystick-controlled action games, and for draw-
ing on the screen in high-resolution graphics. There is a program that
prints headline-size characters on your monitor and one for creating
animated sprite graphics. There are routines for using interrupts and
raster interrupts and for programming music and sound. As a bonus,
there is a collection of interactive tutorial programs for converting
numbers from one base to another, for intermixing BASIC and
machine-language programs, and, in short, for making your Commo-

viii Commodore 64/128 Assembly Language Programming

dore do just about everything it can. In other words, this is the most
complete book available on Commodore Assembly language.

® As you read this book, you will notice that it is written in English, not
computerese. It was written by a Commodore owner for Commodore
owners, not by an electronics professor for engineering students or
professional programmers. If you understand even just a little BASIC,
then you will be able to understand this book. In fact, it may well be
the easiest to understand Assembly language textbook around.

® You can also see that this is not just another reference book about the
6502 chip, the granddaddy of the 6510 microprocessor used in the
Commodore 64 and the 8502 chip used in the Commodore 128. It also is
not just another manual on 6502 Assembly language. It is specifically
about Commodore Assembly language. So, when you use this book for
its intended purpose, you will not have to try to figure out a 6502
Assembly language book, an editor/assembler instruction manual,
and a Commodore 64 Programmer’s Reference Guide all at the same
time. Instead, for the very first time in one book, you will find a com-
plete hands-on guide that tells you just about everything you need to
know about Commodore 64 or Commodore 128 Assembly language
programming.

e This book contains detailed instructions on how to use the three most
popular Commodore 64 assemblers on the market: the Commodore 64
macro assembler, manufactured by Commodore; the Merlin 64 assem-
bler, from Roger Wagner Publishing, Inc.; and the Panther C64, from
Panther Computer Corporation.

® Finally, from start to finish, the format of this book is custom-tailored
make the study of Assembly language as painless as possible. The
following tells about how the book is designed.

ASSEMBLY LANGUAGE DEMYSTIFIED

In Chapter 1, you will be introduced to Assembly language and will learn
exactly how Assembly differs from other programming languages.

In Chapter 2, you will start learning about bits, bytes, and binary num-
bers—the building blocks program designers use to create Assembly language
programs. You will find some easy-to-use BASIC programs to convert numbers
from one base to another automatically, which will help take the mystery out of
hexadecimal and binary numbers.

In Chapter 3, you will learn all about the 6510/6502 microprocessor
chip, the "brain” of your Commodore.

In Chapter 4, you will write your first Assembly language program.

If you are intrigued by these prospects—and you must be, or you
would not have read even this far—then you are probably anxious to start
learning Assembly language. And I am anxious to start helping you learn

Introduction

Assembly language: the most fundamental, most exciting, and most rewarding
of all computer programming languages.

GETTING YOUR GEAR TOGETHER

Before you set out on this journey, you will need a few pieces of equipment. I
assume you already own the most important item, a Commodore 64 or Commo-
dore 128 computer. Since most of the utility packages used in Assembly lan-
guage programming are disk-based, you will also need a Commodore-
compatible disk drive.

A Commodore 1520 or 1525 printer, or any other type of line printer
compatible with your Commodore, will also come in handy. It does not have to
be a letter-quality printer, but it should be capable of printing out readable
listings of Assembly language programs.

You should also put a few standard reference books in your library,
including two extremely important books published by Commodore. One of
these books is the user’s guide that came with your computer. The other impor-
tant book is the Commodore 64 Programmer'’s Reference Guide, available both
from Commodore and from Howard W. Sams & Co., Inc. The Commodore 64
Programmer’s Reference Guide is an essential book for the Commodore Assem-
bly language programmer. Other useful books are listed in the bibliography.

Finally, you need an assembler, a software package you will use to
write the Assembly language programs in this book. Unless you own an assem-
bler, you cannot write programs in Assembly language.

CHOOSING AN ASSEMBLER

There are many assemblers on the market, only a few of which are designed to
be used with Commodore computers; only three of these were used to write the
programs in this book. If you want to use this book to learn Assembly language,
it probably would not be a bad idea to own at least one of the three assemblers
that were used to write it. They are:

® The Commodore 64 Macro Assembler Development System
® The Merlin 64 assembler

e The Panther C64 assembler

These three assemblers are all quite different, each with its own advantages
and disadvantages. The Commodore assembler is extremely powerful but quite
difficult to use, especially for the beginner. The Panther assembler is much eas-
ier to use than the Commodore assembler, but it has a few quirks, and it has too
many limitations to be used much in serious programming. The Merlin 64 is not
quite as powerful as the Commodore assembler, but it is considerably more
sophisticated than the Panther C64.

x Commodore 64/128 Assembly Language Programming

In trying to decide which of these three assemblers to use in writing
this book, I never managed to make a really clear choice among the three.
Mostly, I used the Goldilocks method: The Commodore was too big, the Panther
was too little, but the Merlin was just right. So [wrote many though not all of the
programs in this book with the Merlin 64. So, if [had to make a choice among
these three assemblers, I would pick the Merlin 64. However, fairly complete
instructions for using the Commodore and Panther assemblers are included in
this book—and, with minor modifications, most of the programs in this book can
be assembled and run using just about any other assembler that is compatible
with the Commodore 64 or Commodore 128.

Now here are brief descriptions of the Commodore, the Merlin, and the
Panther C64 assemblers.

THE COMMODORE 64 ASSEMBLER

One of the best is the Commodore 64 Macro Assembler Development System,
manufactured by Commodore. This system is quite difficult to use, especially for
beginners. Among the problems is the documentation that comes with the Com-
modore assembler: it is a cheaply reproduced sheat of typed notes that raises
more questions than it answers for the beginning-level Assembly language
programmer. Despite this shortcoming, however, the Commodore assem-
bler/editor system is a very sophisticated package with many advanced fea-
tures, and once you gain a certain amount of experience, you should definitely
acquire the Commodore 64 assembler. Commodore's own programmers use the
system to develop programs, and many of the programs in this book were writ-
ten on it. So, if you are really serious about learning Commodore Assembly
language, keep the Commodore 64 Macro Assembler in mind.

The Commodore 64 assembler has a conventional, no-nonsense kind
of design, so if you are familiar with other standard microcomputer assemblers,
this one will not take much getting used to. Since it has been used by many
professional programmers over a long period of time, it has been thoroughly
debugged and is a solidly engineered, professionally designed program-devel-
opment system. It was created specifically for Commodore computers, so it is
perfectly tailored for Commodore machines. The Commodore 64 assembler was
written by Commodore experts, so, unlike the two other assemblers that were
used in the preparation of this book, it leaves free blocks of memory precisely
where an experienced Commodore programmer would expect them to be. In
short, the Commodore 64 Macro Assembler Development System is a fine
assembler, with many features that one would never expect to find in such a
low-priced package and with some capabilities that are difficult to find at any
price.

Because of its powerful capabilities and its versatile design, the Com-
modore assembler can be used to write long, complex programs that can be
stored almost anywhere in a Commodore computer’s memory. The assembler is
also fully equipped to handle macros—chunks of Assembly language code
designed to carry out repetitive operations in a program. It comes with a DOS
wedge, which is a special program that greatly simplifies the handling of Com-
modore 64 files. It is equipped with two machine-language monitors—one that

Introduction

xi

can be loaded into a lower block and one that can be loaded into a higher
block of RAM. Twin monitors are provided, according to Commodore, so that
you can always use one without overwriting other utilities or user-written pro-
grams. Two machine-language loaders are also included, for the same reason.

As previously mentioned, though, the Commodore assembler does
have one serious shortcoming. User-friendliness is not its strong suit: in fact, it
can be downright user-hostile. It was obviously designed for professional pro-
grammers, not for beginners. Also, it was definitely not created for use with a
computer system with just one disk drive. It consists of a number of different
programs, including an editor, an assembler, a monitor, and a loader, each of
which must be loaded and used separately, independently of all the rest. That
involves a lot of disk-switching if your computer has just one disk drive—so if you
decide to buy a Commodore assembler, it might also be a good idea to invest in
a second disk drive.

Despite the annoying and sometimes frustrating complexity of the
Commodore 64 assembler, however, it is probably the best assembler on the
market for the computer for which it was created. If you are willing to put up
with some hassles in exchange for owning one of the most powertul 6502-type
assemblers, then I strongly suggest that you buy a Commodore 64 assembler.

THE MERLIN 64

The Merlin 64 is also an excellent editor/assembler package. Merlin is an imag-
inatively designed assembler, with a host of advanced features that are some-
what unconventional but quite useful—and surprisingly easy to learn and use.
The Merlin instruction manual looks better than the one that comes with the
Commodore assembler, but is poorly organized and, in places, very difficult to
understand. On the positive note, the Merlin package includes an extremely
sophisticated machine-language disassembler, called the Sourceror, plus a
good-sized library of Assembly language routines, all stored on the program'’s
master disk and ready to be incorporated into user-written programs.

Merlin can handle macros, of course, and it has linking features that
allow the user to write and assemble source-code listings that would ordinarily
be too long to fit into a Commodore 64's memory all at once. Merlin can be used
in 80-column format on a computer equipped with a high-resolution monitor
and an 80-column card.

The Merlin 64 is an adaptation of an assembler originally designed for
Apple computers, and, perhaps as a result, it is less than ideally suited for Com-
modore computers. For example, it consumes quite a few blocks of memory
space that really should be left free in @ Commodore machine: while it is easy
enough for an experienced programmer to reclaim the memory space that Mer-
lin so thoughtlessly lays claim to, that would not be necessary if the assembler’s
memory layout had been better designed.

The good news about the Merlin assembler is that it is much, much
easier to use than the Commodore assembler. When you boot the Merlin disk,
all its important utilities are loaded at once, so repeated disk-switching is not
necessary. Merlin is menu-driven—a nice touch for an assembler—and its file-
management system is superbly designed and easy to use. Merlin is equipped

xii Commodore 64/128 Assembly Language Programming

with a DOS wedge, just as the Commodore assembler is—but Merlin's wedge
loads automatically when you boot the master disk, while the Commodore
wedge does not. In short, Merlin is much more user-friendly than the powertul
but more complicated Commodore 64 macro assembler system.

So it you are new to Assembly language, you might want to start out
with the Merlin assembler, graduating to the Commodore system later. You may
even decide that you like Merlin so much that you want to stick with it for good. I
own both the Merlin and the Commodore systems, and 1 enjoy working with
both of them. I like the Commodore assembler, since I have mastered its idiosyn-
crasies and grown used to its standard, conventional-style approach to Assem-
bly language programming, but [also like the less conventional Merlin
assembler, and Merlin is my assembler of choice for fast, uncomplicated Assem-
bly language programming.

THE PANTHER C64 ASSEMBLER

Of the three assemblers used in writing this book, the Panther C64 is the easiest
to operate—but also the most limited. The Panther is a very a popular assem-
bler, partly because of its simplicity. In fact, many Commodore 64 owners say it
is their favorite assembler/editor system. However, [cannot agree with this. It
has no macro capability, and it consumes more memory space than either the
Commodore or the Merlin 64. Furthermore, I find its memory layout even less
convenient than that of the Merlin. Some of the RAM the Panther system occu-
pies is situated in spots where [like to put my own code, including one big block
of memory ($CO00-3CFFF) which the designers of the Commodore 64 purposely
set aside for user-written Assembly language programs. The Merlin 64 also uses
this block of memory, but the Panther—unlike Merlin—does not provide any easy
way to reclaim it.

On the positive side, the Panther is even easier to use than the Merlin,
everything it can do is directly accessible from the editor, and the editor’s beau-
tifully engineered error-checking system makes it almost impossible to write a
bad line of code. The instruction manual that comes with the assembler, while
rather uneven in quality, is much better than those provided with the Commo-
dore and Merlin assemblers. It includes a very good tutorial section—in fact, the
tutorial material in the Panther instruction book is so good that you might con-
sider buying the assembler just to read the instruction manuall

The Panther assembler comes on a single disk. When you boot the
disk, every program on it is automatically stored in your computer's memory. So
the Panther C64 is very easy to get up and running. You can boot it once,
replace the master disk with a data disk, and program all day long without ever
having to switch disks again.

Once you have all your gear together, you will be ready to start pro-
gramming in Assembly language, and we can move on to the first chapter.

Principles and
Techniques of
Assembly Language
Programming

Introducing Assembly
Language

What Assembly Language Is
and What It's For

If you have done much programming in Commodore BASIC, you have probably
wished at one time or another that you knew Assembly language.

You have opened the right book. This book will teach you how to write
programs in Assembly language, the fastest-running and most memory-efficient
of all programming languages. It will give you a good working knowledge of
machine language, your computer's native tongue. It will show you how to cre-
ate programs that would be impossible to write in BASIC and other less
advanced languages. Furthermore, it will do all of that in down-to-earth lan-
guage that any BASIC programmer will understand.

You are about to discover that programming in Assembly language is
not nearly as difficult as you may have thought it would be.

WHAT A LITTLE ASSEMBLY
LANGUAGE CAN DO

It you know even a little BASIC, then you can learn to program in Assembly
language. You will soon be able to:

e Write programs that run up to 1000 times faster than programs written
in BASIC.

e Design high-resolution arcade games, featuring animation, fine scroll-
ing and joystick action, that would be impossible to program in BASIC.

e Custom design your own screen displays, mixing text and graphics in
any way you like on the screen.

e Create your own customized character sets, and display them in
almost any size and color on your video screen.

e Intermix BASIC and Assembly language in the same program, com-
bining the simplicity of BASIC with the speed and versatility of Assem-
bly language.

4 Principles and Techniques of Assembly Language Programming

e Use interrupts, raster interrupts, multi-voice sound-generation tech-
niques, and many other advanced techniques that are often used by
protessional programmers.

Even more important, as you learn Assembly language, you will also be learn-
ing what makes computers tick. That will make you a better programmer in any
language.

COMPUTER LINGUISTICS

To start at the beginning, programming languages can be divided into three
major categories: high-level languages, machine language, and Assembly
language.

There are many high-level languages: BASIC, Pascal, COBOL,
FORTH, FORTRAN, C, PL/1, APL, SNOBOL, LISP, Ada, ALGOL, and hundreds
more. High-level languages are not called that because they are particularly
esoteric or profound. The term just means that these languages are several
levels removed from machine language, the only language that a computer can
really "understand.”

At the other extreme, machine language is made up of nothing but
numbers. It is obviously not the most programmer-friendly language you will
ever encounter, but it is, so to speak, your computer’s native tongue.

Assembly language, as you will soon see, is very closely related to
machine language. In fact, Assembly language is not really a tull-fledged pro-
gramming language at all; it is actually just a notation system designed to make
machine-language programs « little easier to write and understand.

Now we will take a closer look at each of these language families,
beginning with high-level languages.

HIGH-LEVEL LANGUAGES

All popular high-level languages have one feature in common. They all bear at
least a passing resemblance to English. BASIC, for example, is made up almost
completely of instructions derived from English words, such as PRINT, LIST,
LOAD, SAVE, GOTO, RETURN, and so on. Most other high-level languages also
have instruction sets based largely upon natural-language (that is, human lan-
guage) words and phrases.

Computers cannot work with English; the only language they can
really "understand’ is machine language. Theretore, when you write a pro-
gram in BASIC or in any other high-level language, it has to be translated
into machine language before the computer can understand it. So program-
mers use special kinds of software packages, called interpreters and compil-
ers, to help them translate the programs they have written into machine
language.

Interpreters are the easiest kinds of translation aids to use, because
they are “transparent’ to the user. That is, when you write a program with an
interpreter, you are usually not even aware of the fact that it is there. The BASIC

Introducing Assembly Language 5

that is built into your Commodore is an interpreter, and if you have ever used it,
you have seen how transparent a good BASIC interpreter can be. In Commo-
dore BASIC, your computer’s built-in interpreter translates into machine lan-
guage every line of code as the line is executed. It does the job so smoothly that
you have probably never even noticed that any BASIC-to-machine language
translating was going on.

A compiler is a little more difficult to use than an interpreter. A
compiler does not usually translate a program into machine language line
by line. Instead, it generally takes a complete program, or at least a reason-
ably large chunk of source code, and translates the whole thing into
machine language—all at once. Then you can store on disk the machine
code that has been generated by the compiler. From that point on, the com-
piled program can be run like any other machine-language program. So,
once a program has been compiled, it never has to be compiled again,
unless you change it. From then on, it can be run at any time, without fur-
ther need for a compiler.

DIFFERENCES AT RUN TIME

One advantage of interpreters over compilers is that they can check each line of
a program for obvious errors as soon as the line is written. Compilers are not
that interactive. Most compilers cannot check a program for errors until the pro-
gram is compiled.

But compilers have one significant advantage over interpreters: they
produce faster-running programs. When a program is written using an inter-
preter, it has to be processed through the interpreter every time it is run. But a
compiler has to do its job just once, and never has to be used when a program is
actually running. So programs written with interpreters usually run more slowly
than programs written using compilers.

One reason that BASIC is a slow-running language is that it is
almost always translated into machine language with an interpreter. A few
other programming languages, such as LOGO and PILOT, are also inter-
preted languages. COBOL, Pascal, and most other high-level languages
are usually compiled. Recently, however, varieties of BASIC have been
introduced that are designed to be used with compilers to increase running
speed.

Is Assembly an interpreted or a compiled language? It is neither. To
convert Assembly language programs into machine language, programmers
use a software package called an assembler. We will return to the subject of
interpreters later on in this chapter.

MACHINE LANGUAGE

Machine language, as mentioned, is made up of nothing but numbers. In its
purest form, in fact, machine language is composed of binary numbers, num-
bers written as strings of ones and zeroes. Here is a listing of a machine-lan-
guage program written in binary numbers. This program, for reasons that you

6 Principles and Techniques of Assembly Language Programming

will discover very shortly, is called HLTEST. Its binary-code version is called

HILTEST.BIN.

HI.TEST.BIN
(THE HI.TEST PROGRAM, BINARY-CODE VERSION)

10101001
01001000
00100000
11010010
1M111111
10101001
01001001
00100000
11010010
1M111111
01100000

After seeing these numbers, you may feel that when you have seen one binary
number, you have seen them all. Binary numbers look so much alike that it is
very difficult to distinguish one from another, even for those familiar with
machine language. So machine-code listings are rarely written in binary num-
bers. Instead, they are usually written in a closely related notation called the
hexadecimal system.

The hexadecimal system is based on the value 16, unlike our familiar
decimal system, which is of course based on 10. In hexadecimal notation, the
arabic numbers 0 through 9 represent the same values as in decimal notation.
In addition, however, the letters A through F are used to represent the decimal
values 11 through 16. In later chapters, you will learn more about the hexa-
decimal system and why it is used in Assembly language programs. Just so you
will know what hexadecimal numbers look like, here is the HL.TEST program,
written in hexadecimal numbers:

HI.TEST.HEX
(THE HI.TEST PROGRAM, HEX-CODE VERSION)

A9 48
20 D2 FF
A9 49
20 D2 FF
60

The hex numbers in this version of the HLTEST program have the same values
as the binary numbers that were used in the binary version of the program.
Even without understanding yet what the HL. TEST program means, you can now
see quite clearly that the hexadecimal version of the program is at least a little
easier to read than the binary version.

Now that we have converted the HL.TEST into hexadecimal numbers,
only one more step is needed to translate it into Assembly language.

Introducing Assembly Language 7

ASSEMBLY LANGUAGE

Although Assembly language is very closely related to machine language, the
relationship is not always obvious at first glance. Assembly language is not
made up solely of numbers, as machine language is. Instead, it is written using
three-letter instructions called mnemonics. So, to the casual observer, Assembly
language does not look at all like machine language.

For every three-letter instruction used in Assembly language, there is
a numeric instruction that means exactly the same thing in machine lan-
guage. There is a precise one-to-one correlation between the mnemonics used
in Assembly language and the numeric instructions used in machine
language.

Because of this close relationship, it is easy to convert a machine-
language program into Assembly language and to convert an Assembly lan-
guage program into machine language. To translate a program from either
language to the other, change each Assembly language instruction into the
machine-language instruction that means the same thing, or vice versa.

TWIN LISTINGS The following two listings of the HI.TEST program illustrate
the close relationship between machine language and Assembly language:

HI.TEST.ASM
(OBJECT CODE AND SOURCE CODE COMPARED)

LINE NO. OBJECT CODE SOURCE CODE

1 A9 48 LDA #72

2 20 D2 FF JSR $FFD2
3 A9 49 LDA #73
4 20 D2 FF JSR $FFD2
5 60 RTS

Look caretully at this pair of listings, and you can see some close simi-
larities. Although the letters and numbers in the two listings are arranged
slightly differently, a close examination reveals certain similar patterns in both
listings. In the object-code listing, for example, you see that the machine-lan-
guage instruction A9 is used twice: once in Line 1, and again in Line 3. In the
source-code listing, the Assembly language mnemonic LDA is also used twice,
on the same lines and in the same positions as the machine-language instruc-
tion AS. You might guess, then, that the object-code instruction A9 corresponds
to the source-code instruction LDA. As it turns out, that is true.

In the object-code listing, you can see that the machine-code instruc-
tion 20 is also used twice. In both cases, it corresponds to the source-code
instruction JSR.

Now you have had a first-hand look at how Assembly language com-
pares with machine language. You have now seen that there is some kind of
close correlation between the two. That is all I wanted to get across in this
example. So now we can leave the topic of machine language for a while and
look at the Assembly language version of the HI.TEST program:

8 Principles and Technigues of Assembly Language Programming

HI.TEST.SRC
(THE HI.TEST PROGRAM, SOURCE-CODE VERSION)

COLUMN 1 COLUMN 2
LINE NO. SOURCE CODE

1 LDA #72

2 JSR $FFD2
3 LDA #73

4 JSR $FFD2
5 RTS

We start our examination of this listing by looking at Column 2, which contains
the hexadecimal number FFD2 (preceded by the symbol §) and the decimal
numbers 72 and 73 (preceded by the symbol #). In Commodore Assembly lan-
guage, the number 72 is a screen-display code that corresponds to the letter H.
The number 73 is a screen-display code for the next letter in the alphabet, I. The
hexadecimal number FFD2 (65490 in decimal notation) is the starting address of
a machine-language subroutine built into the Commodore 64: a subroutine that
prints a character on the screen.

When the symbol # precedes a number in Commodore Assembly lan-
guage, it means that the number is to be interpreted as a literal number, not as
a memory address. In the HL.TEST program, if the numbers 72 and 73 were not
preceded by the symbol #, they would be interpreted as addresses in your
computer's memory. But, since they have the # prefix, they are interpreted as
actual numbers.

The other special symbol in the HL.TEST program, the dollar sign in
front of the number FFD2, is the Assembly language prefix for hexadecimal
numbers. Sometimes decimal numbers and hex numbers look exactly alike. So,
in the HL.TEST program, the § prefix is used to show that the number $FFD2 is a
hexadecimal number.

Note, however, that the # is not used in front of the number $FFD2. In
this program, $FFD2 is to be interpreted as a memory address, not as a literal
number. In the Commodore 64, as mentioned, $FFD2 is the memory address of a
built-in subroutine (called in lines 2 and 4 of HIL. TEST.SRC) that prints a charac-
ter on the screen.

ASSEMBLY LANGUAGE MNEMONICS

Column 1 of the HLTEST.SRC program contains three Assembly language
instructions: the mnemonics LDA, JSR, and RTS. We will now examine each of
these mnemonics with the help of a line-by-line analysis of the HLTEST.SRC
program.

1 LDA #72

When you write a program in Assembly language, what you are actually doing
is programming the 6510/8502 chip, your computer’s main microprocessor. So,

Introducing Assembly Language 9

before you can start programming in Assembly language, you will have to
know a few important facts about your computer's central processing unit, or
CPU.

Inside your Commodore's 6510/8502 chip are several internal regis-
ters. You can store data in these registers, much as you store data in the mem-
ory registers in your computer's ROM and RAM. However, the internal registers
in the 6510/8502 chip have some special features that ordinary memory regis-
ters do not have. The various functions and features of the 6510/8502's internal
registers will be covered in detail in later chapters. Before we go any further,
though, a few words about one specific 6510/8502 register: a very special regis-
ter called the accumulator.

The accumulator is the busiest register in the 6510/8502 chip. Before
any mathematical or logical operation can be performed on a number in
6502/6510/8502 Assembly language, the number first has to be loaded into the
accumulator. The Assembly language instruction that is usually used to load a
number into the accumulator is LDA.

In Line 1 of HLTEST.SRC, the statement "LDA #72" means “'Load the
accumulator with the literal number 72."” In Commodore Assembly language, as
mentioned, the number 72 is a screen code for the letter H. So, Line 1 means
"Load the accumulator with the screen code for the letter H.”

2 JSR $FFD2

In 6502/6510/8502 Assembly language, the mnemonic JSR means "Jump to sub-
routine.” This instruction is used much as GOSUB is used in BASIC. When the
mnemonic JSR is used in an Assembly language program, it causes the program
to jump to a subroutine that starts at whatever memory address follows the JSR
instruction.

In Assembly language, JSR is usually used along with another mne-
monic, RTS. RTS means "Return from subroutine.” The RTS instruction also cor-
responds to a BASIC instruction: RETURN. When a JSR instruction is
encountered in an Assembly language program, the address of the very next
instruction in the program is placed in an easily accessible location in a special
block of memory called a stack. Then the program jumps to whatever address
follows the JSR instruction. This address is usually the starting address of a
subroutine.

When a subroutine is called with a JSR instruction, it is usually
expected to end with an RTS instruction. When that RTS instruction is reached,
any address that has been placed on the stack by a JSR instruction is retrieved.
The program then returns to that address, and processing of the main body of
the program resumes.

So, in Line 2 of the HI.TEST.SRC program, the statement "JSR $§FFD2"
means Jump to the subroutine that begins at Memory Address $FFD2.”" This
subroutine finds whatever value is stored in the accumulator and automati-
cally prints on the screen the character that corresponds to that value. Then it
returns control to whatever program is in progress, in this case, to the HL.TEST
program.

10 Principles and Techniques of Assembly Language Programming

A number of handy 170 routines that work much like this one are built
into the Commodore 64. And we will be using quite a few of them in this book.

3 LDA #73

In Commodore Assembly language (and Commodore BASIC, too), the number
73 is a screen code for the letter I. So, in the HL.TEST.SRC program, the state-
ment "LDA #73" means "Load the accumulator with the screen code for the
letter .”

4 JSR $FFD2

This statement is identical to the statement in Line 2: "Jump to the subroutine
that starts at Memory Address $FFD2." This time, however, since the accumula-
tor has been loaded with the value 73, the subroutine that starts at $FFD2 will
cause the letter [to be printed on the screen.

5 RTS

RTS, you recall, is an Assembly language mnemonic that means "Return from
subroutine.” When RTS is used to terminate a subroutine, it usually causes a
program to jump back to where it left off before the subroutine was called. In
this case, however, RTS is used in a slightly different way: to terminate a whole
program, rather than just a subroutine. When RTS is used in this fashion, it usu-
ally returns control of the computer to whatever program or system was in con-
trol before the program began. So, if you were to call the HLTEST program from
BASIC, the RTS instruction in Line 5 would transfer control to your computer’s
BASIC interpreter.

RUNNING THE HI.TEST PROGRAM

Before an Assembly language program can be executed, it is necessary to
assemble it into machine language. It is possible to assemble a program by
hand; in fact, before automatic assemblers came along, that is how all pro-
grams were assembled. Of course, the easiest way to assemble a program is
with an assembler.

HOW AN ASSEMBLER WORKS

An assembler has a much more straightforward job than either an interpreter
or a compiler. Interpreters and compilers have to go through all kinds of
manipulations to translate programs written in high-level languages into
machine language. An assembler merely converts each mnemonic in an
Assembly language program into a corresponding machine-language instruc-
tion. The object code produced by this process can then be stored on a disk.
Once that is done, the program'’s original source code can be put away for
safekeeping and need never be assembled into machine language again.

Introducing Assembly Language 1

Does that mean that an assembler works just like a compiler? Not
exactly. The main difference is that an assembler translates source code word
for word into object code; the compiler’s task is much more complex. As you
have seen throughout this chapter, the instructions used in Assembly language
perform much simpler—that is, more fundamental—functions than the instruc-
tions that are used in most high-level languages. Consequently, Assembly lan-
guage programs tend to be much wordier than programs written in high-level
languages. However, the Assembly instruction set is also quite versatile, since
the mnemonics can be combined with each other in an almost endless variety of
ways.

Assembly language is also very memory-efficient. Since Assembly
language programs are assembled into machine language one instruction at
a time, and not translated into chains of instructions by interpreters and com-
pilers, the machine code produced by an Assembly language program is less
repetitious than the code produced by interpreters and compilers. This is
because Assembly language programs are created by human programmers,
not churned out robotically by electromechanical code-generating machines.
When a program is written in a high-level language, the result is usually a
series of machine-language routines that are strung together, one after
another, like clothes hanging on a line. If the same instruction is repeated over
and over in a program written in a high-level language, the interpreter or
compiler that converts the program into machine code typically repeats the
same sequence of code over and over again, usually wasting both memory
and processing time. In contrast, a good Assembly language programmer
usually writes an important block of code just once during the course of a
program, then uses it as a subroutine from that point on, conserving memory
and cutting down on processing time.

WHAT EVERY GOOD PROGRAMMER SHOULD KNOW

Unfortunately, a certain price must be paid for all this speed, versatility, and
memory efficiency. That price is usually exacted from the programmer.
Because it is not designed to do many things automatically, Assembly lan-
guage imposes quite a few more demands on the programmer than most high-
level languages do. For example, before you write an Assembly language
program, you have to decide exactly where you want the program to be
stored in the computer's memory. If you try to store it in the wrong place, it
may overwrite other important programs, such as your computer’s operating
system, screen memory, or disk operating system. The result of this could be
complete disaster.

Betore you can become a good Assembly language programmer, you
also need a good understanding of how your computer works. Later on in this
book, when you start writing Assembly language programs, you will actually be
programming your computer’s central microprocessor: the 6510/8502 chip that
is built into your Commodore. So, before we run the HI.TEST program and end
this chapter, let's take a quick look at how the 6510/8502 chip works and how it
works with the rest of your computer system.

12 Principles and Techniques of Assembly Language Programming

INSIDE YOUR COMMODORE

Every microcomputer can be divided into three parts:

1. A central processing unit (CPU). As its name implies, this is the central
component in a computer system, in which all computing functions
take place. In a microcomputer, which is what your Commodore is, all
of the functions of a central processing unit are contained in a micro-
processor unit (MPU). Your Commodore computer's MPU (as well as
its CPU) is a very large-scale integrated circuit (VLSI), a 6510 chip if
you own a Commodore 64 and an 8502 chip if you own a Commodore
128.

2. Memory, which can be further divided into RAM (random-access mem-
ory) and ROM (read-only memory).

3. Input/output (1/0O) devices. Your computer’'s main input device is its
keyboard. Its main output device is its video monitor. Other devices
that your Commodore can be connected to, or, to use one unavoidable
jargon term, can be interfaced with, include telephone modems,
graphics tablets, cassette data recorders, and disk drives.

Figure 1-1 illustrates the architecture of one fairly typical microcomputer—
namely, your Commodore.

| DATA BUS |
I [[
Y (
I
1/0 CPU RAM E ROM
|
A ¥ MEMORY
Y ¥ y ¥
[ADDRESS BUS |

Figure 1-1 Block Diagram of a Microcomputer

Now let's examine each of the three major ingredients of your Commo-
dore system. We will start with your computer’'s 6510/8502 microprocessor: its
CPU.

THE 6510/8502 FAMILY

The 6510/8502 microprocessor is an improved and updated version of an earlier
chip, the 6502, developed by MOS Technology, Inc. Several companies, includ-
ing Commodore, are now licensed to manufacture the 6502 and other chips
based on the 6502, such as the 6510 chip used in the Commodore 64 and the
8502 chip used in the Commodore 128. The 6502 and chips based on the 6502
are used not only in Commodore computers, but also in personal computers

Introducing Assembly Language 13

manufactured by Apple, Atari, Commodore, Ohio Scientific, and a number of
other companies.

There is only one significant difference between the original, no-frills 6502
chip and the 6510 chip used in the C64. This difference is that the 6510/8502 chip
has some special [/O capabilities that the 6502 lacks; these will be covered in a
later chapter, so there is no need to discuss them now. For the moment, it is suffi-
cient to point out that, from the point of view of instruction sets, there is no differ-
ence between the 6502 chip and the 6510/8502 chip used in your Commodore. Both
chips are designed to be programmed in an Assembly dialect commonly known as
6502 Assembly language. So, once you learn how to write programs in
6502/6510/8502 Assembly language, you will be able to program many ditferent
kinds of personal computers, not only those made by Commodore.

Even more important, the principles of Commodore Assembly lan-
guage programming are universal: they are the same principles all Assembly
language programs use, no matter what computers they are written for. Once
you learn 6510/8502 Assembly language, therefore, it will be easy to learn to
program other kinds of chips, such as the Z80 chip used in Radio Shack and
CP/M-based computers, and even the powerful, newer chips used in 16-bit and
32-bit microcomputers, such as the Apple Macintosh, the IBM PC, and many
more.

Now let's take a look at your Commodore's memory.

ROM

The big difference between RAM and ROM is that RAM can be erased and ROM
cannot be. Every time you turn your computer off, everything stored in RAM is
immediately wiped out. But when you turn your computer on again, everything
that was in ROM is still there.

ROM cannot be wiped out because it is permanently etched into a
bank of memory chips inside your Commodore. So it is as permanent a part of
your computer as the keyboard. In computer jargon, ROM is nonvolatile; RAM is
volatile.

The most important part of your computer’'s ROM is the block of mem-
ory that holds its operating system (OS). The operating system is really just a
long machine-language program, but what a program! Thanks to the machine-
language routines in its ROM, your computer can generate text characters, dis-
play colors, accept keyboard inputs, and operate [/O devices, such as printers,
video screens, and disk drives. Your computer’'s BASIC interpreter also resides
in ROM. As you will see later in this book, there are ways to access and use
many of these routines that are built into your computer’s operating system from
your own Assembly language programs.

RAM

Your Commodore’'s ROM package is the result of a lot of work by a lot of Assem-
bly language programmers. RAM, on the other hand, can be filled up by any-
body. Most of your computer’s available memory space is dedicated to RAM.

14 Principles and Techniques of Assembly Language Programming

Most of the RAM in your Commodore is available for use by user-written
programs.

When you turn your computer on, the block of memory inside it that is
reserved for RAM is as empty as a blank sheet of paper. Every time you write a
program or load a program from a disk, that program is always stored some-
where in RAM.

Turn your computer off, and everything you have stored in RAM will
suddenly disappear. That is why the Commodore can be used with cassette
data recorders and disk drives. After you have written a program, you have to
store it on some kind of mass-storage medium, such as a disk or a cassette, if
you do not want it to be wiped out the next time the power goes off and erases
your RAM.

Your computer’'s RAM, or main memory, can be visualized as a huge
grid made up of thousands of compartments, or cells, something like tiers upon
tiers of post-office boxes along a wall. Each cell in this vast memory matrix is
called a memory location, or a memory register, and each memory register, like
each box in a post office, has an individual and unique memory address.

The analogy between computers and post-otfice boxes does not end
there. A program, like an expert postal worker putting mail in post-office boxes,
can get to any one location in its memory about as quickly as it can get to any
other. In other words, it can access any location in its memory at random, with-
out having to start at the beginning each time. That is why user-addressable
memory in a computer is known as random-access memory.

RUNNING A MACHINE-LANGUAGE
PROGRAM

There are more than 64,000 memory registers in your Commodore. A machine-
language program is just a series of numbers that fills a given block of these
memory registers. When you load a machine-language program into your com-
puter, it fills a block of consecutively numbered memory registers with certain
values. When you run a machine-language program, you have to tell your com-
puter where this block of values begins.

THE ORIGIN DIRECTIVE

In 6502/6510/8502 Assembly language, the most common way for telling an
assembler where a program begins is with an origin directive, or origin pseudo-
op. In Assembly language programs written on the Merlin 64 assembler, an ori-
gin directive looks like this:

ORG $8000

The Commodore 64 Macro Assembler system uses a slightly different kind of
origin directive. Here is the origin directive for a Commodore 64 assembler:

Introducing Assembly Language 15

*=$8000

Some assemblers, such as the Commodore 64, require origin lines, and some,
such as the Merlin 64, do not. If you do not use an origin line with the Merlin
assembler, your assembler will declare a default origin setting of $8000. How-
ever, even if you use a Merlin 64, get into the habit of writing your own origin
directives, since most assemblers require them.

This is what the HI. TEST.SRC program looks like, written with a Merlin
64 assembler, using an origin line specifying a starting address of $8000:

HI.TEST.SRC
(THE HI.TEST.SRC PROGRAM, WITH AN ORIGIN DIRECTIVE)

ORG $8000
LDA #72
JSR $FFD2
LDA #73
JSR $FFD2
RTS

NN EEWUWN =

POINTS TO REMEMBER

Later, when you start writing Assembly language programs, you will learn
exactly how the origin directive works. For now, remember two facts about ori-
gin lines:

1. Every Assembly language program should start with an origin
directive.

2. When an Assembly language program is converted into machine lan-
guage, its origin directive tells your computer the memory address
where your machine-language program will begin.

When you load a machine-language program into RAM and tell the
computer where to find it, the computer checks the memory register specitied in
the program origin directive when the Assembly program was originally written.
When your computer has gone to the address specified in its origin directive, it
tetches the number that has been stored in that memory register.

Now, matters get complicated, because numbers stored in a com-
puter's memory registers can be interpreted in various ways. Although each
memory location in your Commodore’'s memory can hold only one number, that
number can represent at least three different things:

1. The stored number itself.
2. A code representing a typed character.

3. A machine-language instruction.

16 Principles and Techniques of Assembly Language Programming

Since a number in a memory register can have any of these meanings, the com-
puter needs a program to figure out how to process each number (or, more
commonly, the various sequences of numbers) that it encounters as it processes
a machine-language program. That, in a nutshell, is what machine-language
programming is all about. When you write a machine-language program, you
are really just filling the computer’'s memory with numbers, then telling your
computer what all of those numbers mean. This is actually what you will be
learning about for the rest of this book.

PROCESSING EXECUTABLE CODE

When your computer goes to the memory location identified as the starting address
of a program, it is supposed to find the beginning of a block of executable code,
that is, the beginning of a machine-language program. If it does find a program, it
carries out the first instruction in the program, then moves on to the next consecu-
tive address in memory. It then carries out that instruction, moves on to the next
memory address, carries out the instruction it finds there, and so on.

The computer keeps on doing this, carrying out an instruction and
then moving on to the next one, until it either reaches the end of the program or
encounters an instruction telling it to jump to another address.

LIVING WITHOUT AN ASSEMBLER

Now we are ready to run the HL.TEST program we have been working with in
this chapter. When we have done that, we can move on to the next chapter.

Before we run HIL.TEST, however, we must resolve one small problem.
Since we have not yet covered the use of assemblers, it is difficult to show you
now how to assemble and execute the HI.TEST program, using your Merlin,
Commodore, or Panther assembler. To get around this problem, here is a little
trick you can use when you want to create and run a machine-language pro-
gram without having to use an assembler. You just invoke a series of POKE
statements from within a BASIC program.

To run a machine-language program from BASIC, the instructions in
the program have to be written in decimal numbers. Then you can use RUN and
DATA statements to poke each instruction in the program into a series of free
memory registers. Finally, you can use the SYS command in Commodore BASIC
to execute your machine-language program.

We will do that right now. Here is the HL.TEST program, converted into
decimal numbers, translated into BASIC and ready to be run as a BASIC
program:

HI.TEST.BAS
(THE HI.TEST PROGRAM, BASIC VERSION)

10 REM *%% HI.TEST.BAS #*%%

20 DATA 169,72,32,210,255,169,73,32,210,255,96
30 FOR L = 49152 TO 49162:READ X:POKE L,X:NEXT L
40 SYS 49152

Introducing Assembly Language 17

Here is how the HL.TEST.BAS program works. The data in Line 20 corresponds to
a series of machine-language instructions. The loop in Line 30 pokes each
numeric instruction in Line 20 into a block of RAM that extends from Memory
Address 49152 to Memory Address 49162 ($C000 to $C010 in hexadecimal nota-
tion). Finally, the SYS command in Line 40 executes the machine-language
program.

You can type and run HL.TEST.BAS just as you would any BASIC pro-
gram. Almost any machine-language program can be converted into BASIC
and run in this manner.

Once you have typed and run HL.TEST.BAS, we will be ready to move
on to Chapter 2.

By the Numbers

The Binary, Hexadecimal, and
Decimal Notation Systems

As you may have noticed while reading Chapter 1, three different number sys-
tems are used in Assembly language programming. They are:

1. Decimal numbers, which are based on the value 10 and are written
using the arabic numerals 0 through 9.

2. Binary numbers, which are based on the value 2 and are usually writ-
ten using the arabic numerals 0 and 1. In binary notation, 1" means
1, 10" means decimal 2, "11" means decimal 3, and so on. Binary
numbers are often used in Assembly language programs because
they are the only kind of numbers computers can actually “under-
stand.” The data a computer processes is a stream of on-and-off
pulses; on and off can be easily represented by the ones and zeroes
used in the binary notation system.

3. Hexadecimal numbers, which are based on the value 16 and are cus-
tomarily written using the arabic numbers 0 through 9 plus the letters
A through F. In the hexadecimal notation system, the letters A through
F are used as single-unit symbols for the values 10 through 15. Hexa-
decimal numbers can be translated easily into binary numbers.

When a hexadecimal number appears in a program, the prefix § is used to
indicate that it is a hexadecimal number. When a binary number appears in a
Commodore Assembly language program, the prefix % is used to distinguish it
from a decimal or hexadecimal number.

No special prefix is used in front of a decimal number; if @ number with
no pretix appears in a program, it is assumed to be a decimal number.

Here is an example of how prefixes are used to distinguish among
binary, hexadecimal and decimal numbers in Assembly language programs:

1101 —the decimal number 1,101
%1101 —the binary number 1101 (decimal 13)
$1101 —the hexadecimal number 1101 (decimal 4,353)

20 Principles and Techniques of Assembly Language Programming

Decimal numbers are familiar, so not much will be said about them in this chap-
ter. This chapter will be devoted to explanations of the binary and hexadecimal
number systems. Let’s start with the binary system.

USING BINARY NUMBERS

When data is loaded into a computer, it is usually transmitted to the computer in
the form of on-and-off pulses. Inside a computer, these on-and-off pulses cause
the current flowing through various electrical lines to fluctuate back and forth
between low and high levels. When the electrical current flowing through a line
falls below a certain predetermined level, the switch is considered off, and its
state is represented as 0 in the binary notation system. When the level of the
current rises above a certain level, the switch is considered on, and its state is
represented as .

In the binary notation system, the ones and zeroes that make up
binary numbers are known as bits. A series of four bits is called a nibble, a
series of eight bits is called a byte, and a series of 16 bits is called a word.

Now let's see how binary numbers are actually used in Assembly lan-
guage programming.

PENGUIN MATH

One way to explain the principles of the binary system is with what [call Pen-
guin Math. Penguin Math is the number system that penguins might use if they
could use numbers.

To get an idea of how Penguin Math works, just imagine that you are a
penguin. You do not have 10 fingers on each hand, so there is no way you can
count on your fingers. Instead, you have just two flippers, and if you want to
count on something, you have to count on them.

Now suppose that you are a very bright penguin and you somehow do
learn to count on your flippers. You can't count to 10 on your flippers, as people
can when they count on their fingers. But you can count to 2.

Now suppose that you are the smartest penguin on Penguin Island.
One day you manage to figure out how to use your flippers to count past 2.
Instead of counting on your flippers in exactly the same way that humans count
on their fingers, you decide to equate a raised right flipper to 1, and a raised left
flipper to 2. Then you let two raised flippers represent the value 3.

Now suppose you are a genius among penguins and devise a new
mathematical system to express in writing what you have done.

You could use a 0 to represent an unraised flipper, and a | to repre-
sent a raised one. Then you could scratch these equations in the ice:

FLIPPER COUNTING, VERSION 2

%00 = 0
%01 1
%10 = 2
%11 =3

By the Numbers

21

FEET, TOO

Those are, of course, binary numbers. They clearly show that if you were a
really smart penguin, you could use two flippers to express values—0 through 3.
That is a clear improvement over the two values that can represented with more
traditional flipper-counting methods.

Since our imagination has taken us this far, let's now suppose that you
(still as a penguin) want to learn to count past 3. While pondering this problem,
you look down at your feet—and notice two more aids to counting down there.
Voila—bigger numbers.

By using both flippers and both feet at the same time, you count as
follows:

FOUR-BIT PENGUIN MATH

%0000
%0001
%0010
%0011
%0100
%0101
%0110
%0111
%1000
%1001

L LI | T | | A | { | O | B 1}
N ooO~NONUVN P~ WN -0

and so on.

If you continued counting like this, you would eventually discover that
you could express 16 values—0 through decimal 15—using four-digit (or four-bit)
binary numbers.

ONE MORE LESSON

Now we are ready for one last lesson in Penguin Math. Imagine that you, as a
penguin, have gotten married to another penguin. You and your spouse have a
total of eight flippers between you.

If your spouse decided to cooperate with you in counting with flippers,
the two of you could now use a set of numbers that looked like these:

0000 0001
0000 0010
0000 0011
0000 0100
0000 0101

n - nnn
VIiHWN =

and so on.

If you and your spouse kept on counting in this fashion—using 8-bit
Penguin Math—you would eventually discover that by using eight flippers, you
could could count from 0 to 255, for a total of 256 values. The point of all this is

22 Principles and Techniques of Assembly Language Programming

that it is possible to express 256 values—from 0 through 255—using 8-bit binary
numbers.

BITS, BYTES, AND NIBBLES

As pointed out at the beginning of this chapter, when ones and zeroes are used
to express binary numbers, they are known as bits. Now we are going to take a
closeup look at a series of 8-bit binary numbers. Examine the numbers in this list
closely, and you will see that every binary number that ends in zero is twice as
large as the previous round number:

00000001 = 1
00000010 = 2
00000100 = 4
00001000 = 8
00010000 = 16
00100000 = 32
01000000 = 64
10000000 = 128

Here are two more numbers that are also noteworthy, but for completely differ-
ent reasons:

211111111 = 255
211111111 11111111 = 65,535

The number %11111111, or 255, is worth remembering because it is the largest 8-
bit binary number. The number %11111111 11111111, or 65,535, is the largest 16-
bit binary number. (The space in the middle of the number %11111111 11111111
is there just to make the number easier to read. Spaces are often inserted in the
middle of 8-bit numbers, too, for the same reason. Sometimes, for example, you
might see the binary number 11111111 written 1111 1111.)

THE HEXADECIMAL NUMBER SYSTEM

Since computers “think” in binary numbers, the binary system is obviously an
excellent notation system for representing computer data. But, as we saw in
Chapter 1, binary numbers have one serious shortcoming: they are extremely
difficult to read. So the hexadecimal, rather than the binary, system is most often
used in Assembly language programming.

Just as binary numbers are based on the value 2, hexadecimal num-
bers are based on the value 16. If people had eight fingers on each hand, we
would probably all count using hexadecimal numbers.

Hexadecimal numbers are often used in Assembly language program-
ming because they help bridge the gap between the binary and decimal sys-

By the Numbers

23

tems. Since binary numbers have a base of 2 and hex numbers have a base of
16, a series of four binary bits can always be translated into one hexadecimal
digit. So a series of eight bits (a byte) can always be represented by a pair of
hexadecimal digits, and a series of 16 bits (a word) can always be represented
by a four-digit hexadecimal number. You will see how this all works later on in
this chapter.

WHAT HEX NUMBERS LOOK LIKE

The hexadecimal notation system uses not only the digits 0 through 9 but also
the letters A through F. Table 2-1 shows what the numbers 1 through 16 look like
in the hexadecimal notation system.

Table 2-1 DECIMAL/HEXADECIMAL CONVERSION

DECIMAL HEXADECIMAL | DECIMAL HEXADECIMAL
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F
8 8 16 10

Look at the last two pairs of numbers in this table, and you will see that the
hexadecimal number $F corresponds to the decimal number 15, and that the
hex number $10 corresponds to the decimal number 16.

You can also see that odd-looking letter-and-number combinations
like FCIC, SDA4, and even ABCD are perfectly good numbers in the hexa-
decimal system.

Now let's loock at the relationship between binary and hexadecimal
numbers.

COMPARING BINARY AND
HEXADECIMAL NUMBERS

Binary numbers, as we have seen, have a base of 2. Decimal numbers have a
base of 10. Hexadecimal numbers have a base of 16, or 2 to the fourth power.

Table 2-2 is a chart comparing decimal, hexadecimal, and binary
numbers.

24 Principles and Technigues of Assembly Language Programming

Table 2-2 DECIMAL/HEXADECIMAL/BINARY CONVERSION

DECIMAL HEXADECIMAL BINARY

1 1 00000001
2 2 00000010
3 3 00000011
4 4 0oooo100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001
10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000

As you can see from this table, the decimal number 16 is written as 10 in hex
and 00010000 in binary, and thus is a round number in both the binary system
and the hexadecimal system. And the hexadecimal digit F, which comes just
betfore hex 10 (or 16 in decimal), is written as 00001111 in binary.

As you become more familiar with the binary and hexadecimal sys-
tems, you will begin to notice many other similarities between these two numeric
systems. For example, the decimal number 255 (the largest 8-bit number) is
11111111 in binary and FF in hex. The decimal number 65,535 (the highest mem-
ory address in a 64K computer) is written as 11111111 11111111 in binary and
FFFFFFFF in hex.

GETTING TO THE POINT

The point of all this is that it is much easier to convert back and forth between
binary and hexadecimal numbers than it is to convert between binary and deci-
mal numbers. This is especially true when you are dealing with 16-bit numbers.

Table 2-3 shows how convenient it is to convert back and forth
between the binary and hexadecimal systems. Notice how much more difficult it
is to detect the relationship between a decimal number and its equivalents in
the other two systems.

Table 2-3 HEXADECIMAL/DECIMAL RELATIONSHIPS

binary 1111 1100 0010 1110 1011 1000 0001 1100
hexadecimal F C 2 E B 8 1 C
decimal 252 46 184 28

By the Numbers

25

As you can see from this table, an eight-bit number written in binary notation
can always be equated to two hexadecimal digits. But there is no clear relation-
ship between the length of a binary number and the length of the same number
written in decimal notation.

This same principle can be extended to longer numbers. For example:

1111 1100 0001 1100 binary
F @ 1 G hexadecimal
64540 decimal

CONVERTING FROM ONE
SYSTEM TO ANOTHER

Since hexadecimal numbers, decimal numbers, and binary numbers are all
used extensively in Assembly language programming, it would obviously be
handy to have a tool to convert numbers back and forth among these three
numeric systems. Fortunately, a number of such tools are available:

e Texas Instruments makes an extremely useful calculator called the
Programmer, which can perform decimal/hexadecimal conversions in
a flash and can also add, subtract, multiply, and divide both decimal
and hexadecimal numbers. Many Assembly language program
designers use the TI Programmer or some similar calculator. The TI
Programmer does not cost much, and it is well worth the money.

e Many books on Assembly language contain charts that you can con-
sult when you want to convert numbers from one notation system to
another. You will find a few such charts in this chapter, and you will
also find something much better: a series of BASIC programs that will
automatically perform decimal/hexadecimal, decimal/binary, and
binary/hexadecimal conversions.

Let's start with a program that converts binary numbers to hexadecimal
numbers.

BINARY/DECIMAL CONVERSIONS

It is not very difficult to convert a binary number to a decimal number. In a
binary number, the bit farthest to the right represents 2 to the power 0. The next
bit to the left represents 2 to the power 1, the next represents 2 to the power 2,
and so on. The digits in an 8-bit binary number are therefore numbered 0 to 7,
starting from the rightmost digit. The rightmost bit—often referred to as Bit 0—
represents 2 to the Oth power, or the number 1. The leftmost bit—often called Bit
7—is equal to 2 to the 7th power, or 128.
Table 2-4 illustrates what each bit in an 8-bit binary number means.

26 Principles and Technigues of Assembly Language Programming

Table 2-4 VALUES OF THE BITS IN AN 8-BIT BINARY NUMBER

Bit 0 = 2 to the Oth power

1
Bit 1 = 2 to the Ist power = 2
Bit 2 = 2 to the 2nd power = 4
Bit 3 = 2 to the 3rd power = 8
Bit 4 = 2 to the 4th power = 16
Bit 5 = 2 to the 5th power = 32
Bit 6 = 2 to the 6th power = 64

Bit 7 = 2 to the 7th power = 128

This table provides an easy method of converting any 8-bit binary number into
its decimal equivalent. Instead of writing the number down from left to right,
write it instead in a column, with Bit 0 at the top and Bit 7 at the bottom. Multiply
each bit in the binary number by the decimal number it represents. Then add
the results of these multiplications. The total is the decimal value of the binary
number.

Suppose, for example, that you wanted to convert the binary number
00101001 into a decimal number. Table 2-5 shows how to do it.

Table 2-5 BINARY TO DECIMAL CONVERSION

Ix 1= 1
O0x 2= 0
O0x 4= 0
lx 8= 8
0x 16= 0
1 X 32= 32
0x 64= 0
0x128= 0
TOTAL = 41

It the calculation in this example is correct, then the binary number 00101001
should be equivalent to the decimal number 41. Look up either 00101001 or 41
on any binary to decimal or decimal to binary conversion chart, and you will
see that the calculation was accurate. This conversion technique will work with
any other binary number.

Now we will go in the other direction, and convert a decimal number
to a binary number. First, divide the number by 2. Then write down both the
quotient and the remainder. Since you are dividing by 2, the remainder will be
either a 1 or 0. So what you write down will be the quotient followed by either a
lorald.

Next, divide that quotient by 2, and write down the new quotient and
remainder, as before. Write the 0 or 1 remainder right underneath the first
remainder.

By the Numbers

27

When there are no more numbers left to divide, write down all the
remainders, starting at the bottom. This, of course, is a binary number—a
number made up of ones and zeroes. That number is the binary equivalent of
the decimal number you started out with.

This conversion technique is illustrated in Table 2-6.

Table 2-6 DECIMAL TO BINARY CONVERSION

117/2 = 58 with a remainder of 1
58/2 = 29 with a remainder of 0
29/2 = 14 with a remainder of 1
14/2 = 7 with a remainder of 0
7/2 = 3 with a remainder of 1
3/2 = 1 with a remainder of 1
1/2 = 0 with a remainder of 1
0/2 = 0 with a remainder of 0

To complete the decimal to binary conversion presented in this example, simply
copy the binary digits in the righthand column, writing them down horizontally
from right to left, with the top digit on the right. You can then see that the binary
equivalent of the decimal (not hexadecimal) number 117 is 01110101. If you
have a decimal to binary conversion chart, you can use it to confirm the accu-
racy of this calculation.

DOING IT THE EASY WAY

Even though it is not difficult to convert binary numbers to decimal and vice
versa, doing it by hand is time-consuming—and when you program in Assembly
language, you have to do a lot of binary to decimal and decimal to binary
converting. So there are a lot of BASIC programs around for converting num-
bers back and forth between the binary and decimal notation systems. Here is a
Commodore BASIC program for converting binary numbers to decimal
numbers:

A BINARY-TO-DECIMAL CONVERSION PROGRAM

10 REM *%% BINDEC.BAS *#*%*

20 DIM BIT(8),BIT$(8)

30 PRINT CHR$(147):REM CLEAR SCREEN

40 PRINT:PRINT " BINARY-DECIMAL CONVERSION"

50 PRINT:PRINT "ENTER AN 8-BIT BINARY
NUMBER:" :PRINT:INPUT A$

60 IF LENCA$)<>8 THEN 50

70 FOR L=8 TO 1 STEP -1

80 BIT$(L)=MID$(AS,L,1)

90 IF BIT$(L)<>"0" AND BIT$(L)<>"1" THEN 50

100 NEXT L

28 Principles and Techniques of Assembly Language Programming

110 FOR L=1 TO 8

120 BIT(L)=VAL(BITS$(L))
130 NEXT L

140 ANS=0

150 M=256

160 FOR L=1 TO 8

170 M=M/2:ANS=ANS+BIT(L)*M
180 NEXT L

190 PRINT "DECIMAL:'";ANS
200 GOoTO 50

This program converts decimal numbers to binary numbers:

A DECIMAL-TO-BINARY CONVERSION PROGRAM

10 REM *%% DECBIN.BAS ***

20 DIM BT$(8):PRINT CHR$(147):REM CLEAR SCREEN
30 PRINT:PRINT " DECIMAL-BINARY CONVERSION"
40 PRINT:PRINT "ENTER A POSITIVE INTEGER (1 TO 255):"
50 BN$="":PRINT:INPUT A$

60 IF VAL(A$)<1 OR VAL(A$)>255 THEN 40

70 NR=VAL(A$)

80 FOR L=8 TO 1 STEP -1

90 Q=NR/2

100 R=Q-INT(Q)

110 IF R=0 THEN BT$(L)="0":G60TO 130

120 BT$(L)="1"

130 NR=INT(Q)

140 NEXT L

150 PRINT "BINARY: ";

160 FOR L=1 TO 8:PRINT BT$(L);:NEXT L:PRINT

170 GOTO 40

BINARY/HEX CONVERSIONS

It is easy to convert binary numbers to their hexadecimal equivalents, using
Table 2-7.

Table 2-7 HEXADECIMAL TO BINARY CONVERSION

HEXADECIMAL BINARY

0 0000
1 0001
2 0010
3 0011
- 0100

By the Numbers

29

Table 2-7 continued

HEXADECIMAL BINARY

0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MmO QW > ©o©o N0 o

The above table shows how to convert a multiple-digit hex number to binary
notation. Merely string the hex digits together and convert each one separately.
For example, the binary equivalent of the hexadecimal number CO0 is 1100 0000.
The binary equivalent of the hex number 8F2 is 1000 1111 0010. The binary
equivalent of the hex number 7A1B is 0111 1010 0001 1011. And so on.

To convert binary numbers to hexadecimal numbers, just use the table
in reverse, being caretful to group the binary number in groups of four digits,
starting at the right. The binary number 1101 0110 1110 0101, for example, is
equivalent to the hexadecimal number D6ES.

DECIMAL/HEXADECIMAL CONVERSION

It is almost as easy to convert decimal numbers to hexadecimal as to translate
binary numbers to decimal. First, divide the decimal integer that you want to
convert by 16. Then write down the remainder, like this:

64540/16 = 4033 with a remainder of 12

Then divide the new quotient by 16, and write down the result of that
calculation:

4033/16 = 252 with a remainder of 1

Now keep repeating this process until you have a quotient of zero. Here is the
entire set of calculations that are needed to convert the decimal number 64540
into a hexadecimal number:

64540/16 = 4033 with a remainder of 12
4033/16 = 252 with a remainder of 1
252/16 = 15 with a remainder of 12
15/16 = 0 with a remainder of 15

30 Principles and Techniques of Assembly Language Programming

When you have finished this series of calculations, you must convert any
remainder that is greater than 9 into its hexadecimal equivalent. In the above
example, three remainders are greater than 9: the value 12 in the first line, the
value 12 in the third line, and the value 15 in the fourth line. The decimal
number 12 corresponds to the letter C in hexadecimal notation, and the decimal
number 15 corresponds to the letter F. So the remainders in the above problem,
converted into hex, are:

C
1
C
F

Read the above four numbers, starting from the bottom, and you have the hexa-
decimal number FCIC, which is the number we are looking for—the hexa-
decimal equivalent of the decimal number 64540.

This conversion process will work with any decimal integer. But there
Is an easier way to to convert a decimal number to a hexadecimal number. Let
your computer do it for you, with this BASIC program:

A DEC-HEX AND HEX-DEC CONVERSION PROGRAM

10 REM *%%* DECHEX.BAS **%*

20 DIM HEX$(8)

30 PRINT CHR$(147):REM CLEAR SCREEN

40 PRINT:PRINT "WHAT TYPE OF CONVERSION DO YOU WANT?"

50 PRINT:PRINT " (A) DECIMAL TO HEXADECIMAL"

60 PRINT " (B) HEXADECIMAL TO DECIMAL"

70 PRINT:PRINT "TYPE 'A' OR 'B'":PRINT:INPUT A$

80 IF A$="B'" THEN 270

90 IF A$<>"A" THEN 40

100 PRINT CHR$(147):PRINT:PRINT "THIS PROGRAM WILL
TRANSLATE DECIMAL"

110 PRINT "NUMBERS FROM 0 TO 99999999":PRINT "INTO
HEXADECIMAL NUMBERS"

120 PRINT:PRINT "TYPE DECIMAL NUMBER (OR 'HEX' FOR
HEX)" :INPUT A$

130 FOR L=1 TO 8:HEX$(L)=""":NEXT L

140 IF A$="HEX" THEN 270

150 FOR L=1 TO 8:T$=RIGHT$(AS,L)

155 IF ASC(T$)<48 OR ASC(T$)>57 THEN 120

156 NEXT L

160 IF LEN(CA$)<1 OR LEN(CA$)>8 THEN 120

170 N=VAL(A$)

180 1=8

190 TMP=N:N=INT(N/16)

200 TMP=TMP-N*16

By the Numbers

31

210 IF TMP<10 THEN HEX$(I)=RIGHT$(STR$(TMP),1):GOTO
230

220 HEX$(I)=CHR$(TMP-10+ASC("A"))

230 IF N<>0 THEN I=I-1:GOTO 190

240 PRINT "HEX: ";

250 FOR L=1 TO 8:PRINT HEX$(L);:NEXT L:PRINT

260 GOTO 120

270 PRINT CHR$(147):PRINT:PRINT "THIS PROGRAM WILL
CONVERT HEXADECIMAL"

280 PRINT "NUMBERS FROM O TO FFFFFFFF":PRINT "INTO
DECIMAL NUMBERS"

290 PRINT:PRINT "TYPE HEX NUMBER (OR 'DCX' FOR
DECIMAL):":INPUT A$

300 IF A$="DCX" THEN 100

310 IF LEN(A$)>8 THEN 290

320 N=0

330 FOR L=1 TO LEN(CAS$)

340 HEX$(L)=MID$(AS,L,1)

350 IF HEX$(L)<="9" THEN N=N*16+VAL(HEX$(L)):GOTO 390

360 IF HEX$(L)<"A" THEN 290

370 IF HEX$(L)>"F'" THEN 290

380 N=N*16+ASC(HEX$(L))-ASC("A")+10

390 NEXT L

400 PRINT "DEC: ";N:PRINT

410 GOTO 290

420 END

USING 16-BIT NUMBERS IN
PEEK AND POKE COMMANDS

Before we move on to the next chapter, there is one more topic to cover: how to
use 16-bit numbers in PEEK and POKE commands.

As you may have heard, your Commodore belongs to a class of com-
puters called 8-bit computers. The characteristics of 8-bit computers are covered
in detail later on in this book; for now, we need remember only that the memory
registers in an 8-bit computer are capable of holding numbers no more than 8
bits long; that is, numbers ranging from 0 through 255. Therefore, the only way
to store a 16-bit number in an 8-bit computer is to break it down into two 8-bit
numbers, storing those two numbers in two consecutive memory registers.

Now here is an important fact about the 6502 microprocessor and its
successors, including the 6510/8502 chip used in your Commodore. These chips
handle 16-bit numbers differently than you might expect: the low-order byte first
and the high-order byte second. For example, if the hexadecimal number
$FC1C were stored in hexadecimal Memory Addresses $8000 and $8001, the
byte $1C would be stored in Memory Register $8000, and the byte $FC would be
stored in Memory Register $8001.

32 Principles and Techniques of Assembly Language Programming

STORING A 16-BIT NUMBER IN RAM

Now let's suppose that you actually do want to store a 16-bit number in Memory
Registers $8000 and $8001, using a BASIC POKE command. Since BASIC pro-
grams are written using decimal numbers, the first thing you have to do is con-
vert the addresses you wanted to use—in this case, $8000 and $8001—into
decimal numbers. Making that conversion, with the hexadecimal-to-decimal
conversion program in this chapter, you find that the decimal equivalents of
$8000 and $8001 are 32768 and 32769.

Once you have calculated the decimal equivalents of the addresses
you want to POKE values into, you can use a BASIC program to do the actual
poking. Following is one such program:

STORING A 16-BIT NUMBER IN TWO 8-BIT MEMORY REGISTERS

10 AL=32768:AH=32769:REM LOW AND HIGH ADDRESSES
20 PRINT "TYPE A POSITIVE INTEGER"

30 PRINT "RANGING FROM O TO 65,535"

40 INPUT X

50 HIBYTE=INT(X/256)

60 LOBYTE=X-HIBYTE*256

70 POKE AL,LOBYTE

80 POKE AH,HIBYTE

90 END

RETRIEVING A 16-BIT NUMBER FROM RAM

Now suppose that you want to retrieve a 16-bit number from RAM using a PEEK
command. You can do that with a BASIC program like the following:

RETRIEVING A 16-BIT NUMBER FROM 2 8-BIT MEMORY
REGISTERS

10 AL=32768:AH=32769
20 X=PEEK(AH)*256+PEEK(AL)
30 PRINT X

In the Chips

Inside Your Commodore

In this chapter, we are going to get “under the hood" of your Commodore and
take a look at how it works. Then you will be able to find your way around
inside your computer and be ready, at last, to start doing some Assembly lan-
guage programming.

As you remember, every computer has three main parts: a central pro-
cessing unit (CPU), memory (divided into RAM and ROM), and some input and
output (I/O) devices (such as keyboards, video monitors, cassette recorders,
and disk drives).

In a microcomputer, all of the functions of the CPU are contained in a
microprocessor unit (sometimes abbreviated MPU). Your Commodore’'s MPU is
a very-large-scale integrated circuit (VLSI) called a 6510 if you own a C64 or an
8502 if you have a C128. The 6510/8502 chip is almost identical to a more widely
used chip called the 6502, and it is designed to be programmed in standard
6502 Assembly language.

The 6510/8502 microprocessor contains seven main parts: an arithme-
tic logic unit (ALU) and five addressable registers.

Your computer also contains a set of transmission lines called buses.
They move data back and forth between the registers in the 6510/8502 chip and
the memory registers.

There are two kinds of buses in your Commodore 64 or Commodore
128: an 8-bit data bus and a 16-bit address bus. The data bus, as its name
implies, is used mainly for passing data back and forth between the 6510/8502
chip and the computer’'s memory registers. The address bus, as you might also
guess, is used to keep track of the addresses of the various memory registers
used in a program.

THE ARITHMETIC LOGIC UNIT

The most important component in your computer is its 6510/8502 chip. The most
important part of the 6510/8502 chip is its ALU. When your computer performs a
calculation or a logical operation, the ALU is the part that does the work.

36 Principles and Techniques of Assembly Language Programming

[DATA BUS]
J A J Ar A A A
| Y MEMORY
Y r /)) I__
N A
v \
N = I~
SE | |ecl| |sp B]
55 el [T
—ND) =l
1 ALU
12
c
\ A A \ A
\
¥ \ Y Y ' Y)
[ADDRESS BUS l

Figure 3-1 Block Diagram of the 6510 Microprocessor

The ALU can actually perform only two kinds of calculations: addition
and subtraction. Division and multiplication are handled by the ALU in the form
of sequences of addition and subtraction operations.

The ALU can also compare values, but as far as the 6510/8502 chip is
concerned, that too is an arithmetical operation. When the 6510/8502 chip com-
pares two values, what it actually does is subtract one value from the other.
Then, by merely checking the results of this subtraction operation, it can deter-
mine whether the subtracted value is more than, less than, or equal to the value
that it was subtracted from.

The 6510/8502 chip's ALU has two inputs and one output. When two
numbers are to be added, subtracted, or compared, they are fed separately into
the ALU through each of its inputs. The ALU then carries out the requested
calculation and puts the answer on a data bus so that it can be transported to
another register.

THE ALU HOPPER

In diagrams of the 6502 chip and of its numerous descendents, including the
6510/8502, the ALU is often represented as a V-shaped hopper. The ALU has
two inputs, which are traditionally illustrated as the two arms of the the hopper,
and one output, traditionally represented as the bottom of the V.

When two numbers are to be added, subtracted or compared, the fol-
lowing happens. First, @ number is stored in the 6510/8502's accumulator. Next,
the accumulator deposits that number in the ALU through one of the ALU's
inputs. The other number is then placed in the ALU through its other input.
When all that is done, the ALU carries out the requested calculation, and the
result of the calculation finally appears at the output of the ALU. As soon as the
answer appears, it is placed in the accumulator, where it replaces the value
that was originally stored there.

Here is a short Assembly language program that shows how this pro-
cess works:

In the Chips

37

EXAMPLE OF AN ALU OPERATION

LDA #2
ADC #3
STA $FB

The first instruction in this listing, LDA, means “load the accumulator.” In this
case, the accumulator is loaded with the number 2. The # in front of the number
2 means that the 2 in the instruction is to be interpreted as a literal number. If
there was no #, the 2 would be interpreted as the address of a memory register.

The second instruction in the listing, ADC, means “add with carry.” In
6502 arithmetic, as in ordinary pencil-and-paper arithmetic, the addition of two
numbers often results in a carry. If there was a carry, the ADC instruction would
be able to handle it, and in a later chapter you will find out how. However, in
this particular addition problem, there is no number to be carried, so all the
ADC instruction does is add 2 and 3.

As soon as ADC #3 appears in this program, the 2 that has been
loaded into the accumulator is deposited into one of the ALU's inputs. The
instruction ADC #3 is placed in the ALU's other input. The ALU then carries out
this instruction: it adds 2 and 3, placing their sum back in the accumulator.

Now we are ready for the third and last instruction in this little pro-
gram. The numbers 2 and 3 have been added, and their sum is now in the
accumulator. The instruction in Line 3, STA, means ‘'store the contents of the
accumulator in the memory address that follows.”” Since the accumulator now
holds the value 5 (the sum of 2 and 3), the number 5 is about to be stored
somewhere.

As you can see, the memory address that follows the instruction STA is
$PFB—the hexadecimal equivalent of the decimal number 251. So it appears that
the number 5 is now going to be stored in Memory Register $FB.

Now take a close look at the hexadecimal number $FB in Line 3. Since
there is no # in front of the number $FB, your assembler will not interpret it as a
literal number. Instead, $FB will be interpreted as a memory address, which is
what a number has to be in Assembly language if it is not designated as a
literal number and carries no other identifying labels.

Incidentally, if you did want your assembler to interpret $FB as «a lit-
eral number, you would have to write it #$FB. When # and $ both appear
before a number, it is interpreted as a literal hexadecimal number.

If the third line of the program were STA #$FB, however, that would
be a syntax error. That is because the instruction STA (store the contents of the
accumulator in . . .) has to be followed by a value that can be interpreted as a
memory address—not by a literal number.

THE 6510/8502°'S OTHER REGISTERS

Besides its accumulator, the 6510/8502 processor has five other internal regis-
ters. They are the X Register, the Y Register, the Program Counter, the Stack

38 Principles and Techniques of Assembly Language Programming

Pointer, and the Processor Status Register. Brief descriptions of the functions of
each of these five registers follow.

e The X Register (abbreviated X) is an 8-bit register that is often used for
temporary storage of data during a program. The X register has a spe-
cial feature, too; it can be incremented and decremented with a pair of
special Assembly language instructions (INX and DEX), and it is there-
fore often used as an index register, or counter, during loops and
read/data-type instructions in programs.

e The Y Register (abbreviated Y) is also an 8-bit register, and it can also
be incremented and decremented with a pair of special instructions
(INY and DEY). The Y register, like the X register, is used both for data
storage and as a counter.

e The Program Counter (abbreviated PC) is actually a pair of 8-bit reg-
isters that are usually used together as one 16-bit register. The two 8-
bit registers that make up the program counter are occasionally
referred to as the Program Counter—Low (PCL) register and the Pro-
gram Counter—High (PCH) register. The program counter always con-
tains the 16-bit memory address of the next instruction to be executed
by the 6510/8502 processor. When that instruction has been carried
out, the address of the next instruction is loaded into the program
counter.

e The Stack Pointer (which can be abbreviated either S or SP) is an 8-
bit register that always contains the address of the next available
memory address in a block of RAM called the hardware stack, or sim-
ply stack—a special block of memory in which data is often stored tem-
porarily during the execution of a program. When subroutines are
used in Assembly language programs, the 6510/8502 chip uses the
stack as a temporary storage location for return addresses. You can
use the stack for other purposes in Assembly language programs, too.

e The Processor Status Register (often called simply the Status Register,
but abbreviated P), is an 8-bit register that keeps track of the results of
operations performed by the 6510/8502. It is a very important register,
so we will take a closer look at it betore we move on.

THE PROCESSOR STATUS REGISTER

The processor status register is built differently from the other registers in the
6510/8502, and it is used differently, too. It is not designed for storing or process-
ing ordinary 8-bit numbers, as the 6510/8502's other registers are. Instead, its
bits are used as flags that keep track of several kinds of important information.

Four of the status register's eight bits are called status flags. These four
flags and their abbreviations are:

1. The carry flag (C)

In the Chips

39

2. The overflow flag (V)
3. The negative flag (N)
4. The zero flag (Z)

These four flags are used to keep track of the results of operations carried out
by the other registers inside the 6510/8502 processor.

Since the P register is an 8-bit register, it has four more flags. Three of
these are called condition flags. They are used to determine whether certain
conditions exist in a program. The P register’s three condition flags are:

1. The interrupt disable flag (I)
2. The break flag (B)
3. The decimal mode flag (D)

The processor status register's eighth bit is not used.

LAYOUT OF THE PROCESSOR STATUS REGISTER

The processor status register can be visualized as a rectangular box with eight
square compartments. Each compartment in the box is actually one of the P
register’s eight bits. In the processor status register, each of these bits is used as
a flag.

If a given bit has the binary value 1, then it said to be set. If it has the
binary value 0, then it is said to be clear.

The bits in the 6510/8502 status register—like the bits in all 8-bit regis-
ters—are customarily numbered from 0 to 7. By convention, the rightmost bit in
an 8-bit register is referred to as Bit 0, and the leftmost bit is referred to as Bit 7.
The positions of each bit in the 6510/8502 status register are:

BITS 7 6 5 4 3 2 1 0
FLAGS N v - B D I Z C

BIT 0: THE CARRY FLAG (C) It is not easy to do 16-bit arithmetic with an 8-bit
chip like the 6510/8502. When the 6510/8502 chip is required to perform an
addition operation on a number greater than 255 or if the result of a calculation
might be greater than 255, then a program is needed to break each number
down into 8-bit segments for processing and then patch all the numbers back
together again.

This kind of mathematical cutting and pasting, as you can imagine,
involves a lot of carrying (if addition problems are being performed) and bor-
rowing (when the 6510/8502 is performing subtraction). The carry flag of the
6510/8502 P register is the flag that keeps up with all this carrying and
borrowing.

40 Principles and Techniques of Assembly Language Programming

If an addition operation results in a carry, the carry flag is automati-
cally set. It a subtraction operation requires a borrow, the carry flag is automat-
ically cleared. The carry flag is also set and cleared by many other kinds of
6510/8502 operations. It is therefore good programming practice to clear the
carry flag any time addition is to be performed and to set it before subtraction. It
you do not clear the carry flag betore every addition and set it before every
subtraction, your calculations may be thrown off by the left-over results of previ-
ous calculations.

The Assembly language instruction to clear the P register’s carry bit is
CLC, which stands for "clear carry,” and the instruction to set the carry bit is
SEC, which stands for “set carry.”

BIT 1: THE ZERO FLAG (Z) When the result of an arithmetic or logical opera-
tion is zero, the status register's zero flag is automatically set. Addition, subtrac-
tion, and logical operations can all result in changes in the status of the zero
flag. If @ memory location or an index register is decremented to zero, that also
causes the zero flag to be set.

When you write routines that make use of the zero flag, it is important
to remember one 6502 convention that seems odd until you get used to it. When
the result of an operation is zero, the zero flag is set (to 1), and when the result
of an operation is not zero, the zero flag is cleared (to 0). This convention is easy
to forget—and can trip you up if you are not careful.

There are no Assembly language instructions to clear or set the zero
flag. It is strictly a "read” bit, so instructions to write to it are not provided.

BIT 2: THE INTERRUPT DISABLE FLAG (I) Many Commodore programs con-
tain interrupts, instructions that halt operations temporarily so that other opera-
tions can take place. Some interrupts are called maskable interrupts, because
you can be prevent them from taking place by including special “masking”
instructions in a program (there will be more about that in a later chapter).
Other interrupts are called nonmaskable, because you cannot stop them from
taking place, no matter what you do. Nonmaskable interrupts usually perform
functions that are vital to the operation of a computer, such as writing to the
screen every Y, second and performing other time-critical chores.

To disable a maskable interrupt, clear the P register’s interrupt disable
flag. When this flag is set, maskable interrupts are not permitted. When it is
clear, they are.

The Assembly language instruction to clear the interrupt flag is CLL
The instruction to set the interrupt flag is SEL

BIT 3: THE DECIMAL MODE FLAG (D) The 6510/8502 processor normally
operates in what is called binary mode, using standard binary numbers. But the
chip can also operate in what is known as binary-coded decimal, or BCD,
mode. To put your computer into BCD mode, set the decimal flag of the
6510/8502 status register.

When the 6510/8502 chip is put in BCD mode, it uses only the 10 stan-
dard decimal digits; the hexadecimal digits A through F are not used in BCD
operations. Furthermore, every digit in a BCD number is treated as an individ-

In the Chips

a1

ual byte. For example, it requires three bytes to express decimal 255 as a BCD
number. In your computer’'s memory, the BCD number 255 is stored this way:

BCD number: 2 §) 5
Binary equivalent: 00000010 00000101 OooOO0101

That is quite different, of course, from the way that decimal number 255 is
expressed in conventional binary (non-BCD) notation. In binary arithmetic, the
kind you will use most often in your Assembly language programs, the decimal
number 255 is expressed as a hexadecimal number, like this:

Decimal number: 255
Hexadecimal equivalent: FF
Binary equivalent: 11111111

As you can see, at the rate of one byte per digit, it takes much more memory to
store BCD numbers than conventional binary numbers. (It is possible to “"pack”
BCD digits into half that amount of space, but that requires special procedures
and additional processing time, as you will see in a later chapter.) Another
disadvantage of BCD arithmetic is that it is slower than binary arithmetic. But its
results, unlike those of plain binary arithmetic, are always 100% accurate. So it
is often used in programs and routines in which accuracy is more important
than speed or memory efficiency.

Another advantage of BCD numbers is that they are easier to convert
into decimal numbers than standard binary numbers. So BCD numbers are
sometimes used in programs that call for the instant display of numbers on a
video monitor.

BCD numbers will be discussed in more detail in a later chapter. For
now, it is sufficient to remember that when the status register’s decimal mode
flag is set, the 6510/8502 chip performs all its arithmetic using BCD numbers.
You probably will not be using much BCD arithmetic in your Assembly lan-
guage programs—at least not for a while—so you will usually want to make sure
that the decimal flag is clear before your computer starts performing arithmeti-
cal operations.

The Assembly language instruction that clears the decimal flag is
CLD. The instruction that sets it is SED.

BIT 4: THE BREAK FLAG (B) The break flag is set by the Assembly language
instruction BRK. Program designers often use the break instruction while they
are debugging Assembly language programs. When the 6510/8502 break flag is
set and the BRK instruction is invoked, certain error-flagging operations take
place, and control of the computer returns to the programmer. Once the debug-
ging of a program is complete, any BRK instructions placed in the program for
use during debugging are usually removed.

BIT 5: UNUSED BIT For some reason, the programmers who designed the
6510/8502 status register left one bit unused. This is the one.

42 Principles and Techniques of Assembly Language Programming

BIT 6: THE OVERFLOW FLAG (V) The overflow flag is used to detect an over-
flow from Bit 6 to Bit 7 in a binary number. The overflow flag is used primarily in
addition and subtraction problems involving signed numbers. When the
6510/8502 microprocessor performs calculations on signed numbers, each
number is expressed as a 7-bit value, with its leftmost bit used to designate its
sign. When Bit 7 is used in this way, an overflow from Bit 6 to Bit 7 can make the
result of a calculation incorrect. So, after a calculation involving signed num-
bers has been performed, the V flag is tested to see whether such an overflow
has occurred. Then, if so, corrective action can be taken. (More information on
how the V flag is used in signed-number operations work is provided later on in
this book, in a chapter devoted to 6510/8502 arithmetic.)

The Assembly language instruction that clears the overflow flag is
CLV. The V flag is a read-only bit, so there is no specific instruction to set it.

BIT 7: THE NEGATIVE FLAG The negative flag is set when the result of an
operation is negative and cleared when the result is zero. The negative flag is
often used in operations involving signed numbers and to detect whether a
counter being used in a loop has been decremented past zero. It has other uses
that will be discussed in later chapters. There are no instructions to set or clear
the negative flag; it is strictly read-only.

Writing an Assembly
Language Program

Three Popular Commodore
Assemblers

This chapter is the payoff to everything you have learned so far in this book.
Very soon, you are going to write your first Assembly language program, a
program you can type, assemble, and execute without using any BASIC
commands.

The program was created using the Merlin 64 assembler, but you can
also type, assemble and run it using two other assemblers: the Commodore 64
Macro Assembler Development System and the Panther C64.

This chapter is divided into three parts. Part 1 tells how to type and
assemble a program on the Merlin assembler. Part 2 explains how to enter the
program using the Commodore 64 assembler. Part 3 is about typing and assem-
bling the program using the Panther C64 assembler.

No matter which assembler you are using, I suggest that you read Part
1, since it is the only section that contains a full line-by-line explanation of how
the program works.

THE MERLIN 64 ASSEMBLER

As you may have guessed by now, the word assembler can have a couple of
different meanings, depending upon the context. When programmers speak of
an "assembler,” they are sometimes talking about just one part of a software-
development package, the part that does the actual work of converting Assem-
bly language into machine language. But the word can also be used to refer to
a complete Assembly language programming package, such as the Commo-
dore 64 Macro Assembler Development System or the Merlin 64 assem-
bler/editor program. Software packages such as these usually include more
than just an assembler. Other types of programs that are often contained in
“assembler” software packages include editors, monitors, loaders, and debug-
ging utilities.

The Merlin 64 assembler/editor system comes on a single diskette,
which contains a number of programs. These programs are divided into five
modules, which are:

46 Principles and Technigues of Assembly Language Programming

e an Executive module
e an Editor module
e an Assembler module
e a Monitor module

e a Symbol Table Generator module

When you use the Merlin 64 assembler, the modules that you encounter most
often are the Executive, Editor, Assembler, and Monitor modules. You seldom
have to worry about the Symbol Generator module; its job is to compile tables of
constants and variables, and it does its work automatically and quite transpar-
ently, usually without any assistance from the programmer.

The Merlin 64 assembler/editor can be loaded into the Commodore’s
memory just like any other disk-based program. Just turn on the disk drive, the
monitor, and the computer, and slip the Merlin 64 disk into the disk drive. Then
type:

LOAD '""MERLIN",8
followed by a carriage return. Your computer should respond with the message:
LOADING
and then the prompt:
READY.
You can then type the command:
RUN

The next thing you see is a preliminary title screen. Then, after a few moments of
disk-spinning, Merlin's master menu appears on your video display.

MERLIN'S MENU

Merlin is a menu-driven assembler: when you boot the Merlin 64 disk, the first
thing you see, after the title screen, is the master menu used to select the pro-
gram's function. When you load Merlin and see this master menu, you know the
assembler is in its Executive mode; the Merlin 64 module that controls this mode
is called the Executive module.

When Merlin is in its Executive mode, the menu on the screen looks
like this:

C :Catalog
L :Load source
S :Save source

Writing an Assembly Language Program 47

:Read text file
:Write text file
:Drive change
:Enter ED/ASM
:Save object code
:Run program
:Disk command
:Quit

oX oomouE X

All these options are explained in detail in the Merlin 64 assembler instruction
book, so we will not present a long explanation of each menu option in this
chapter. For now, it is sufficient to note that Merlin can do quite a few things in
Executive mode, from loading and saving source code and object code to listing
the contents of a disk (using the menu's C command). You can read and write
text files with Merlin’s R and W menu commands. You can even format disks,
scratch files from disks, and perform numerous other disk-management func-
tions using the Executive menu's X command.

THE PROGRAM

To put Merlin into its Editor mode, the mode that you will be using to write
Assembly lcmguage programs, select choice E from the assembler’'s Executive
menu. At the bottom of your monitor screen, just below the menu, you will see a
% tollowed by a flashing cursor. You will always see the % prompt when Merlin
is in its Executive mode. When the assembler is in Editor mode, the prompt
changes to a colon, and in monitor mode, the prompt is a dollar sign.

When you have located the % prompt, type the letter:

E

for "Enter Editor/Assembler mode.” As soon as you have typed an E and
pressed RETURN, Merlin's Editor module goes into action. To let you know that
it is in its edit mode, Merlin will print a : prompt on your screen. When you see
that prompt, type:

A

for "Append.” You will then see the number 1 appear on your screen. That 1 is
intended to be used as the first line number in a source-code program. Merlin
automatically generates line numbers, beginning with 1 and progressing in
increments of 1. So when the number 1 appears on your screen, it means that
Merlin is ready to accept the first typed line of a source-code program. Let's
start typing an Assembly language program right now.

If your assembler is working properly, you will notice that the 1 on
your screen is followed by a space and a flashing cursor. Now, beginning at the
spot where the cursor is, type an asterisk, without any additional spaces in front
of it, and press RETURN. Line 1 of your program should now look like this:

48 Principles and Techniques of Assembly Language Programming

1 *

Merlin then advances automatically to Line 2. Following the number 2, again
without any extra spacing, type:

*ADDNRS

and press your RETURN key. Then, when Merlin advances to Line 3, type
another asterisk.
This is what you should see on your screen now:

*
* ADDNRS
*

AW -

At Line 4, just press RETURN, and you will see Merlin's : prompt again. Then
you can type A (for APPEND) again and continue writing your program, or, if
you prefer, you can type some other command.

One command that can be used after the : prompt is L for List. If you
type an L command, your program will be listed, in its entirety, on your com-
puter screen.

Another command that can follow the : prompt is D for Delete. To use
the Delete command, type the letter D followed by the number of the line (or
lines, separated by a comma) you want to delete. Suppose, for example, that
you wanted to delete Lines 2 and 3 in the above listing. You could do that by
simply typing:

p2,3

after the : prompt. Try it. Then restore the lines you have deleted by using the A
command.

Still another command that can be used alter the : prompt is [(for
Insert). To use the Insert command, type the letter I after a colon prompt, fol-
lowed by the number of the line where you want your new line inserted. Sup-
pose, for example, that you wanted to insert another asterisk at Line 2 in the
above program. You could simply press RETURN to get a colon prompt, and
then type:

12
Try that, and you will see Merlin respond with the number:

2

Now type an asterisk, followed by two RETURNs. Merlin will display its : prompt
again, and you can then type L for list. Then Merlin will list your program, and

Writing an Assembly Language Program 49

you see that another line containing an asterisk has indeed been inserted into
your program, at Line 2.

You may also notice that Merlin has automatically renumbered each
line after the line that you have inserted. That is a convenient characteristic of
the Merlin editor, but it requires some getting used to. With Merlin, you never
have to worry about renumbering lines, so that you can make insertions or
clean up the line numbers in a program. But you also have to remember that the
line numbers in your program can change, whether you like it or not, as lines
are inserted and deleted.

Speaking of deleting lines, you can now delete that extra asterisk that
you have just added to your program. Just press RETURN to get the : prompt,
and type D2. Then you can type L for List, which will get you a listing showing
you that the program looks like this again:

ADDNRS

* * *

SAUEUN -

In addition to the A, I, and D commands, there is also an R command,
to replace a line. Merlin also has commands that you can use to copy lines, to
move lines, to find and replace strings, and to perform many other useful func-
tions. You can find full details on how to use all these functions by reading the
Merlin 64 instruction manual.

However, you do not have to do that now. For the moment, just con-
tinue typing until you have entered the following program into your computer:

1 *

2 * ADDNRS

3 %

4 ORG $8000
5 ADDNRS CLD

6 CLC

7 LDA #2

8 ADC #2

9 STA $02A7
10 RTS

11 END

You have probably noticed that Merlin tabulates columns automatically, divid-
ing a program into easy-to-read fields. Merlin automatically generates a space
after each line number, so you do not have to type one. If you do type a space,
you wind up in the third column, where all the three-letter abbreviations
appear. Later on in this chapter, I will discuss the spacing of program listings at
greater length, and you can find still more on the subject in the instruction man-
ual that comes with the Merlin 64 assembler.

50 Principles and Techniques of Assembly Language Programming

LISTING YOUR PROGRAM

When you have reached Line 12 in your ADDNRS program, just press your
RETURN key. Then you can type either L or List, to list the complete program on
your computer screen.

Sharp-eyed readers may have noticed that this is the same program
that was presented in Chapter 1, a program that adds 2 and 2 and stores their
sum in Memory Address $02A7 (that is, decimal 679). As you can see by looking
at the program, that happens in Line 9.

Some of the instructions in this program may look familiar by now; we
have touched on most of them in the preceding chapters. However, the program
also includes one or two items that you have not encountered until now. These
new features include the asterisks in the first section of the program and the
END directive in Line 11.

Here is an “exploded” listing of the program to give you a clearer
understanding of how it is written. The listing you saw in the first example is
divided into five fields, or columns, each with a heading that describes the kind
of information it contains. As you examine this listing, please understand that no
one actually writes programs in this way. It is presented only to give you a clear
picture of the organization of an Assembly language program.

AN 8-BIT ADDITION PROGRAM
(Listing No. 2)

LINE oP

NO. LABEL CODE OPERAND REMARKS
1 *

2 * ADDNRS

3 *

4 ORG $8000
5 ADDNRS CLD

6 cLC

7 LDA #H2

8 ADC #e
9 STA $02A7
10 RTS

11 END

As you can see from this listing, Assembly language programs using the Merlin
64 system can be divided into five fields: the line-number field, the label field,
the op-code field, the operand field, and the remarks field.

LINE NUMBERS

Not every assembler uses line numbers exactly as Merlin does. In fact, some
assemblers do not use line numbers at all. In Assembly language programs, line
numbers are never used as reference points; routines and subroutines are

Writing an Assembly Language Program 51

referred to by their labels, not by their line numbers. When line numbers appear
in an Assembly language program, they are used only as a convenience to the
programmer, not because the program really requires them. So keeping line
numbers all neat and tidy is not nearly as important in an Assembly language
program as it is in a BASIC program.

LABELS

Labels always occupy the second field in Assembly language statements written
using the Merlin 64 assembler. Labels are very important in 6502/6510/8502 Assem-
bly language, since they are used instead of line numbers to address routines and
subroutines. In the ADDNRS program, the abbreviation ADDNRS in Line 2 is a
label and thus appears in the second field of the source-code listing.

Because the ADDNRS program is identified with a label, it could be
used as either a secondary routine or a subroutine in a longer program. If it
were used as a subroutine, it could be accessed using the instruction JSR
ADDNRS, which is equivalent to GOSUB in BASIC, or the instruction JMP
ADDNRS, which works like BASIC's GOTO instruction.

If ADDNRS were used as a subroutine in a longer program, the RTS
("return from subroutine”) instruction in Line 10 would end the subroutine and
return control to the main program. If ADDNRS were used as a secondary routine,
the RTS instruction would end both the secondary routine and the main program.
We will discuss the JSR and JMP instructions at greater length in later chapters.

A label can be as short as one character and as long as the length of
a statement permits. Most programmers use labels three to six characters long.

OP-CODE MNEMONICS

An operation-code (or op-code) mnemonic is just an Assembly language
instruction. The 56 op-code mnemonics in the 6502/6510/8502 instruction set are
the only ones that can be used in Commodore 64 Assembly language
instructions.

Op-code mnemonics—such as CLC, CLD, LDA, ADC, STA and RTS—
are typed in the op-code field of Assembly language source-code listings. When
you write a program using the Commodore 64 assembler, each op-code mne-
monic you use must start at least two spaces after a line number or one space
after a label. An op-code mnemonic placed in the wrong field will not be flag-
ged as an error when you type your program, but it will be flagged as an error
when your program is assembled.

The op-code field in a source-code listing is also used for directives
and pseudo-ops, which are words and symbols that are entered into a program
like mnemonics but are not actually members of the 6510/8502 instruction set.
ORG in Line 4 of the ADDNRS program is a directive, and END in line 11 is a
pseudo-op. The ORG directive tells your computer where an Assembly lan-
guage program is to be stored in memory after it is assembled. END tells the
assembler where to stop assembling, to end an Assembly language program.

52 Principles and Techniques of Assembly Language Programming

OPERANDS

The operand field in a Merlin 64 assembler program starts one space (or a tab)
after an op-code mnemonic. Operands and op-code mnemonics make up com-
plete instructions. Some mnemonics, such as CLC, CLC and RTS, do not require
operands. Others, such as LDA, STA and ADC, do. Much more information
about operands is provided later on.

COMMENTS

Comments in Assembly language programs are like remarks in BASIC pro-
grams: although they do not affect a program in any way, they explain pro-
gramming procedures and provide eye-saving space in program listings.

There are two ways to include a comment in source-code listings writ-
ten on the Merlin 64 assembler. One is to put it in the label field of a listing,
preceded by an asterisk. The other is to precede the comment with a semicolon
and put it in the remarks field that follows the operand field.

EXAMINING THE PROGRAM

Now that we have looked at our sample program field by field, let's examine it
line by line.

LINES 1 THROUGH 3

(Comments) Lines 1 through 3 are comments. Line 2 explains what the pro-
gram does, and lines 1 and 3 set off the explanatory line by printing asterisks
tollowed by white space.

It is good programming practice—in Assembly language, just as in
most other programming languages—to use remarks liberally. Comments have
been used quite liberally in the programs in this book.

LINE 4
ORG $8000

This is the origin line of our sample program. Every Assembly language pro-
gram must start with an origin line. As you may remember from Chapter 1, when
a computer runs a machine-language program, it first goes to a predetermined
memory location and checks the value stored at that address. So when you
write an Assembly language program, you have to tell your computer where to
start looking for the program in its memory.

The origin directive in an Assembly language program sets a counter
that your assembler uses to keep track of the bytes in the program. This counter
is called, logically enough, the program counter. Your assembler’s program
counter, like the program counter in your computer's 6510/8502 processor,
always contains the address of the next instruction to be used in a machine-
language program.

Writing an Assembly Language Program 53

When your assembler encounters an origin directive, it sets its program
counter to the address that follows the abbreviation ORG. The first instruction in
the program is then loaded into that address, and the rest of the program follows.

The origin directive looks like a simple line to write, but deciding what to
put in it can be quite difficult, especially for the beginning programmer. There are
many blocks of memory in your computer that you cannot use for Assembly lan-
guage programs because they are reserved for other uses (to hold your com-
puter's operating system, disk operating system, and BASIC interpreter, for
example). Even the programs in your Merlin 64 assembler/editor package take
up blocks of memory that the Assembly language programmer must avoid using.

Deciding where to store a program in a computer’s memory is such a
tricky job, with so many variables to be taken into account, that a full chapter
on memory management is presented later on in this book. For now, it is suffi-
cient to know that it is usually safe to start Assembly language programs some-
where around memory location $8000 and that there is also an 88-byte block of
free RAM from Location $02A7 (decimal 679) to Location $2FF (decimal 767),
which makes a handy storage spot for short lists of data.

Now you know why Line 4 in the ADDNRS program tells sets your
assembler’s program counter at $8000 and why Line 9 stores the sum of 2 and 2
in Memory Address $02A7.

LINE 5
ADDNRS CLD

(Label: ADDNRS)
(Mnemonic: “"Clear Decimal Mode”) ADDNRS: The label field in this line has
been used to name this routine ADDNRS, so, if we ever decide to use the routine
as part of a larger program, it will have a name. We can access it by its label, if
we wish, instead of by its memory location. It is usually good programming
practice to give labels to important routines and subroutines. A label not only
makes a routine easier to locate and use, it also serves as a reminder of what
the routine does (or, until your program is debugged, what it is supposed to do).
CLD: We are using plain binary numbers in this program, not binary-
coded decimal numbers. So in this line we will clear the decimal mode flag of
the 6510/8502 processor status register. It is not necessary to clear the decimal
flag betfore every arithmetical operation in a program, but it is a good idea to
clear it before the first addition or subtraction operation in a program, since it
just may have been set during a previous program.

LINE 6
CLC

("Clear Carry”) The status register’s carry flag is affected by so many kinds of
operations that it is considered good programming practice to clear it before every
addition operation and set it before every subtraction operation. It takes very little
time and just one byte of RAM; compared to the time and energy debugging can
cost, that is a bargain.

54 Principles and Technigues of Assembly Language Programming

LINE 7
LDA #2

("Load Accumulator with the Number 2”) This is a very straightforward
instruction. The first step in an addition operation is always to load the accumu-
lator with one of the numbers that is to be added. The # in front of the number 2
means that it is a literal number, not an address. If the instruction were LDA 2,

then the accumulator would be loaded with the contents of Memory Address
0002, not the number 2.

LINE 8
ADC #2

("Add the Number 2 to Contents of Accumulator, with Carry””) This is also a
straightforward instruction ADC #2 means that the literal number 2 is to be
added to the number that is in the accumulator, in this case, another 2. As we
have mentioned, there is no 6510 Assembly language instruction that means
"add without carry,” so the only way an addition operation can be performed
without a carry is to clear the status register’'s carry flag and then perform an
"add with carry” operation.

LINE 9
STA $02A7

("Store Contents of Accumulator in Memory Address $02A7) This line stores
the contents of the accumulator in Memory Address $02A7. Note that the symbol
is not used betfore the operand ($02A7) in this instruction, since in this case
the operand is a memory address, not a literal number.

LINE 10
RTS

(“Return from Subroutine”) If the mnemonic RTS is used at the end of a sub-
routine, it works like the RETURN instruction in BASIC: it ends the subroutine
and returns to the main body of a program, beginning at the line following the
line in which the RTS instruction appears. However, if the RTS is used at the end
of the main body of a program, as it is here, it has a different function: instead of
passing control of the program to a different line, it terminates the whole pro-
gram, returning control of the computer to the input device that was in control
betore the program began, usually a cartridge, disk operating system (DOS),
keyboard-screen editor, or machine-language monitor.

LINE 11
END

Just as the ORG directive begins an Assembly language program, the END
pseudo-op ends it. END tells the assembler to stop assembling, even if there is
more source code after the word END. The END directive can therefore be a

Writing an Assembly Language Program 55

powerful debugging tool. You can put it wherever you want in a program you
are debugging, to make the assembler stop assembling at that point (until you
remove it). When you have finished debugging your program, you can use the
END directive to bring it neatly to an end. Before you can do that, of course, you
must remove any leftover END directives that may still be hanging around—that
is, if you want your final program assembled completely. When debugging is
complete and your program is finished, it should contain only one END direc-
tive, where it belongs, at the very end.

PRINTING YOUR PROGRAM

When you have finished typing your source-code listing using the Merlin editor,
you can print it out by typing the command:

PRTR 4

(This example assumes that your printer is installed as Device No. 4. If not, use
the appropriate device number.) After you type the command PRTR, followed
by the device number of the printer, just type LIST to print out your program.

ASSEMBLING AND SAVING YOUR PROGRAM

To assemble the ADDNRS program using the Merlin assembler, type the com-
mand ASM following the : prompt. Merlin then asks you if you want to update
your source-code file, with the current date, for example. If you do not want to
update your file, type N (for "No"'), and Merlin will assemble your source-code
program very rapidly.

In just a moment, we will save the ADDNRS program on a disk. First,
though, let's take time out to compare the object code, which your assembler
has generated with the source code (from which the object code was derived).
In the table below, in the column labeled SOURCE CODE, you can see your
source-code listing. In the next column, you can see the machine-language ver-
sion of the program. To the right of that is the meaning of each Assembly lan-
guage/machine-language instruction.

SOURCE CODE MACHINE CODE MEANING

CLD D8 Clear status register’'s decimal-mode
flag

CLC 70 Clear status register’s carry flag

LDA #72 A9 02 Load accumulator with the number 2

ADC #?2 69 02 Add 2, with carry

STA $02A7 8D A7 02 Store result in Memory Address $02A7

RTS 60 Return from subroutine

Now we will save both your source-code listing and your object-code listing on
a disk. First, type Q (for Quit) after the : prompt to get your assembler back into
its Executive (menu) mode. When you have done that, Merlin's main menu

56 Principles and Technigues of Assembly Language Programming

reappears. Then save your source code by selecting menu choice S, and save
your object code by picking menu choice O.

The Merlin menu also offers a choice W, for "Write text file.” When you
pick that menu selection, your assembler saves your object-code listing on a
disk, but as an ASCII-style text file, not as an executable binary file. You cannot
run a text file on your computer, as you can a binary file, but ASCII listings of
machine-language programs do have their uses. For example, you can print a
text file out on paper or transmit it from computer to computer over a telephone
line. Then the recipient can convert the program into a binary file and run it.

When you type an S, O, or W to save a source-code or object-code
listing, Merlin asks you what you would like to name your program. When you
name your program, you do not have to add any special kind of suttix to indi-
cate whether it is a source-code listing or an object-code program, because
Merlin does that automatically. If you are saving a source-code listing, the
assembler automatically adds an S sutfix to your file name. If you are saving an
object-code listing, Merlin appends an O suffix.

THE COMMODORE AND PANTHER ASSEMBLERS

The next section in this chapter is for owners of the Commodore 64 Macro
Assembler Development System. If you do not own a Commodore Macro assem-
bler and do not care how it works, you can skip to the final section of this chap-
ter, which is about the Panther C64 assembler. If you do not care about the
Panther either, you can move on to Chapter 5.

THE COMMODORE 64 ASSEMBLER

The Commodore 64 Macro Assembler Development System, like the Merlin 64,
comes on a single disk but includes a number of individual programs. They are:

e an Assembly language editor, called EDITOR64, which is a program
used to write Assembly language programs.

e an assembler, which is used to convert source code to object code. The
assembler in the Commodore Development system is called

ASSEMBLERG4.

e ¢ loader. When an Assembly language program is converted into
object code using the Commodore 64 assembler, the listing produced
is not true machine language, but ASCII code that must be converted
into actual machine code. The Commodore 64 loader produces this
code from the pseudo-object code generated by the Commodore
assembler.

Actually, there are two loader programs in the Commodore
64 assembler package. These programs, called LOLOADER64 and
HILOADER®64, perform identical functions but are placed in different
parts of RAM when you load them into your computer’'s memory. That
way, if one of the loaders would overwrite machine code that you have

Writing an Assembly Language Program 57

written, you can use the other loader. The LOLOADER program goes
into memory beginning at Address $0800, and HILOADER starts at
RAM location $C800.

® o machine-language monitor. When the Commodore 64 loader gener-
ates a machine-language program, it is often necessary to debug the
program before it is ready to be run. Then, after the program is debug-
ged, it has to be saved on disk if its creator has any intention of ever
running it again. The machine-language monitor program included in
the Commodore 64 assembler/editor package can be used both to
debug programs and to save them to disk, so that they can be
retrieved and run whenever needed. The monitor also has a number of
other uses, which will be described in the next chapter.

There are also two monitors in the Commodore 64 assembler package. As with
loaders, the only ditference between them is where they reside in your com-
puter’'s memory when they are loaded. One goes into RAM beginning at Mem-
ory Address $8000, and the other starts at $C000.

If you do not quite understand what this memory-address business is
all about, do not worry about it right now. For now, it is enough to know that
since the ADDNRS.COM starts at Memory Address $8000, the monitor that
should be used to debug it is MONITOR$CO00, which starts at $C000, not MONI-
TOR$8000, which starts at $8000.

In addition to all the programs mentioned above, the Commodore 64
assembler/editor disk also contains two other useful programs called DOS
WEDGE 64 and BOOT ALL. Both those programs are discussed later on in this
chapter.

THE PROGRAM

First, though, here is a listing of ADDNRS—the same program presented in the
first section of this chapter—as it would appear if it were written using the Com-
modore 64 assembler. Very shortly, you will get an opportunity to type the pro-
gram, assemble it, and run it, but first let's take a quick overall look at it and see
what it does, and how it does what it is supposed to do.

AN 8-BIT ADDITION PROGRAM

10 ;

20 ;ADDNRS.COM
30 ;

40 *=$8000
50 ;

60 ADDNRS CLD
70 CLC

80 LDA #2

90 ADC #2

58 Principles and Technigues of Assembly Language Programming

0100 STA $02A7
0110 RTS
0120 .END

As you remember, this program adds two numbers. In this version of the pro-
gram, the numbers that it is supposed to add (2 and 2) are in Lines 80 and 90.

After the program adds 2 and 2, it stores their sum in Memory Address
$02A7 (decimal 679), just as it did in its Merlin 64 version. In this version of the
program, this happens in Line 100.

Here is an “exploded” listing to give you a clearer understanding of
how it is written. In this example, the listing is divided into five fields. Each field
has a heading that describes the kind of information it contains.

As you examine this listing, remember once again that no one actually
writes programs in this way. It is presented only to give you a clear picture of
the organization of an Assembly language program.

AN 8-BIT ADDITION PROGRAM
(Listing No. 2)

LINE oP
NO. LABEL CODE OPERAND COMMENTS
10 3

20 ;ADDNRS.COM

30 :

40 *=$8000

50 ;

60 ADDNRS CLD

70 cLC

80 LDA #e

90 ADC #e
100 STA $02A7
110 RTS

120 -END

LINE NUMBERS

The Commodore 64 assembler, like most assemblers, uses line numbers, but
they work more like BASIC line numbers than Merlin numbers do, and the Com-
modore assembler, unlike Merlin, does not assign them automatically unless
you tell it to. When you use the Commodore assembler, you can either write
your own line numbers or instruct your assembler to assign them automatically
by using a special AUTO command. Instructions for using the AUTO command
are given on page 21 of the instruction manual.

As you can see, the line numbers in our sample ADDNRS.COM pro-
gram progress from 10 to 120 in increments of 10, just like the numbers in a
typical BASIC program. They do not have to be written that way, but they usu-
ally are. When a program is written using the Commodore 64 assembler, line

Writing an Assembly Language Program 59

numbers are typed flush left, just as they generally are in a BASIC program. The
line numbers in a Commodore 64 assembler listing occupy the first field in the
program'’s source-code listing.

LABELS

Labels always occupy the second field in Commodore 64 assembler programs,
just as in programs written using the Merlin 64 assembler. Exactly one space—
not two—must be left between a line number and any label that follows it. If you
start a label two or more spaces after a line number or if you use your tab key to
get to the label field, you may clobber your program.

The length of a label can range from one character to the maximum
length of the label field in a tabulated listing. Most programmers use labels
three to six characters long.

OP-CODE MNEMONICS AND OPERANDS

Op-code mnemonics and operands occupy the third and fourth fields of pro-
grams written using the Commodore 64 assembler, just as they do in Merlin 64
source-code listings, but some of the op-code directives used by the Commodore
64 assembler are different from those used in Merlin 64 programs. For example,
look at line 40 in the ADDNRS.COM program. Instead of using the abbreviation
ORG to identify the origin line of a program, the Commodore assembler uses an
asterisk followed by an equal sign. The standard format for the use of these
symbols is shown in Line 40 of the ADDNRS.COM program:

*=$8000

The third and fourth fields of the ADDNRS.COM program, just like the third
fields in the ADDNRS.MER presented in section on Merlin, are used for op-code
mnemonics and operands. Some of the pseudo-ops used in source-code listings
written using the Commodore assembler are slightly different from those used in
Merlin listings. One such pseudo-op is the .END directive in Line 120 of the
ADDNRS.COM program; it has a period in front of it, which the Merlin END
directive lacks.

COMMENTS

There are also differences in the way comments are written using the Commo-
dore and Merlin assemblers. In programs written with the Commodore assem-
bler, comments that begin in Field 2 are preceded by semicolons rather than by
asterisks. Comments preceded by semicolons can also appear in what is left of
each line following the instruction fields (the op-code and operand fields). If you
use the comment field at the end of a line and do not have room there for the
comment you want to write, you can continue your comments on the next line by
simply typing a space, a semicolon, and the rest of your remarks.

A line-by-line explanation of the ADDNRS program was provided ear-
lier in this chapter, in the section dealing with the Merlin 64 assembler. If you

60 Principles and Techniques of Assembly Language Programming

skipped that section because you are using the Commodore 64 assembler, back
up and read the line-by-line program analysis right now, since the same expla-
nations apply to the version of the program that was written on the Commodore
64 assembler. Once you have done that, you will be ready to write and run your
first Assembly language program.

LOADING THE EDITOR 64 PROGRAM

Sit down at your computer, turn on your disk drive and your video monitor, and
slip the Commodore 64 Macro Assembler Development System diskette into your
disk drive. When that is done, you can load the Assembly language editor that
is on the disk into your computer, or, if you prefer, you can start your editing
session by loading a wedge program that is also on the disk into your com-
puter's memory. A wedge is a machine-language program that makes life with
a Commodore disk drive much simpler: the commands that are used to perform
DOS functions are greatly simplified. For example, when the red light on your
disk drive starts blinking because of some saving or loading problem, the source
of the trouble is easy to track down if you are using the Commodore assembler’s
wedge program. Type the symbol @, and your wedge will provide you with an
on-screen error message telling you exactly what went wrong.

If you want to use the wedge program on your assembler/editor disk,
load it by typing LOAD "DOS WEDGE64" 8 followed by the command RUN.
Then, instead of typing the line LOAD “"EDITOR64",8,1 to load your Commodore
64 editor, type the line %:EDITOR64. Put your editor program into operation with
the command SYS49152.

It that all sounds complicated, you may be pleased to learn that there
is a much simpler way to load both the DOS wedge program and the Commo-
dore 64 editor program. Just insert your assembler/editor disk and type:

LOAD "BOOT ALL",8

When you have typed that line, press RETURN, wait for the READY prompt, and
then type:

RUN

and those two simple commands will load the DOS WEDGE64 program, the
EDITOR64 program, and the HILOADER64 program (more on that one later)
into your computer’'s memory. You will not even have to type SYS49152 to run
your EDITOR64 program; BOOT ALL will take care of that automatically. All
you have to do is load BOOT ALL and start programming.

Unfortunately, however, there are some circumstances under which
you cannot use the BOOT ALL routine. For example, if you want to use the
LOLOADER utility instead of the HILOADER routine, as we will be doing later
on in this chapter, you cannot use BOOT ALL.

Writing an Assembly Language Program 61

STORING YOUR PROGRAM

When you have the EDITOR64 up and running, put a formatted disk into your
disk drive so that you can store the Assembly language programs that you are
writing. Many of the programs in this book build on each other, so if you start
saving them now, you can save yourself a lot of typing later.

If you have saved any of the BASIC programs in preceding chapters
on a disk, use that same disk for your Assembly language programs. If you have
not started a program disk yet, then this is a good time to put a blank but
formatted program-storage disk in your disk drive.

USING THE COMMODORE EDITOR

When your editor is up and running, you will see a COMMODORE 64 EDITOR
title line and a READY prompt on your computer screen. You can then type
Listing No. 1 of the ADDNRS.COM program. To save you some page-flipping,
here it is again:

AN 8-BIT ADDITION PROGRAM
(Listing No. 1)

10 ;

20 ;ADDNRS.COM
30 ;

40 *=$8000
50 ;

60 ADDNRS CLD
70 CLC

80 LDA #2

90 ADC #2
0100 STA $02A7
0110 RTS
0120 .END

MORE NOTES ON SPACING

The Commodore assembler is very fussy about spacing, so be careful about the
spacing you use when you type the ADDNRS.COM source-code listing. Here
are a few helpful tips about typing spaces in Assembly language programs
written using the Commodore 64 assembler:

In the lines that contain semicolons, there should be only one space
between the line number and the semicolon. In Line 40, however, there should
be two spaces between the line number and the asterisk, since * is a directive
and directives appear in the op-code field of Commodore 64 assembler
programs.

In Line 60, there should be one space between the line number and
the ADDNRS label, and one space between ADDNRS and the mnemonic CLD.

62 Principles and Techniques of Assembly Language Programming

In Lines 70 through 110, there should be two spaces between each line
number and the op code that follows. In Line 120, there should be two spaces
between the line number and the .END directive.

It you make a mistake while typing a line, move back and correct it in
the usual Commodore fashion, using the cursor-control keys on your keyboard.

LISTING YOUR PROGRAM

After you have typed your source listing of Program 1 into your computer, type
the word LIST, and you should see a screen display that looks like this:

READY
LIST

10 ;

20 ;ADDNRS.COM
30 ;

40 *=$8000

50 ;

60 ADDNRS CLD
70 CLC

80 LDA #2

90 ADC #2

100 STA $02A7
110 RTS

120 .END
READY

If you have a printer, you can now print your program on paper, in the same
way that you would get a printout of a BASIC program. Just type, for example,

OPEN 1,4,4

The first number must be any value between 1 and 255; the second is the usual
device number for a printer attached to a Commodore. If your printer is not
Device No. 4, of course, you have to use a different device number. Once your
printer’s device channel is open, you can type:

CMD 1

or CMD followed by whatever other optional number you have chosen. That
command routes your computer’s output to your printer. instead of to your video
screen. Then you should be able to type the command:

LIST

and get a hard-copy printout of the ADDNRS.COM source-code listing.
After you have printed the program, do not forget to type:

Writing an Assembly Language Program 63

CLOSE 1

so that your screen becomes your primary output device again.

Now, if your listing looks all right, you can save your program on disk.
Make sure that your formatted program-storage disk is in your disk drive and
that your disk is initialized. Then type:

PUT "ADDNRS.COM"

The top red light on your disk drive should now go on, and the disk you are
storing your program on should start to spin. When the light goes off, your
source code should be safely recorded on a disk under the file name
ADDNRS.COM.

Are you sure that your program has been stored safely? To find out,
type:

NEW
and then type:

GET "ADDNRS.COM"
Now type:

LIST

If you have succeeded in saving your program on your disk, you will see it listed
on your screen, but you may notice that there has been a change in the pro-
gram. The line numbers, instead of running from 10 to 120, extend from 1000
through 1110.

Why did that happen? Your Commodore 64 editor just numbers pro-
grams that way, and that convention does make a certain amount of sense. If a
routine starts with a line numbered 1000, it is easy to put other routines both in
front of it and atter it, but if you do not want your source code to start with Line
1000, that is easy to change; your Commodore 64 editor has a line-renumbering
utility that is very easy to use. For further details, consult the instruction manual.

ASSEMBLING YOUR PROGRAM

Now you know how to write, save, and load an Assembly language source-code
listing using the Commodore 64 assembler. So you are now ready to learn how
to use the Commodore assembler to assemble a program.

If you are using your DOS wedge program, it is easy to load the
assembler that is on the C64 assembler/editor disk. Just remove the user disk
from the disk drive, insert the assembler/editor master disk, and type:

/ ASSEMBLERG64

64 Principles and Technigues of Assembly Language Programming

(If you are not using your DOS wedge, type LOAD "ASSEMBLER64",8—if your
assembler fails to load, you may never know why.)
When you have loaded your assembler, type:

RUN

When you have typed that command you will see this prompt:
OBJECT FILE (CR OR D:NAME):

Now remove your assembler/editor disk from your disk drive, replace it with
your own program disk, and type the file name:

ADDNRS.ASM

The assembler will assign that name to the object file it will soon be creating.
Next you are asked whether you want a hard copy, or printout, of your
Assembly-code listing. If you do, just press the RETURN key. If not, type:

N

Your computer now asks whether you want another kind of file called a cross-
reference file (so you can refer in other programs to any labels, constants, or
other identifiers you have created in this one). You cannot create an object-
code file and a cross-reference file during the same pass through the Commo-
dore 64 assembler, and you have no need for such a file at this point in your
study of Assembly language anyway. So press the RETURN key.

Finally you are asked to give the name of the source-code program
you want assembled. In response to this prompt, type:

ADDNRS.COM

Your C64 assembler then assembles your program and provides you with a list-
ing—either on your screen or on paper, depending on what you requested—that
looks like this:

ADDNRS.COM...... PAGE 0001

LINE# LOC CODE LINE

00001 0000 7

00002 0000 ;ADDNRS.COM
00003 0000 .

00004 0000 *=$8000
00005 8000 -

00006 8000 D8 ADDNRS CLD
00007 8001 18 cLC

00008 8002 A9 02 LDA #2

Writing an Assembly Language Program 65

00009 8004 69 02 ADC #2
00010 8006 8D A7 02 STA $02A7
00011 8009 60 RTS
00012 800A -END

ERRORS = 00000

SYMBOL TABLE
SYMBOL VALUE
ADDNRS 8000

END OF ASSEMBLY

ERRORS

It you have made any typing errors in your program, this is where you are most
likely to find out about them. If your assembler finds an error in a line, it flags
the mistake and displays an error message. It may not be able to spot every
error you make, but when it does catch one, it prints an error message on your
screen or your printout. If you do not understand exactly what the message
means, you should consult your C64 assembler/editor user’s manual.

As the assembler assembles your program, it automatically saves an
object-code listing on the disk in your disk drive, using the file name ADDNRS.ASM.
It the assembler finds any errors in your program while the program is being
assembled and saved, it still saves the assembled program, errors and all.

If there are any errors in your program, reload your EDITOR64 program
so you can go back to your original source-code listing and correct them. Then
take the following steps, in this order. Erase the incorrectly written program from
your disk (a good reason for using your wedge). Reload your assembler, assemble
your source code again, and see whether you have made any more errors. If there
are any mistakes, then go through each of these steps again until all the errors
your assembler has spotted are removed from the program.

When you have assembled your ADDNRS.COM program, and the
assembler has saved the assembled version of the program on a disk, you are
ready to convert your assembled program into true machine language using
your Cb4 loader utility. We save that step for the next chapter.

THE PANTHER ASSEMBLER

To load the Panther C64 assembler into your computer’'s memory, all you have
to do is type:

LOAD "ASM",8,1

66 Principles and Technigues of Assembly Language Programming

or, if you have turned your computer on with the Panther disk in your disk drive,
you can type:

LOAD "*",8,1

While the Panther assembler is loading, there will probably be a lot of disk
drive noises and a lot of flashing of your disk drive's error light, but do not worry
because that is normal with the Panther C64.

When the Panther assembler is loaded, you will see a] prompt on
your screen, followed by a flashing cursor. Then you can start programming.

The Panther assembler, like the Commodore, uses BASIC-style line
numbers, but it does not allow any spaces to be inserted between line numbers
and labels; in a program using the Panther C64, line numbers and labels are
jammed right up next to each other, with no spaces in between. That is proba-
bly why programs written using the Panther are always typed in lowercase; if
the letters and numbers on a Panther source-code listing were all the same size,
it would be difficult to distinguish where line numbers ended and labels began.

Here is the ADDNRS program typed on a Panther C64 assembler:

10;
20;addnrs.pan
30;

40 org $2000
50 obj $2000
60addnrs cld
70 clc

80 lda #2

90 adc #2

100 sta $02a7
110 rts

120 end

It you have a Panther assembler, this is a good time to get it up and running
and type in the addnrs.pan program. When you have it all typed, you can type
the word list after the] prompt, and this is what you see:

1list
10;
20;addnrs.pan
30;
40 org $2000
50 obj $2000
60addnrs cld
70 clc
80 Llda #2

90 adc #2

Writing an Assembly Language Program 67

100 sta $02a7
110 rts
120 end

The addnrspan program has one line that the ADDNRSMER and
ADDNRS.COM programs do not. The extra line is:

50 obj $2000

This line was included in the Panther program because the Panther C64 does
not assemble a source-code listing into object code unless it is specifically
instructed to do so. We will soon want an object-code listing of the addnrs.pan
program, so an obj directive has been written into the program.

You may also notice that the org directive in Line 40 specifies a differ-
ent object-code starting address from those in the other versions of the program.
The origin directive in the Merlin and Commodore versions of the program
directed that the object code begin at Memory Address $3000, but Line 40 of this
listing specities a starting location of Memory Address $2000. That is because
the symbol tables that are generated by the Panther assembler/editor are
stored in a block of memory that extends from $8000 to $8FFF. So the
addnrs.pan program cannot start at Memory Address $8000. If it did, it would
consume some of the memory space which the Panther uses for symbol tables.
The Panther assembler does have a special symbol command that can be used
to move the symbol table to another block of memory, but to type and run a
program as short as the addnrs.pan routine, it is easier to start the program at
another address, such as $2000, than to change the block of memory that the
Panther assembler uses for its symbol table.

To assemble a program using the Panther C64 assembler, all you have
to do is type the program, and then type the command asm following the]
prompt. Then the program will immediately be assembled. When you have
assembled addnrs.pan, you can save the program’s source-code listing on a
disk almost as quickly as it was assembled. Just make sure that an initialized
disk is in your computer’s disk drive, and that the] prompt is displayed on your
computer screen. Then type the line:

save addnrs.pan

to perform the save.

The Panther assembler also has a special directive, the sav directive,
which can be used to save object code to a disk, but when you use the sav
directive, what you wind up with on your disk is a nonexecutable ASCII-style
text file of your object code listing, not a pure machine-language file that can be
run on a computer. So, although the Panther Cb64 instruction book does not
warn you of this, you cannot use the sav directive to save a machine-language
program in an executable form. The best way to save a machine-language pro-
gram with the Panther assembler is to activate the assembler's machine-lan-
guage monitor and issue a save command from there. We will do that in the
next chapter.

Running an Assembly
Language Program

From a BASIC Program and
on lts Own

There are several ways to execute a machine-language program on a Commo-
dore 64 or Commodore 128. For example, you can run a machine-language
program or routine by:

e using a special debugging command that is provided by most assem-
bler monitors—including the Merlin 64, Commodore 64, and Panther
Cb64 assemblers. Monitors are often used to run Assembly language
programs while the programs are being written and debugged. After a
program has been completed, however, there is rarely any more need
to run it using a monitor.

e using the BASIC/DOS command LOAD, as in LOAD “FILENAME",8 or
LOAD "FILENAME" 8,1.

e calling your machine-language program from a BASIC program using
either the BASIC/DOS SYS directive or the Commodore BASIC USR(X)

function.

In this chapter, each of these three methods of running machine-language pro-
grams will be covered in detail. We will start with the first method: running a
machine-language program using a machine-language monitor.

Each of the three assemblers that we have been discussing in this
book comes with a machine-language monitor, and, you would probably guess,
each of these three monitors works in a slightly different way. So, to keep from
confusing things even more than necessary, I will discuss the Merlin monitor, the
Commodore 64 monitor and the Panther C64 monitor separately. To learn how
to use your assembler’s monitor, you will not have to read all three of these
sections; it will be sufficient to read only the section dealing with your
assembler.

70 Principles and Techniques of Assembly Language Programming

THE MERLIN 64 MONITOR

If you have just finished Chapter 4, and still have your Merlin 64 data disk in
your disk drive, you can start using your assembler’s debugging tacility immedi-
ately. But first, let's give readers who have turned their computers off between
chapters a chance to get their systems up and running again.

If you have turned off your computer since the end of Chapter 4,
please set your Commodore up again, with your master disk booted, your data
disk in your disk drive, and the ADDNRS MER program loaded into your com-
puter's memory. When you have loaded the program, type L after the : prompt,
and the program's source code will be listed on your screen.

When you have listed your program, you can type ASM, and your pro-
gram will be assembled into machine language. Then you can type the com-
mand MON, and your Merlin assembler will go into its monitor mode. You will
be able to tell easily when Merlin has exited to its monitor; the colon prompt on
your screen will change to a dollar sign.

To run a program on the Merlin 64 monitor, the command to use is the
g command. So when the $§ prompt appears on your screen, type 8000g and the
line that starts with the dollar sign should look like this:

$8000g

When you have typed that line on your screen, press the RETURN key. If every-
thing is in order, you will not see anything special happen right away; all Merlin
will present you with is another dollar sign. If so, you have just passed an impor-
tant milestone on your quest to learn Assembly language; you have just run
your first Assembly language program.

To see whether everything really did work, you can use another moni-
tor command: the h command. Here is how the h command works:

As you may remember, the function of the ADDNRS.MER program is to
add the digits 2 and 2, and to place their sum in Memory Address $02A7. When
Merlin is in its monitor mode, the command that is used to peek into specific
memory locations—or a series of memory locations—is the h command. So let's
use the h command now.

Atfter the dollar sign that you now see on your screen, type the string
02a7h and your command line should look like this:

$02a7h

Then press RETURN, and Merlin will display a line like this on your
screen:

02A7-04 |

In case you are wondering, the vertical line after the number 02A7-04 means
that Merlin has peeked into Memory Address $0287 and has found that it con-
tains the value 4, or the sum of 2 and 2. So if that is the line you see on your
screen now, you have just run your first machine-language program.

Running an Assembly Language Program 71

There are also a few other commands that can be used with Merlin's
machine-language monitor. For example, there is the command :, which looks
just like—but is not used like—the colon prompt in Merlin's executive mode. In
the monitor mode, the : command is used to assemble values directly into mem-
ory addresses in the Commodore’'s memory. For example, type the line:

$9000: 02 02 02 02

and you will poke four 2's in Memory Locations $3000, $3001, $9002, and $9003.
Do that right now, and you immediately can see if it worked by using the h
command.

The letter | (a small L, not the digit one) is another useful Merlin moni-
tor command. Type an | command (or a string of | commands) following a $
prompt, and Merlin will print out a source-code listing—or a disassembled list-
ing—of any Assembly language program that starts at the address given. For
example, in response to the line:

$80001L

—Merlin will display a source-code listing of the ADDNRS MER program.

There are a few more commands that can be used with the Merlin
monitor, and «a listing of them can be found on pages 79 and 80 of the instruction
guide that comes with the Merlin 64 assembler. For now, though, the only addi-
tional commands that are really important to remember are the $r command,
which will return you to Merlin's editor mode, and the $q command, which will
return you to the executive mode of your Merlin 64 assembler.

THE COMMODORE 64 MONITOR

The monitor that comes with the Commodore 64 Macro Assembler Development
System is like the rest of the Commodore 64 system: it is extremely powerful and
versatile, but also quite complicated.

When beginning-level Assembly language programmers try to use the
monitor provided with the Commodore 64 assembler, they often find that they
cannot get it to work. That is because the monitor will not work with raw code
that is generated by the Commodore assembler. The problem is that the assem-
bler in the Commodore 64 assembler/editor system does not produce pure
binary machine-language code; instead, it generates ASCII-type listings that
must be converted into binary code before they can be used by the Commodore
64 monitor. The utility that makes that conversion is a loader program that is
also provided in the Commodore 64 assembler package.

Actually, there are two loaders in the Commodore assembler kit. One,
called LOLOADER®64, resides in a block of RAM that starts at Memory Address
$0800 when it is loaded into a Commodore 64's memory. The other program,
HILOADER®S4, is designed to be loaded into memory beginning at $C800.

(It might be helpful to point out at this juncture that the names of the
loader programs that are printed on page 27 of the Commodore 64 assembler

72 Principles and Techniques of Assembly Language Programming

instruction manual are incorrect. On the Commodore 64 assembler/editor disk,
the programs are called LOLOADER64 and HILOADER64, not LO-LOAD.C64
and HI-LOAD.C64, the names given in the instruction manual. If you try to load
the programs using the latter file names, the result will be a loading error.)

In this chapter, we will use the LOLOADER64 program. To load it into
your computer’s memory, put your master Commodore 64 assembler/editor disk
into your disk drive, and type:

LOAD "LOLOADER64",8
When the LOLOADER64 program has been loaded, type the command:

RUN

—to run the program.

It everything is working right, the next thing you see on the screen is a
couple of title lines, followed by the line:

HEX OFFSET (CR IF NONE) ?

There is no need to worry right now about what this question means. In case
you are curious, though, the “hex offset” referred to here is a two-byte hexa-
decimal value that you can add to the address given in the origin line of a
program if you want the program to start at an address different from the one
specified in the origin line. Matters like this fall into the category of memory
organization, which will be the topic of a later chapter. For now, let's just
assume that we do not want to use a hex offset (which is true), and press a
RETURN.

After you have pressed RETURN, you will see a line on your screen
that says:

OBJECT FILE NAME ?

Now you should try to locate the data disk you used in Chapter 4—the one on
which you stored your ADDNRS.ASM program. When you have found that disk,
insert it into your disk drive and respond to the OBJECT FILE NAME? prompt
with the line:

ADDNRS .ASM

—followed by a RETURN.
Now you will see a display on your screen that looks like this:

8000.

8009

END OF LOAD
READY.

Running an Assembly Language Program 73

That means that a true machine-language version the ADDNRS.ASM has been
loaded into your computer’'s memory, and is now just sitting there in RAM, wait-
ing for you to make the next move.

Now we can get back to the current program. Remove your data disk
from your disk drive, and reinsert your Commodore 64 assembler disk. Then, in
response to the READY prompt on your computer screen, type the line:

LOAD "MONITOR$C000",8,1

—and press RETURN.
When you have typed LOAD "MONITOR$C000”,8,1 your computer
will respond with a READY prompt. Then you can type:

SYS 49152

When your monitor has been loaded into your computer’s memory, it will iden-
tity itselt by displaying a tiny period on your computer screen. This period is a
prompt designed to show you that your monitor is loaded and functioning.

Now for a brief digression. Often, when you load the Commodore mon-
itor into memory from a cold start, you will see a display on your screen that
looks something like this:

PC SR AC XR YR SP
.,CO03E 32 00 C3 00 Fé6

If you do not see that display right now, do not worry. If you have been follow-
ing the instructions in this chapter, it will not be there, but, to prepare you for the
occasions when you will see it, [will explain right now that it is nothing but a
display of the contents of the six registers in your computer’s 6510/8502 chip: the
program counter, the processor status register, the accumulator, the X register,
they Y register, and the stack pointer. Sometimes it helps to know the contents of
those registers when you start to debug a program, so the Commodore assem-
bler usually presents you with a list of their contents when you first load your
monitor.

Now that you have activated your monitor, you can easily check to see
whether the ADDNRS program has really been loaded into RAM. Following the
. prompt, just type:

D 8000 8009

—and your Commodore should respond with a disassembled (source-code) list-
ing of the ADDNRS program.

Now that you have your monitor up and running, you can easily run
the ADDNRS program, too. After the . prompt, merely type:

G 8000

74 Principles and Techniques of Assembly Language Programming

—and press RETURN. Your computer should respond with another READY
prompt—that will mean that something has definitely happened, since you have
now exited your monitor, and are back in BASIC again.

Why is that? It is because the ADDNRS program ends with an RTS
instruction, and when the Commodore 64 monitor encounters an RTS instruction
without any address to return to, it returns control to BASIC.

There is, by the way, an Assembly language instruction that can pre-
vent the Commodore monitor from returning to BASIC after it finishes running a
program using the G command. The instruction that can keep this from happen-
ing is the mnemonic BRK (which stands for "break.”) Programmers often use the
BRK mnemonic when they are debugging programs. By putting a BRK instruc-
tion at the end of an Assembly language routine, you can debug your program
without having to worry about your assembler jumping back into BASIC every
time it comes to the end of the routine. When you have finished debugging a
program, though, you should always remember to remove your BRK instruc-
tions, since they can crash programs when the programs are run outside a mon-
itor environment.

However, that is not our problem right now. What we want to do now is
get our assembler back into its monitor mode—and that is easy enough to do.
Just type SYS 49152—the same command that you used to activate your monitor
in the first place—and your assembler will be back in its monitor mode again.

When the . prompt has returned to your screen, you can check to see
whether your monitor really did run the ADDNRS program successtfully. Just

type:
M 02A7

—and your monitor will respond with a line like this:
.:02A7 04 00 00 00 00 00 00 0O

That is a listing of the contents of Memory Location $02A7 and the next seven
addresses in your computer’s memory. Since the first number in that listing is 04,
we now know that the ADDNRS program worked; it added the numbers 2 and 2,
and stored their sum in Memory Address $02A7.

Now that you know that the ADDNRS program works, there is only one
more thing to do—save it on a disk. The way to do that is with another monitor
instruction: the S command.

To use the S command, all you have to do is respond to your monitor’s
. prompt with a line like this:

.S""ADDNRS.0BJ" ,08,8000,800A

The 08 in this series is the standard Commodore device number for a disk drive,
but note that in this case, the 8 that is usually used to specity a disk drive is
preceded by a zero. If the zero is omitted, your monitor’s S command will not
work.

Running an Assembly Language Program 75

The number that follows the number 08 is always the beginning
address of the machine-language program being saved to disk, and the next
number is always the address of the last byte in the program being saved, plus
one. In this case, the addresses 8000 and 800A are the beginning address, and
the ending address (plus one), of the ADDNRS program.

When you have used the S command to save the ADDNRS.OB] pro-
gram, you will have the program stored on your disk in three forms—its original
source-code form (ADDNRS.SRC), an ASClIl-style text file of the assembled pro-
gram (ADDNRS.ASM), and an executable machine-language program, or
binary file (ADDNRS.OB]J). You will always wind up with these three types of
files when you write, assemble, and save a program using the Commodore 64
assembler/editor system.

THE PANTHER C64 MONITOR

The Panther C64 monitor is very easy to to use, but also annoyingly finicky
about accepting commands—and a little inconsistent, too. For example, some
commands demand that a space be typed in a certain place, and in other com-
mands there can be no space in that position. So when you use the Panther
monitor, be sure to enter your commands exactly as they are typed in the fol-
lowing examples.

Betore you can run the addnrs.obj program using the Panther monitor,
you will have to boot your Panther C64 disk and then put the assembler into its
monitor mode by typing the command break. A list of the contents of your
6510/8502's memory registers, followed by a . prompt, should then pop onto
your screen. That will show you that your monitor is now up and running.

Next, locate the data disk you used in Chapter 4—the one with the
addnrs.pan and addnrs.obj programs on it. Slip your data disk into your disk
drive, and type the line:

L"addnrs.obj",08

—tollowing the . command. Your assembler will then respond with a list of the
contents of your 6510/8502 chip’s six registers, followed by a . prompt. You can
then answer the period prompt by typing the line:

d 2000

—and your computer will acknowledge that command by presenting you with a
disassembled listing of the addnrs.obj program that you have loaded into its
memory.

Now that you know your program has been loaded correctly, you can
run it. To run the addnrs program, move your cursor to the bottom of your
screen using computer’'s down-arrow key, and press RETURN. Then, when you
see your monitor's . prompt, type the line:

g 2000

76 Principles and Techniques of Assembly Language Programming

If everything goes well, your assembler will reply to that command by exiting to
its editing mode. You can then type a break command to get your assembler
back into its monitor mode. Once you are there, you can issue the command:

m 02a7 02a7

In response to this line—in which the address 02A7 has been typed twice, since
the Panther monitor requires two numbers after an m command—your monitor
should present you with a listing of the contents of Memory Location $02A7 and
the next seven addresses. That display will look like this:

.:02A7 04 00 00 00 00 00 00 00

Since the first number on the list is 04, you can tell that the ADDNRS program

worked; it added the numbers 2 and 2 correctly, and stored their sum in Memory
Address $02A7.

OTHER WAYS TO RUN A PROGRAM

Here is a new program that we will use to illustrate how programs written in
Assembly language can be run using DOS and BASIC commands. When you
run this program, it will display a character on your computer screen. Type it,
assemble it, save it on a disk (in both its source-code and object code versions),
and then run it. When you have done all of that, I will explain how the program
works and what it does.

This is how you should type the program if you are using a Merlin 64
assembler:

1 *

2 * PRINTIT

3 x

4 CHROUT EQU $FFD2
5 LDA #$58
6 JSR CHROUT
7 RTS

8 END

(While typing this program, astute readers may notice that it contains no ORG
directive. Programs written using the Merlin assembler do not absolutely have
to have origin lines; if a Merlin program lacks such a line, Merlin will automati-
cally assign it a default starting address of $8000.)

The Commodore 64 assembler and the Panther C64 assembler do
require origin lines, however. Here is a listing of the PRINTIT program as it
should be typed if you are using a Commodore assembler:

1000 ;
1010 ;PRINTIT.COM

Running an Assembly Language Program 77

1020 ;

1030 *=$8000
1040 ;

1050 CHROUT=$FFD2
1060 ;

1070 PRINT

1080 LDA #$58
1090 JSR CHROUT
1100 RTS

1110 .END

Finally, here is the program once again, as typed using the Panther C64
assembler:

10;

20;printit.pan

30;

40 org $2000

50 chrout equ $ffd2
60 Lda #$58

70 jsr chrout

80 rts

90 end

HOW IT WORKS

To understand how the PRINTIT program works, you have to have at least a
passing familiarity of a block of memory in your computer which Commodore
calls a kernal, and before you can understand the Commodore kernal works, it
helps to have a basic understanding of a type of machine-language routine
called a vector.

In assembly language terminology, a vector is a subroutine that does
nothing but cause a program to jump to another subroutine. That does not
sound very useful unless you understand what vectors are for, but once you
learn how vectors are used in the Commodore kernal and similar types of jump
tables, their usefulness becomes clear.

The Commodore kernal is a jump table, a table of jump addresses,
that resides in a special block of RAM from $E000 to $FFFF. The kernal was
designed because the operating systems of microcomputers often change with-
out notice, creating a potentially serious problem for programmers and com-
puter owners. After a computer has been on the market for a while, bugs in its
operating system are often discovered, and these have to be fixed. Operating
systems are also sometimes altered just so they will run faster or work better in
some other way.

That is where vectors come in. When the operating system of a com-
puter is revised, the addresses of various routines in that operating system are
often altered. This is one reason that programs written for early models of a

78 Principles and Techniques of Assembly Language Programming

computer sometimes do not work on later models, with different operating
systems.

THE COMMODORE AND THE KERNAL

To prevent this kind of disaster, the addresses of important routines in a com-
puter’s operating system are often kept in a jump table, such as the Commodore
kernal. A programmer who wants to use a routine included in the jump table
writes a program that jumps to a call address, that is, to an address in the jump
table, instead of to the actual address of the routine.

To make sure this system works, the manufacturers of computers that
contain jump tables traditionally guarantee that the addresses in the tables will
always be kept up to date and therefore always remain accurate. Programmers
who use these “official” vectors in their assembly language programs can
therefore be certain that the programs they write for a given computer will work,
no matter how many times the operating system is changed.

That brings us back to PRINTIT. Examining the program, you will see
that a constant labeled CHROUT is used in each of the three versions of the
routine. CHROUT is one of the most important routines in the Commodore
kernal—it is used to print a character on the screen. When you call the CHROUT
routine, it checks whatever value is currently in the accumulator, interprets that
value as an ASCII code, and outputs the appropriate ASCII character to what-
ever peripheral device is open—usually the screen.

The inclusion of the CHROUT routine in the Commodore kernal is a
real boon to everyone who writes Assembly language programs for Commo-
dore computers. What the CHROUT routine means to you is that you will never
have to write an Assembly language routine that will print a character on a
screen—and as legions of Assembly language programmers can tell you, writ-
ing even a simple PRINT routine in Assembly language can be quite a task. On
computers that do not have kernals, writing a routine that will print a single
character on a screen can require several pages of machine code, but thanks to
the Commodore kernal, you can print a character on your screen by using a
single command.

Later on in this book, there will be more information on your com-
puter’s kernal and how to use it. There is also an extensive section on the Com-
modore kernal on pages 269-305 of the Commodore 64 Programmer's Reference
Guide. If you would like to learn more about the tremendous power of the Com-
modore kernal, it would be a good idea to study that part of your Programmer’s
Reference Guide very carefully. In that section, the people who designed your
computer explain what each routine in the Commodore kernal does, and
exactly what steps must be taken to call and use each one.

In the version of the program written on the Merlin 64 assembler,
CHROUT is defined in Line 4, the line that reads:

4 CHROUT EQU $FFD2

In the variation of the program written on the Commodore 64 assembler,
CHROUT is defined in Line 1050:

Running an Assembly Language Program 79

1050 CHROUT=$FFD2
In the Panther 64 version of the routine, the line defining CHROUT is Line 50:
50 CHROUT EQU $FFD2

As you can see by comparing each of these lines, the Commodore 64 assembler
uses the = to define constants, while the Merlin and Panther assemblers use the
directive EQU. Another constant that is used in all three versions of the program
is the literal number #$58. That is the ASCII code for the character X, the char-
acter which the program will print on your computer screen.

HOW IT'S DONE

Once the constant CHROUT has been defined, the PRINTIT program is very
straightforward. The accumulator is loaded with the literal number $58 (decimal
88, the ASCII code for an X), and then the mnemonic JSR is used to make the
program jump to the call address of the CHROUT routine. CHROUT then takes
the number $58 from the accumulator, interprets that value as the ASCII code
for the letter X, and prints an X on the screen.

RUNNING THE PRINTIT PROGRAM

By inserting a BRK instruction before the RTS instruction in the PRINTIT pro-
gram, you could run the program using your assembler’s machine-language
monitor, but you will not be using your monitor to run the program in this chap-
ter. Instead, we will execute it using the two methods most often employed to run
Assembly language programs. First, we will run the program using a DOS com-
mand, and then we will boot it and run it from a BASIC program.

It is extraordinarily easy to run an Assembly language program using
a DOS command. If you have assembled the PRINTIT program and saved its
object code on a disk, you load the program into your computer by simply typ-
ing a line like this:

LOAD "PRINTIT.OBJ",8,1

—or some other appropriate version thereof. As you may know, the last number
in the above line—the 1—is a signal to your computer that the program to be
loaded is a machine-language program, not a BASIC program, and must there-
fore be loaded in the block of RAM which it was written to occupy.

Once you have loaded an object-code program in the above fashion,
you can run it by typing a line like this one:

SYS 32768

In this example, the number 32768 is the decimal form of the hexadecimal
number $8000—and $8000 is, of course, the machine-language address of the
Merlin and Commodore 64 assembler versions of the PRINTIT program. The

80 Principles and Techniques of Assembly Language Programming

address of the PRINTIT PAN program's object code is $2000, so the DOS com-
mand that would be used to run that version of the program is:

SYS 8192

RUNNING MACHINE-LANGUAGE
PROGRAMS FROM BASIC

One disadvantage of running a machine-language program using the SYS
command is that you have to remember exactly where in your computer’s mem-
ory the program resides. If you do not want to have to remember the program's
address—or, more important, if you do not want the users of your program to
have to remember its address—then you can easily write a short program in
BASIC that will eliminate the necessity for using a SYS command.

There is a trick, though, to running a machine-language program from
a BASIC program. Here, for example, is a program that will not work:

10 LOAD "PRINTIT.OBJ",b8,1
20 SYS 32768

If you load that program and try to run it, all you will wind up with is an endless
loop, in which your disk drive loads the PRINTIT.OBJ] program into your com-
puter's memory over and over again. Why?

Well, when your computer finishes loading a machine-language pro-
gram into its memory using a BASIC command, it ordinarily returns to BASIC,
and runs any BASIC program that has previously been stored into the section of
its memory where BASIC programs are stored.

Now take another look at the two-line program above and try to figure
out what happens when it runs. First, it loads the PRINTIT.OBJ] program into its
memory. Then it returns to BASIC, and runs the program it finds there, and that
is the same program it just ran. So the computer loads the PRINTIT.OBJ] program
again, returns to BASIC, loads it again—and so on.

A NEAT TRICK

Now here is « little trick you can use to avoid that endless loop, and to load and
run the PRINTIT program successfully. Just rewrite our two-line load-and-run
BASIC program in this manner:

10 IF A=0 THEN A=1:LOAD "PRINTIT.OBJ",8,1
20 SYS 32768

Type the above BASIC program and run it, making sure that the disk on which
you have saved the PRINTIT.OBJ program is in your disk drive. If everything is
working properly, the program should automatically load the PRINTIT.OBJ pro-
gram and run it, as soon as you type the BASIC command RUN.

Running an Assembly Language Program 81

Take a close look at this little BASIC program and see if you can figure
out how it works. Here is the secret: when you create a BASIC variable on your
computer—for example, the variable A in the above program—you can be virtu-
ally certain that until you give it a value, its value will be zero. So when your
computer encounters Line 10 of the program, it will follow both of the instruc-
tions in that line; first it will change the value of A to one, and then it will load
the PRINTIT.OB] program.

Then your computer will move on to Line 20. It will run the program
(provided the program is stored at $8000; if not, use the correct value). Then the
SYS command will re-initialize BASIC and run our little two line program again.

This time, however, there will be an important difference. Now the
value of A will be one—so the computer will not execute Line 10. Instead, it will
move on to Line 20, and run the program.

That is how the endless loop that was set up by the previous BASIC
program can be avoided.

THE USR(X) FUNCTION

There are several other methods for running machine-language programs, and
you can find brief descriptions of several of them on pages 307 and 308 of your
Commodore 64 Programmer'’s Reference Guide. Most of those techniques are a
bit beyond the scope of this chapter, but one of them—the BASIC function
USR(X)—deserves special mention.

The USR(X) function, like the BASIC statement SYS, is used to transfer
control of a program from BASIC to a machine-language program, but USR(X)
differs from SYS in two important ways. First, the USR(X) function can transfer
information back and forth between a BASIC program and a machine-lan-
guage subroutine—and a SYS statement cannot. In addition, USR(X) is a better
tool than SYS for inserting machine-language "patches” into BASIC programs.
That is because USR(X) does not return to BASIC in the same way that SYS
does. The SYS statement, as we saw in the previous section of this chapter, tends
to return to BASIC quite abruptly: by re-initializing your Commodore’s built-in
BASIC interpreter, and clearing the screen. USR(X) returns to BASIC much more
gently; when a machine-language routine is called by USR(X) and then returns
to BASIC, the BASIC program that was in progress simply resumes, beginning
at the line following the USR call.

Now here is how the USR(X) function works. Before you can use the
USR(X) function in a BASIC program, it is necessary to perform one preliminary
operation: you have to tell your BASIC interpreter the starting address of the
machine-language routine that you will be calling using the USR(X) function.
To do that, you poke the starting address of your machine-language routine
into Memory Registers 785 and 786 ($0311 and $0312 in hexadecimal nota-
tion). These two memory registers are designed to be used together as a single
16-bit register, and are often referred to in combination as USERADD. When the
USR(X) function is used in a BASIC program, the first thing it does is look into
Registers 785 and 786 for the address of a machine-language routine. Then it
calls whatever machine-language routine starts at the address pointed to by

82 Principles and Techniques of Assembly Language Programming

USERADD. So, before you use USR(X), you have to place the address of the
machine-language routine which it will call in the USERADD registers.

We will now look at an example of how the USERADD registers can be
used in a BASIC program. The two lines of BASIC used in this example are from
a program called USRX.BAS. The complete program will be presented later on
in this chapter.

10 HIBYTE=INT(32768/256):L0BYTE=32768-HIBYTE*256:REM
DECIMAL 32768=$8000

20 POKE 785,LOBYTE:POKE 786,HIBYTE:ADDRESS OF USRX.S
PROGRAM

These two lines of BASIC use a standard formula—one which you may remem-
ber from Chapter Two—to store a 16-bit memory address in the USERADD regis-
ters. Once the address of a machine-language routine has been stored in
USERADD in this fashion, that routine can be accessed from any BASIC pro-
gram with the help of the USR(X) function. Here is a line of BASIC that contains
a USR(X) function:

40 Y=USR(X)

This line, like the two that you saw in the preceding example, is from the
USRX.BAS program that will be presented in full later on in this chapter. In this
line, the USR(X) function is used as part of an equation, and there are two vari-
ables in the equation: the X in the USR(X) function, and a Y on the other side of
the equal sign. Later on, when we run the USRX.BAS program, the X variable in
the USR(X) function will be used to pass a value to a machine-language rou-
tine. That routine will perform a calculation, and when control is returned to
BASIC, the result of that calculation will be passed back to BASIC as the value
of the variable Y. Then the result of the calculation by the machine-language
routine can be printed on the screen with a simple BASIC statement such as:

50 PRINT Y

NOW THE BAD NEWS

Unfortunately, there is one problem that you may face it you ever decide to use
the USR(X) function. In order to pass values back and forth between BASIC and
machine language using the USR(X) function, it is necessary to express those
values in a special form—as floating-point decimal numbers. Floating-point
math, as you may know, is a type of math that is employed by most pocket
calculators—and by the BASIC interpreter that is built into your Commodore.
Programs that use floating-point math are extremely complex and quite difficult
to write, so Assembly language programmers usually avoid using floating-point
numbers if they possibly can. But floating-point arithmetic has one important
advantage over conventional binary arithmetic: unlike binary arithmetic, it
always yields results that are 100% accurate. So floating-point math is often
used in high-precision, high-performance computer programs.

Running an Assembly Language Program 83

Because floating-point math is such a complex subject, we will not be
using it very much in this book, but that does not mean that we cannot use the
USR(X) tunction. The engineers who designed your computer had enough fore-
sight to know that you (or some other Commodore owner) might someday want
to take advantage of the capabilities of the USR(X) function without having to
go through the hassle of using it with floating point numbers. To make this possi-
ble, the folks at Commodore equipped your computer with a pair of built-in rou-
tines that can be used to convert signed binary integers into signed floating-
point integers, and vice versa. Once you know where these routines are, and
how to use them, you can easily convert binary numbers into floating-point
numbers, and vice versa, and that is a great loophole for Assembly language
programmers; it means that you can avoid having to use floating-point arithme-
tic when you want to pass information back and forth between BASIC and
machine language.

ANOTHER LOOK AT VECTORS

Now let's take a close at ADRAY1 and ADRAY?, the binary/floating-point rou-
tines that are built into your Commodore. ADRAY] and ADRAY2, like the
CHROUT routine that was discussed earlier in this chapter, are vectors: that is,
they are memory registers that hold, or point to, the addresses of machine-lan-
guage routines that are built into your Commodore. As mentioned, computer
manufacturers often use vectors to ensure that software designed for a given
computer will not become obsolete as the computer is updated and changes are
made in its operating system. When a computer-maker builds a vector into a
computer, and lists that vector's location in the computer’'s documentation, this
usually constitutes a guarantee that the address of the vector will not change as
the computer is updated and improved. When operating systems are improved,
the memory addresses of important routines often change, but the addresses of
the vectors that point to those routines do not. Instead, the contents of the vec-
tors are changed so that they point to the new OS routines. So, when computer
manufacturers design vectors into their machines and tell software developers
where those vectors are, the software designers who use the vectors can be
fairly sure that their programs will continue to work as the computers for which
they were written are updated and improved.

Now that you know what documented vectors are, and how they are
used, we can get on with our examination of ADRAY] and ADRAY?2, the two
binary/floating-point conversion vectors that are built into your Commodore.

THE ADRAY1 AND ADRAY2 VECTORS

As you might guess, one of these two vectors is designed to convert floating-
point numbers to binary integers, while the other is designed to convert binary
integers to floating-point numbers. The floating-point to binary vector is called
ADRAY], and is situated at Memory Addresses $0003 and $0004. The binary to
floating-point vector is called ADRAY2, and resides at Memory Addresses $0005
and $0006. At the time this chapter was written, the starting address of the con-

84 Principles and Techniques of Assembly Language Programming

version routine pointed to by the ADRAY1 function was $B1AA, and the address
of the routine pointed to by the ADRAY?2 function was $B391.

To use the ADRAY1 routine to convert a signed floating-point number
to a signed binary number, all you have to do is place the signed number which
you want to convert into your computer's floating-point accumulator—which, as
we have seen, is located at Memory Addresses $61-$66. Then you can jump to
the conversion routine pointed to by ADRAY1 with an instruction like this:

JMP ($0003)

The syntax used in this statement—which is called an indirect jump—will be
explained in a later chapter. For the moment, it is sufficient to remember that the
statement works. When you have placed a floating-point number in your com-
puter’s floating-point accumulator (sometimes called FACI), and have jumped
through the ADRAY1 vector with an indirect jump, the number will be automati-
cally converted into a two-byte signed binary integer. The low-order byte of the
integer will be placed in the 6510/8502 chip’s Y register, and the high byte will
be placed in the 6510/8502's accumulator.

The ADRAY?2 vector works just like the ADRAY1 vector, but in reverse.
To convert a two-byte signed binary integer into a signed floating-point integer
using ADRAY?2, all you have to do is place the binary integer to be converted
into the 6510/8502's Y and A registers, with the low byte in the Y register and the
high byte in the accumulator. Then an indirect jump can be made to the routine
pointed to by ADRAY2. When this process is completed, the binary number that
was stored in the Y and A registers will be returned as a floating-point number
stored in FACI.

SOME ILLUSTRATIVE PROGRAMS

If this all sounds terribly complicated, an example should make it a little clearer.
Here are two type-and-run programs—one in BASIC and the other in Assembly
language—which illustrate the use of both the USR(X) function and the ADRAY1
and ADRAY? vectors. The Assembly language program is called USRX.S, and
the BASIC program is called USRX.BAS. To see how these programs work, just
type, assemble, and save the USRX.S program, and then type the USRX.S pro-
gram and save it also. Once you have done that, you can call and run the
USRX.S program by simply running the USRX.BAS program.

WHAT THE PROGRAMS DO

As you will see when you run the USRX BAS and USRX.S programs, they do not
really do much; all they are designed to accomplish is to add the literal number
5 to a typed-in number, and then to print the result of that calculation on the
screen. However,, even though they might not have much use in the real world,
USRX BAS and USRX.S do illustrate a valuable programming technique. With
the USR(X) function—along with a knowledge of Assembly language—you can
use Assembly language to write machine-language functions that will perform

Running an Assembly Language Program 85

calculations at lightning speed. Then you can call those routines from BASIC at
any time you like. In this way, you can combine the convenience and ease of
use offered by BASIC with the speed and versatility of machine language.

This capability can be particularly useful when you are using BASIC
to write graphics routines. As you will see later in this book, in a series of chap-
ters devoted to Commodore graphics, there are many kinds of graphics routines
that cannot be programmed in BASIC because BASIC is too slow, but when you
know how to use the USR(X) function, you can write almost any kind of graphics
routine that you like in Assembly language, and then call it from any BASIC
program with the help of the USR(X) function.

Even when you do not want to perform machine-language calcula-
tions while running BASIC programs, the USR(X) function can be quite useful.
For example, when you want to move quietly and easily from BASIC into
machine language, and then get back into BASIC just as unobtrusively, the
USR(X) function is usually a better choice than the SYS function is. And if you
do not have any need to pass variables back and forth when you use the
USR(X) function, you do not have to; just use dummy values (values that have
no particular meaning) for the X and Y variables in your USR(X) equations.
Then you can take advantage of the non-arithmetical virtues of the USR(X)
function without concerning yourself at all with the intricacies of signed binary
and floating-point numbers.

Now let's take a look at the first program that illustrates the USR(X)
function.

THE USRX.S PROGRAM

PROGRAM 1: USRX.S

ORG $8000

4

5 %

6 ADRAY1 EQU $0003
7 ADRAYZ2 EQU $0005
8 *
9

JMP START

10 FTOI JMP (ADRAY1)
11 START JSR FTOI

12 TAX

13 TYA

14 CcLC

15 ADC #5

16 TAY

17 TXA

18 ADC #0

19 JMP (ADRAY2)

20 END

86 Principles and Techniques of Assembly Language Programming

HOW THE USRX.S PROGRAM WORKS

When you have typed and assembled the USRX.S program, I suggest that you
save it on a disk under the filename USRX.O. You can then load it, call it, and
execute it from within one BASIC program: USRX.BAS. You will get a chance
to type and run USRX.BAS after we take a brief look at the USRX.S program.

The USRX.S program makes use of some unusual programming tricks
that are interesting and quite imaginative, but also rather weird. The program
starts at Line 9, but jumps immediately to Line 11. Then it uses a JSR instruction
to jump back to Line 10, but then something very odd occurs. The instruction
JSR, as you may recall from previous chapters, stands for "jump to subroutine.”
However, there is no subroutine to jump to at Line 10. Instead, there is an indi-
rect jump to the ADRAY1 vector, your Commodore’s floating-point to integer
conversion routine.

To understand why USRX.S jumps to the ADRAY1 vector in such a
strange fashion, it helps to know something about how the JSR instruction works
in 6510/8502 Assembly language.

In 6510/8502 Assembly language, the instructions JSR (jump to subrou-
tine) and RTS (return from subroutine) usually work together—in much the same
way that the instructions GOSUB and RETURN usually work together in BASIC.

In Commodore Assembly language, a statement containing a JSR
instruction always requires three bytes: one byte for the machine-language
equivalent of the JSR instruction, and two more bytes for an operand.

When a JSR instruction is encountered during the processing of an
Assembly language program, the next instruction in the program is immediately
saved in a special block of memory called the stack. Then the program jumps to
whatever address is specified by the operand that follows the JSR instruction.

When the program jumps to that address, what it usually finds is a
subroutine which ends with an RTS (return from subroutine) instruction. When
an RTS instruction is encountered during the processing of a subroutine, the
address that was placed on the stack when the subroutine is called is pulled off
the stack. The program then returns to that address—which, as we have seen, is
usually the address to which the program should return after the completion of
the subroutine.

That brings us to a very unusual feature of the USRX.S program. If the
instructions JSR and RTS are supposed to work together, then why is there no
sign of an RTS instruction in the USRX.S program?

Well, there is one, but it is well hidden. It is not in the USRX.S program
itself, but at the end of the machine-language routine that is pointed to by the
ADRAY1 vector that is invoked by the indirect jump in Line 10 of the USRX.S
routine.

JUMPING THROUGH THE ADRAY1 VECTOR

Now that you know where the RTS instruction in the USRX.S program is, we are
ready to talk about how it works.

Running an Assembly Language Program 87

As we have seen, the USRX.S program starts at Line 9 with a direct
jump to Line 11. Then, in Line 11, a JSR instruction is used to jump back to Line
10.

Now let's consider again just what happens when a JSR instruction is
used in an Assembly language program. As [mentioned a few paragraphs
back, the first thing a JSR instruction does is place the address of the next
instruction in the program on your computer’s hardware stack. What is the next
instruction in the USRX.S program? Well, it is the TAX instruction in Line 12.
Remember that fact as we continue:

Atter the JSR instruction in Line 11 has caused the address of the TAX
instruction in Line 12 to be saved on the stack, the USRX.S program moves back
to Line 10. Then, in Line 10, the program does an indirect jump to your com-
puter’s built-in floating-point to integer conversion routine: the routine whose
starting address is pointed to by the ADRAY1 vector.

Now this floating-point to integer routine, as [have pointed out, ends
with an RTS instruction, and when it reaches that RTS instruction, the address
that was placed on the stack back in Line 11 is removed from the stack. Then the
program jumps to that address—which, as we saw earlier, is the address of the
TAX instruction in Line 12.

THE REST OF THE PROGRAM

Once you know how all of that works, it is not too hard to understand the rest of
the USRX.S program. As [explained earlier in this chapter, here is what the
Commodore's floating-point to integer routine does: it fetches a signed floating-
point integer from the floating point accumulator, converts that integer into a
signed binary integer, and places the binary integer in the A and Y registers—
with the low byte in the Y register and the high byte in the accumulator, or A
register.

When the USRX.S program reaches Line 12, the ADRAY] vector has
done its work and a binary integer is supposed to be in the A and Y registers. In
Line 12, the high byte of that integer is moved from the accumulator into the X
register. That is a sate place to store it, since the X register is not used for any
other kind of chore during the course of the USRX.S program.

Now lock at Line 12. When the high byte of the number we are work-
ing with has now been tucked safely away, the low byte of the number is moved
from the Y register to the accumulator. Then the 6510/8502's carry bit is cleared,
and the literal number 5 is added to the number in the accumulator.

In Line 16, this addition operation has been completed, and the sum
that has resulted from it is placed in the Y register. Then the high bit of the
integer we are working with—which, just a few operations ago, was placed in
the X register—is moved back into the accumulator. Then, in Line 18, there is a
little trick that is often used in 8-bit Assembly language. A zero is added to the
high bit of the number we are working with, along with any carry that may have
resulted from adding 5 to the low bit of the number. Since zero plus no carry bit
is zero, and zero plus a carry bit is one, this operation results in a carry being
added to the high bit of the number, if there is one. Since there is no specific

88 Principles and Technigues of Assembly Language Programming

6510/8502 instruction for adding a carry bit to a byte, this is the way it is often
done in 6510/8502 Assembly language.

Now we come to Line 19, where there is an indirect jump to the routine
that is pointed to by your computer's ADRAYZ2 vector—a routine for converting
binary numbers into floating-point numbers.

In the USRX.S program, the ADRAY?Z vector is a lot easier to jump
through than the ADRAY1 vector was. To convert the binary integer now stored
in the A and Y vectors into a floating-point number, all we have to do is make
an indirect jump through the ADRAY?2 vector. When this has been done, the
binary number in the A and Y registers—the one to which 5 has been added—
will be converted back into a floating-point number and stored in your Commo-
dore's floating-point accumulator. Then it can be passed back to BASIC as the
value of Y in the equation Y=USR(X).

The routine vectored through ADRAY?, like the one vectored through
ADRAY]1, ends with an RTS instruction, but this time, the RTS instruction that
ends the ADRAY subroutine brings us right back to BASIC—which is just where
we need to be to read the value of Y in the Y =USR(X) equation.

THE USRX.BAS PROGRAM

Now here is the the USRX BAS program, which calls USRX.O, the object-code
version of USRX.S:

PROGRAM 2: USRX.BAS

10 HIBYTE=INT(32768/256):LOBYTE=32768-HIBYTE*256:REM
DECIMAL 32768=$8000

20 POKE 785,LOBYTE:POKE 786,HIBYTE:PRINT
CHR$(147):REM DEFINE USR(X) ADDRESS AND CLEAR
SCREEN

30 PRINT ""TYPE IN NUMBER FROM 0 TO 32762: '':INPUT X

35 IF X<0 OR X>32762 THEN PRINT:GOTO 30

40 Y=USR(X)

50 PRINT:PRINT X;"" + 5 = '';Y

60 PRINT:GOTO 30

Before you can run the USRX BAS program, you have to load USRX.O into mem-
ory. Then type USRX.BAS, save it for future use, and run it. If you have done
everything properly, USRX.O and USRXBAS should work together with no
problems.

HOW USRX.BAS WORKS

After figuring out how the USRX.S program works, you should have no problem
deciphering USRXBAS. In Lines 10 and 20 of USRXBAS, the address of the
USRX O program is stored in the USERADD registers at decimal addresses 785 and
786.

Running an Assembly Language Program 89

When the address of USRX.O has been stored in the USERADD regis-
ters, USRX BAS asks you to type in a number. The number you type is placed in
the Commodore's floating-point accumulator, and USRX.BAS passes control to
USRX.S, which then uses the ADRAY1 vector to convert the number in the float-
ing-point accumulator into a binary integer. Next, USRX.S performs a simple
mathematical operation on that binary integer; the result is placed in the A and
Y registers of the Commodore's 6510/8502 processor.

When all that is done, USRX.S performs an indirect jump to the
ADRAY?2 vector. ADRAY2 converts the binary integer in the A and Y registers
into a signed floating-point number, which is placed in the computer’s floating-
point accumulator. Finally, control is passed back to BASIC, and the result of
the operation performed by USRX.S, which is now in the floating-point accumu-
lator, is passed back to BASIC as the value of X in the equation USR(X) =Y.

Before ending the chapter, I would like to point out one important
restriction in the use of the USR(X) function. Since this function uses signed 16-
bit binary numbers, it cannot handle any number greater than 32,767 or smaller
than —32,768. Also, we have not yet covered negative numbers. Therefore, the
user may not type in any number that will result in a sum smaller than 0 or
greater than 32,767 If you do not quite understand why these limitations apply
to USRX.BAS, do not be concerned—you will find out why in later chapters.
Meanwhile, however, keep this limitation in mind if you decide to make use of
the USR(X) function.

Addressing the
Commodore

Telling Your Computer Where to Go

In the very first chapter of this book, I told you that there is a direct one-to-one
correlation between Assembly language and machine language—that for every
mnemonic in an Assembly language program, there is a numeric machine-lan-
guage instruction that means exactly the same thing.

That is the truth, but it is not quite the whole truth. Actually, there are
many Assembly language mnemonics that have more than one equivalent
instruction in machine language. For example, when you see the mnemonic
ADC in an Assembly language program, there are eight different numeric
instructions that it can be converted into when it is assembled into machine
language. To understand why this is true, it is necessary to know something
about how addressing modes are used in 6502/6510/8502 Assembly language.

In the world of Assembly language programming, an addressing
mode is a technique for locating and using information stored in a computer’s
memory, and your Commodore's 6510/8502 chip can access the memory loca-
tions in your computer in thirteen different ways. So the 6510/8502 processor has
thirteen different addressing modes.

In this chapter, we will examine all 13 of these addressing modes, and
observe how they are used in 6502/6510/8502 Assembly language. Table 6-1
shows the eight addressing modes that can be used with the mnemonic ADC.

Look closely at Columns 2 and 3 in the following table, and you may
notice a curious relationship between the Assembly language statements in
Column 2 and their machine-language equivalents in Column 3. In Column 2—
the Assembly language column—all eight addressing modes use the same mne-
monic, but each uses a different operand, but in Column 3—the machine-lan-
guage column—the statements have a different structure. In the machine-
language column, each address uses a different op code, but there are only two
kinds of operands; each two-byte statement includes a one-byte operand, and
each three-byte statement has included a two-byte operand. That fact illus-
trates an important difference between Assembly language and machine lan-
guage. In 6510/8502 machine language, the 13 available address modes are
distinguished by differences in their op codes. On the other hand, in 6510/8502

92

Principles and Techniques of Assembly Language Programming

Table 6-1 ADC ADDRESSING MODES

COLUMN 1: COLUMN 2: COLUMN 3: COLUMN 4:
ADDRESSING SAMPLE MACHINE-CODE NO. OF
MODE STATEMENT EQUIVALENT BYTES
Immediate ADC #$03 69 03 2

Zero Page ADC #3503 65 03 2

Zero Page, X ADC $03,X 75 03 2
Absolute ADC $0300 6D 00 03 3
Absolute Indexed, X ADC $0300,X 7D 00 03 3
Absolute Indexed, Y ADC $0300,Y 7900 03 3
Indexed Indirect ADC ($03,X) 61 03 2
Indirect Indexed ADC ($03),Y 71 03 2

Assembly language, the 13 available addressing modes can be identified by
differences in their operands.

Table 6-2 shows all 13 of the addressing modes that can be used with
the 6510/8502 chip in your Commodore.

Table 6-2 THE 6510/8502's ADDRESSING MODES

ADDRESSING MODE FORMAT

1. Implicit (Implied) RTS

2. Accumulator ASL A

3. Immediate LDA #2

4. Absolute LDA $02A7

3, Zero Page STA $FB

6. Relative BCC LABEL

7. Absolute Indexed, X LDA $02A7,X

8. Absolute Indexed,Y LDA $02A7,Y

9. Zero Page X LDA $FB,X
10 Zero Page,Y STX $FB,Y
11. Indexed Indirect LDA ($FD,X)
12. Indirect Indexed LDA ($FD),Y
13. Unindexed Indirect IMP

ADDNRS.SRC REVISITED

To see how some of these instructions work, we will take another look at
ADDNRS.SRC, the 8-bit addition routine that has been used several times in
this book already. Here is the program again, as it would be typed using the
Commodore 64 assembler system. (If you have a Merlin 64 or Panther C64
assembler, you can probably alter the program to meet your assembler’s
demands without too many problems by now, since the important differences

Addressing the Commodore 93

in the formats used by these assemblers have been described in previous
chapters.)

THE ADDNRS SOURCE PROGRAM

10 ;

20 ;8-BIT ADDITION PROGRAM

30 ;

40 *=3%8000

50 ;

60 ADDNRS CLD ;IMPLIED ADDRESS
70 CLC ;IMPLIED ADDRESS

80 LDA #02 ;IMMEDIATE ADDRESS
90 ADC #02 ;IMMEDIATE ADDRESS
100 STA $FB ;ZERO-PAGE ADDRESS
110 RTS ;IMPLIED ADDRESS

In this example, the three address modes used in the program are identified in
the comments column. Let's look now at each of these three address modes.

IMPLICIT (OR IMPLIED) ADDRESSING
(Lines 60, 70 and 110)

Formats: CLD, CLC, RTS, etc. When you use implicit addressing, all you have
to type is a three-letter Assembly language instruction; implicit addressing does
not require (in fact does not allow) the use of an operand.

The instruction in an implied address is thus similar to an intransitive
verb in English; it has no object. The address it refers to—it it refers to an
address at all—is not specified, but merely implied by the the mnemonic itself.

Op-code mnemonics that can be used in the implicit-addressing mode
are BRK, CLC, CLD, CLI, CLV, DEX, DEY, INX, INY, NOP, PHA, PHP, PLA, PLP,
RTI, RTS, SEC, SED, SEI, TAX, TAY, TSX, TXA, TXS, and TYA.

IMMEDIATE ADDRESSING
(Lines 80 and 90)

Formats: LDA #02, ADC #02, etc. When immediate addressing is used in an
Assembly language instruction, the operand that follows the op-code mnemonic
is a literal number—not the address of a memory location. So in a statement that
uses immediate addressing, a # sign—the symbol tor a literal number—always
appears in front of the operand.

When an immediate address is used in an Assembly language state-
ment, the assembler does not have to peek into a memory location to find a
value. Instead, the value itself is stuffed directly into the accumulator. Then
whatever operation the statement calls for can be immediately performed.

Instructions that can be used in the immediate address mode are ADC,
AND, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

94 Principles and Techniques of Assembly Language Programming

ZERO-PAGE ADDRESSING
(Line 100)

Formats: STA $FB, etc. It is not difficult to distinguish between a statement
that uses immediate addressing and one that uses zero-page addressing. In a
statement that uses zero-page addressing, the operand always consists of just
one byte—a number ranging from $00 to $FF. That number equates to an
address in a block of RAM called Page Zero.

The # symbol is not used in zero-page addressing because the operand
in a statement that employs zero-page addressing is always a memory location,
never a literal number. So the operation called for in the statement is performed on
the contents of the specified memory location, not on the operand itself.

Zero-page addresses use one-byte operands because that is all they
need. As we just said, the memory locations they refer to are in a block of your
your computer's memory that is called, logically enough, Page Zero, and to
address a memory location on Page Zero, a one-byte operand is all that is
necessary.

Specifically, the memory block in your computer known as Page Zero
extends from Memory Address $00 through Memory Address $FF. You could just
as easily (and just as correctly) say that Page Zero extends $0000 to $00FF, but
it is not really necessary to use those extra pairs of zeros when you want to refer
to a zero-page address. When you follow an Assembly language instruction
with a one-byte address, your computer knows that the address is on Page Zero.

Since zero-page addresses use memory-saving one-byte operands,
Page Zero is the high-rent district in your Commodore’'s RAM; it is such a desir-
able piece of real estate, in fact, that the people who designed your computer
took most of it for themselves. Most of Page Zero is used up by your computer’s
operating system and other essential routines, and not much space has been
left there for user-written programs.

Later on in this book—in a chapter dedicated to memory manage-
ment—we will discuss the memory space available on Page Zero in more detail.
For now, the most important fact to remember about Page Zero is that it is an
address mode that uses a memory address on Page Zero as a one-byte
operand.

Instructions that can be used with zero-page addressing are ADC,
AND, ASL, BIT, CMP, CPX, CPY, DEC, ECR, INC, LDA, LDX, LDY, LSR, ORA,
ROL, ROR, SBC, STA, STX, and STY.

NEW ADDRESSING MODES

Now we will describe the five 6510/8502 address modes we have not covered so
far.

ACCUMULATOR ADDRESSING

Format: ASLA Accumulator addressing mode is used to perform an operation
on a value stored in the 6510/8502 processor’s accumulator. The command ASL
A, for example, is used to shift each bit in the accumulator by one bit position,

Addressing the Commodore 95

with the leftmost bit (Bit 7) dropping into the carry bit of the processor status (P)
register. Other instructions that can be used in the Accumulator addressing
mode are LSR, ROL, and ROR.

ABSOLUTE ADDRESSING

Format: STA $02A7 Absolute addressing is very similar to zero-page address-
ing. In a statement that uses absolute addressing, the operand is a memory
location, not a literal number, and the operation called for in an absolute-
address statement is always performed on the value stored in the specified
memory location, not on the operand itselt.

The difference between an absolute address and a zero-page address
is that an absolute-address statement does not have to be on Page Zero; it can
be anywhere in free RAM. So an absolute-address statement requires a two-
byte operand—not a one-byte operand, which is all that a zero-page address
requires.

This is what the Commodore assembler version of our ADDNRS pro-
gram would look like if absolute addressing, instead of zero-page addressing,
were used.

THE ADDNRS SOURCE PROGRAM
(With Absolute Addressing in Line 100)

10 ;

20 ;8-BIT ADDITION PROGRAM

30 ;

40 *=3%$8000

50 ;

60 ADDNRS CLD ;IMPLIED ADDRESS
70 CLC ;IMPLIED ADDRESS

80 LDA #02 ;IMMEDIATE ADDRESS
90 ADC #02 ;IMMEDIATE ADDRESS
100 STA $02A7 ;ABSOLUTE ADDRESS
110 RTS ;IMPLIED ADDRESS

The only change that has been made in this program is the one in Line 100. The
operand in that line is now a 2-byte operand, and that change makes the pro-
gram one byte longer, but now the address in Line 100 no longer has to be on
Page Zero. Now it can be the address of any free byte in RAM.

Mnemonics that can be used in the absolute addressing mode are
ADC, AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, IMP, JSR, LDA, LDX, LDY,
LSR, ORA, ROL, ROR, SBC, STA, STX, and STY.

RELATIVE ADDRESSING

Format: BCC LABEL Relative addressing is an address mode used for a tech-
nique called conditional branching—a method for instructing a program to jump
to a given routine under certain specific conditions.

96 Principles and Techniques of Assembly Language Programming

There are eight conditional branching instructions—or relative-
address mnemonics—in 6510/8502 Assembly language. All eight begin with B,
which stands for “"branch to”.

Examples of the conditional-branching instructions that use relative
addressing are:

BCC "branch to a specified address if the carry flag is clear,” BCS
"branch to a specitied address if the carry flag is set,” BEQ "branch to a speci-
tied address if the result of an operation is equal to zero,” and BNE “branch to a
specified address if the result of an operation is not equal to zero.”

All eight of the conditional branching instructions will be described
later on in this book, in a chapter devoted to looping and branching.

COMPARISON INSTRUCTIONS

The eight comparison mnemonics are often used with three other instructions
called comparison instructions. Typically, a comparison instruction is used to
compare two values, and the conditional branch instruction is then used to
determine what should be done if the comparison turns out in a certain way.
The three comparison instructions are: CMP, which means "compare

the number in the accumulator with ..."; CPX, which means “compare the
value in the X register with . . ."'; and CPY, "compare the value in the Y register
with. .. ."

Conditional branching instructions can also follow arithmetic or logi-
cal operations, and various kinds of testing of bits and bytes.

Usually, a branch instruction causes a program to branch off to a
specified address if certain conditions are met or not met. A branch might be
made, for example, if one number is larger than than another, if the two num-
bers or equal, or if a certain operation results in a positive, negative, or zero
value.

AN EXAMPLE OF CONDITIONAL BRANCHING

Here is an example of an Assembly language routine that uses conditional
branching (this routine was typed using a Commodore 64 assembler).

AN ADDITION PROGRAM WITH ERROR-CHECKING

10 ;

20 ;ADD8BIT
30 ;

40 *=$8000
50 ;

60 ADD8BIT LDA #0
70 STA $02AA
80 ;

90 CLD

100 CLC

110 ;

Addressing the Commodore 97

120 LDA $02A7
130 ADC $02A8
140 BCS ERROR
150 STA $02A9
160 RTS

170 ERROR LDA #1
180 STA $02AA
190 RTS

This is an 8-bit addition program with a simple error-checking utility built in. It
adds two 8-bit values, using absolute addressing. If this calculation results in a
16-bit value (a number larger than 255), then there will be an overflow error in
addition, and the carry bit of the processor status register will be set.

If the carry bit is not set, then the sum of the values in $02A7 and $02A8
will be stored in $02A9. If the carry bit is set, however, this condition will be
detected in Line 140, and the program will branch to the line labeled ERROR—
Line 170.

In this sample program, an error will cause the values in Addresses
$02A7 and $02A8 not to be added. Instead, a flag—the number 1—will be loaded
into Memory Register $02AA, and the routine will end.

ABSOLUTE INDEXED ADDRESSING

Format: LDA $02A7.X or LDA $02A7.Y An indexed address, like a relative
address, is calculated by using an offset, but in an indexed address, the
offset is determined by the current content of the 6510/8502's X register or Y
register.

A statement containing an indexed address can be written using
either of these formats:

LDA $02A7,X
or

LDA $02A7,Y

HOW ABSOLUTE INDEXED ADDRESSING WORKS

When indexed addressing is used in an Assembly language statement, the con-
tents of either the X register or the Y register (depending upon which index
register is being used) are added to the address given in the instruction to
determine the final address.

Here is an example of a routine that makes use of indexed addressing.
The routine is designed to move byte by byte through a string of ASCII charac-
ters, storing the string in a text buffer. When the string has been stored in the
butfer, the routine will end.

The text to be moved is labeled TEXT, and the buffer to be filled with
text is labeled TXTBUF.

98 Principles and Technigues of Assembly Language Programming

The starting address of TXTBUF, plus the ASCII code number for a
carriage return, are defined in a symbol table that precedes the program.

ROUTINE FOR MOVING A BLOCK OF TEXT
(Presented as an Example of Indexed Addressing)

10 ;

20 ;DATMOV

30 ;

40 TXTBUF=$02A7

50 EOL=%0D

70 ;

80 *=%$8000

90 ;

95 JMP DATMOV

96 ;

100 TEXT .BYTE $54,%41,%$4B,%$45,%20,%4D,%45,%$20
110 .BYTE $54,%4F,$20,%$59,%4F ,$55,%$52,%20
120 .BYTE $4C,$45,%41,%44,%45,%$52,%21,%0D
130 ;

140 DATMOV

150 ;

160 LDX #0

170 LOOP LDA TEXT,X

180 STA TXTBUF,X

190 CMP #EOL

200 BEQ FINI

210 INX

220 JMP LOOP

230 FINI RTS

250 .END

When the program begins, we know that the string ends with a carriage return
(ASCII $0D), as strings often do in Commodore programs.

As the program proceeds through the string, it tests each character
to see whether it is a carriage return. If the character is not a carriage return,
the program moves on to the next character. It the character is a carriage
return, that means that there are no more characters in the string, and the
routine ends.

ZERO-PAGE.X ADDRESSING

Format: LDA $FBX Zero-Page X addressing is used just like Absolute
Indexed, X addressing. However, the address used in the Zero-Page X address-
ing mode must (logically enough) be located on Page Zero. Instructions that
can be used in the Zero-Page X addressing mode are ADC, AND, ASL, CMP,
DEC, EOR, INC, LDA, LDY, LSR, ORA, ROL, ROR, SBC, STA, and STY.

Addressing the Commodore 99

ZERO-PAGE.Y ADDRESSING

Format: STX $FB)Y Zero-Page,Y addressing works just like Zero-Page,X
addressing, but can be used with only two mnemonics: LDX and STX. If it were
not for the Zero Page,Y addressing mode, it would not be possible to use abso-
lute indexed addressing with the instructions LDX and STX—and that is the only
reason that this addressing mode exists at all.

INDIRECT ADDRESSING

There are two subcategories of indexed addressing: indexed indirect address-
ing, and indirect indexed addressing.

Both indexed indirect addressing and indirect indexed addressing are
used primarily to look up data stored in tables.

If you think the names of the two addressing modes are confusing, you
are not the first one with that complaint. I never could keep them sorted out
myself until I dreamed up a little memory trick to help eliminate the confusion.

Here is the trick. Indexed indirect addressing—which has an X in the
tirst word of its name—is an addressing mode that makes use of the 6510/8502
chip's X register.

Indirect indexed addressing—which does not have an X in the first
word of its name—uses the 6510/8502's Y register.

Now we will look at each of your Commodore’s two indirect address-
ing modes—beginning with with indexed indirect addressing.

INDEXED INDIRECT ADDRESSING

Format: (LDA $FD.X) Indexed indirect addressing works in several steps.

First, the contents of the X register are added to a zero-page address—
not to the contents of the address, to the address itself.

The result of this calculation must always be another zero-page
address.

When this second address has been calculated, the value that it con-
tains—together with the contents of the following byte—make up a third address.
The third address is (at last) the address that will finally be interpreted as the
operand of the statement in question. An example might help clarify this
process.

Let's suppose that Memory Address $B0 in your computer held the
number $00, that Memory Address $Bl held the number $80, and that the X
register held the number 0.

Here are those equates in an easier-to-read form:

$B0 = #300
$B1 = #$80
X = #3$00

Now let's suppose you were running a program that contained the indexed-
indirect instruction LDA ($B0,X).

100 Principles and Techniques of Assembly Language Programming

If all of those conditions existed when your computer encountered
the instruction LDA ($B0,X), your computer would add the contents of the X
register (a zero) to the number $B0. The sum of $B0 and 0 would, of course,
be $B0. So your computer would go to Memory Address $B0 and $BI. It
would find the number $00 in Memory Address $B0, and the number $80 in
Address $BI.

Since 6510/8502-based computers store 16-bit numbers in reverse
order—low byte first—your computer would interpret the number found in $B0
and $B1 as $8000. So it would load the accumulator with the number $8000, the
16-bit value stored in $B0 and $B1.

Now let's imagine that when your computer encountered the statement
LDA ($B0,X), its 6510/8502's X register held the number 04, instead of the
number 00.

Here is a chart illustrating those values, plus a few more equates that
we will be using shortly:

$B0 = #300
$B1 = #$80
$B2 = #$0D
$B3 = #S$FF
$B4 = HSFC
$B5 - #$1C

X = #304

If these conditions existed when your computer encountered the instruction LDA
($B0,X), your computer would add the number $04 (the value in the X register)
to the number $B0, and would then go to Memory Addresses $B4 and §BS. In
those two bytes, it would find the final address (low byte first, of course) of the
data it was looking for—in this case, $1CFC.

Indexed indirect addressing is not used in many Assembly language
programs. When it is used, its purpose is to locate a 16-bit address stored in a
table of addresses on Page Zero. Since space on Page Zero is so hard to find,
it is not very likely that you will ever be able to store many data tables there.
So it is not too likely that you will ever find much use for indexed indirect
addressing.

INDIRECT INDEXED ADDRESSING

Format: LDA ($FD).Y Indirect indexed addressing is not nearly as rare as
indexed indirect addressing. In fact it is quite often used in Assembly language
programs.

Indirect indexed addressing uses the Y register (never the X register)
as an offset to calculate the base address of the start of a table. The starting
address of the table has to be stored on Page Zero, but the table itself does not
have to be.

When an assembler encounters an indirect indexed address in a pro-
gram, the first thing it does is peek into the page-zero address that is enclosed in
the parentheses that precede the Y. The 16-bit value stored in that address and

Addressing the Commodore 101

the following address are then added to the contents of the Y register. The value
that results is a 16-bit address—the address the statement is looking for.

Here is an example of indirect indexed addressing.

Your computer is running a program and comes to the instruction ADC
($B0),Y. It then looks into Memory Address $B0 and $Bl1. In $BO, it finds the
number $00. In $B1, it finds the number $50, and the Y register contains a 4.

Here is a chart that illustrates those conditions:

#300
#3850

0
1
= #%04

$B
$B
Y

0N

It these states existed when your computer encountered the instruction ADC
($B0),Y, then your computer would combine the numbers $00 and $50, and
would come up (in the 6510/8502 chip’s peculiar low-bit-first fashion) with the
address $5000. It would then add the contents of the Y register (4 in this case) to
the number $5000—and would wind up with a total of $5004.

That number—$5004—would be the final value of the operand ($B0),Y.
So the contents of the accumulator would be added to whatever number was
stored in Memory Address $5004.

Once you understand indirect indexed addressing, it can become a
very valuable tool in Assembly language programming. Only one address—the
starting address of a table—has to be stored on Page Zero, where space is
always scarce. Yet that address, added to the contents of the Y register, can be
used as a pointer to locate any other address in your computer’s memory.

UNINDEXED INDIRECT ADDRESSING

Format: JMP ($02A7) Unindexed indirect addressing is a special kind of
addressing that can be used with only one 6510/8502 mnemonic: the JMP
instruction. When unindexed indirect addressing is used, a 16-bit number is
placed inside a pair of parentheses that follow the JMP instruction. This number
serves as a pointer to a pair of memory registers which, taken together, contain
the address to which the desired jump is to be made. Let us suppose, for exam-
ple, that the memory address $02A7 contained the value $00 and that the
address $02A8 held the value $06. Now let us suppose that the statement]MP
(§02A7) were included in a Commodore Assembly language program. If that
were the case, the program being executed would jump to the address $0600—
not to the address $02A7, which would be the case if the jump instruction were
simply JMP $02A7.

ANOTHER ADDRESS: THE STACK

That completes our examination of the thirteen official addressing modes used
in 6510/8502 Assembly language programming. However, as long as we are
talking about 6510/8502 addressing modes, [might as well introduce a pro-
gramming tool that is related very closely to addressing: a tool called the hard-
ware stack.

102 Principles and Techniques of Assembly Language Programming

The hardware stack, or simply stack, occupies the 256 bytes of memory
from $0100 to $01FF in RAM. The stack is what programmers sometimes call a
LIFO (last-in, first-out) block of memory. It is often compared to a spring-loaded
stack of plates in a diner; when you put a number in the memory location on top
of the stack, it covers up the number that was previously on top. So the number
on top of the stack must be removed before the number under it—which was
previously on top—can be accessed.

Although the stacked plate illustration is a useful technique for
describing how the stack works, it is not completely accurate. Actually, the stack
is nothing but a block of RAM—and blocks of RAM do not really move up and
down like a stack of plates inside your Commodore. When you place a number
on your Commodore's hardware stack, here is what really happens.

Your computer’s hardware stack, as [have already mentioned, is situ-
ated in a block of memory that extends from Memory Register $0100 to Memory
Register $01FF, and this block of memory is used from high memory downward.
That is, the first number that is stored on the stack will be in Register $01FF, the
next number will be placed in Register $01FE, and so on. Because of this from-
the-top-down storage system the last stack address that can be used is Memory
Register $0100.

Your Commodore's 6510 or 8502 chip keeps track of stack manipula-
tions with the help of a special register called the stack pointer (the stack
pointer was described briefly back in Chapter 3). When there is nothing stored
on the stack, the value of the stack pointer is $FF. Add $100 to that number, and
what you get is $01FF—the highest memory address on the stack, and the
address that will be used for the next (or, in this case, the first) value that is
stored on the stack.

As soon as a value is stored on the stack, your computer’s 6510 or 8502
chip will automatically decrement the stack pointer by one. Each time another
value is stored on the stack, the stack pointer will be decremented again. There-
fore, the stack pointer will always point to the address of the next value that will
be stored on the stack.

Let us suppose, now, that several numbers have been stored on the
stack, and let us also suppose that the time has come to retrieve one of those
values from the stack. If that were the case, what would happen?

You can probably guess the answer to that one. When a number
that has been stored on the stack is retrieved, the value of the stack pointer
is incremented by one. That effectively removes one value from the stack,
since it means that the next value that will be stored on the stack will have
the same position on the stack as the one that was removed. That is a little
tricky to comprehend, given the upside-down nature of the stack. Figure 6-1
shows an empty stack, with the stack pointer pointing to the first available
address on the stack: $01FF.

Now let's place a number (which value is arbitrary) on the stack.

Notice in Figure 6-2 that the value of the stack pointer has been decre-
mented, and that the number we have placed on the stack is now stored at the
highest address in the stack, Memory Register $01FT.

Now let's place another number (also with an arbitrary value) on the
stack.

Addressing the Commodore 103

"BOTTOM” STACK

OF STACK ADDRESSES
STACK POINTER

$FF $O1FF

$01FE

$02FD

$01FD

Figure 6-1 How the Stack Pointer Works
"BOTTOM” STACK
OF STACK ADDRESSES
$2E $O1FF

STACK POINTER
$FE $01FE

$01FD

$01FD

Figure 6-2 Placing a Number on the Stack

The stack pointer in Figure 6-3 has been decremented again, and a
second number is now on the stack.

Now let's remove one number from the stack.

As you can see in Figure 6-4, Stack Address $01FE still holds the value
$B0, but the value of the stack pointer has been decremented, and now points to
Memory Address $01FE. So the next number that is placed on the stack will be
stored at Memory Address $01FE, and when that happens, the number previ-
ously stored in that stack position—$B0—will be erased. To see how that works,
we will now store one more number on the stack. This time, for no special rea-
son, the value of the number placed on the stack will be $17.

See? Memory Register $01FE in Figure 6-5 now holds the value $17.
The value of the stack pointer has been decremented, the value $B0 has been
erased by the value $17, and the next number placed on the stack will be stored
in Memory Register $01FD.

104 Principles and Techniques of Assembly Language Programming

"BOTTOM” STACK
OF STACK ADDRESSES
$2E $O1FF
$BO $O1FE
STACK POINTER
$FD $01FD
$01FD

Figure 6-3 Placing Another Number on the Stack

"BOTTOM” STACK
OF STACK ADDRESSES
$2E $O1FF
STACK POINTER
$FE $BO $O1FE
$01FD
$01FD
Figure 6-4 Pulling a Number off the Stack
‘BOTTOM” STACK
OF STACK ADDRESSES
$2E $01FF
$17 $01FE
STACK POINTER
$FD $01FD
$01FD

Figure 6-5 One Last Stack Manipulation

Addressing the Commodore 105

HOW OS USES THE STACK

As I have mentioned, the 6510/8502 processor often uses the stack for temporary
data storage during the operation of a program. When a program jumps to a
subroutine, for example, the 6510/8502 chip takes the memory address that the
program will later have to return to, and pushes that address onto the top of the
stack. Then, when the subroutine ends with an RTS instruction, the return
address is pulled from the top of the stack and loaded into the 6510/8502's pro-
gram counter. The program can return to the proper address, and normal pro-
cessing can resume.

The stack is also used quite often in user-written programs. Here is an
example of a routine that makes use of the stack. You may recognize it as a
variation on the 8-bit addition program that we have been using in this book.

A TWO-PART PROGRAM

As you will see, this program is divided into two parts. In Routine 1, we will put
two 8-bit numbers on the stack. In Routine 2, we will take them off the stack and
add them. Routine 1 should be typed first. Before the program is assembled and
executed, however, Routine 2 should be appended to Routine 1.

ROUTINE 1: PUTTING TWO NUMBERS ON THE STACK

10 ;

20 ;STACKADD

30 ;

40 *=$8000

50 ;

60 LDA #35 ;(OR ANY OTHER 8-BIT NUMBER)
70 PHA

80 LDA #49 ;(OR ANY OTHER 8-BIT NUMBER)
90 PHA

Now let's append Routine 2 to Routine 1:

ROUTINE 2: TAKING TWO NUMBERS OFF THE STACK AND
ADDING THEM

100 ;
110 ;WHEN THIS PROGRAM BEGINS, TWO
120 ;8-BIT NUMBERS ARE ON THE STACK

130 ;

140 CLD

150 CLC

160 PLA

170 STA S$FD
180 PLA

190 ADC $FD
200 STA S$FE

106 Principles and Techniques of Assembly Language Programming

210 RTS

This program—a simple, straightforward 8-bit addition routine—shows how easy
and convenient it can be to use the stack in Assembly language programs. In
Line 160, a value is pulled from the stack and stored in the accumulator. Then in
Line 170, the value is stored in memory address $FD.

In Lines 180 and 190, another value is pulled from the stack, and
added to the value now stored in $FD. The result of this calculation is then
stored in $FE, and the routine ends.

As you can see, the stack can be a very convenient place in which to
store data temporarily. The stack can be a very memory-efficient tool, since it
does not require the use of dedicated storage registers. It can save time, since it
takes only one instruction to push a value onto the stack, and only one instruc-
tion to retrieve a value that has been stored there.

AN IMPORTANT WARNING

Beware: The stack can also be very dangerous for beginning programmers to
play around with. When you use the stack in an Assembly language routine, it
is extremely important to leave the stack exactly as you found it when the rou-
tine ends. If you have placed a value on the stack during the course of a rou-
tine, it must be removed from the stack before the routine ends and normal
processing resumes. Otherwise, there might be “"garbage” on the stack when
the next routine is called, and that could result in program crashes, memory
wipeouts, and various other programming disasters. Remember: Mismanage-
ment of the stack is extremely hazardous to the health of Assembly language
programs!

So, if you take care to manage the stack properly—in other words, if
you make sure to clear your stored numbers from the stack after each use—it
can be a very powerful programming tool.

If you mess up the stack while you are using it, though, you are surely
bound for troublel!

Mnemonics that make use of the stack are PHA (“push the contents of
the accumulator onto the stack”), PLA, (“'pull the top value off the stack and
deposit it in the accumulator”’), PHP (“'push the contents of the P register onto
the stack””), and PLP ("pull the top value off the stack and deposit it into the P
register”’).

The PHP and PLP operations are often included in Assembly lan-
guage subroutines so that the contents of the P register will not be wiped
out during subroutines. When you jump to a subroutine that may change
the status of the P register, it is always a good idea to start the subroutine
by pushing the contents of the P register onto the stack. Then, just before the
subroutine ends, you can restore the P register’s previous state with a PHP
instruction. That way, the P register’s contents will not be destroyed during
the course of the subroutine.

Looping and
Branching

GOSUBs and GOTOs in
Assembly Language

Now we are going to start having some real fun with Commodore Assembly
language. In this chapter, you will learn how to print messages on the screen,
how to encode and decode ASCII characters, and how to perform a number of
other neat tricks in Assembly language.

We are going to accomplish these feats with some advanced Assembly
language programming techniques that we have not tried out so far, along with
some new variations on techniques covered in earlier chapters.

These are some of the programming techniques we are going to cover
in this chapter:

e Using the Commodore Assembly language .BYTE directive. (For Mer-
lin 64 users, that is the same as the DFB [DeFine Bytes] directive. Pan-
ther C64 owners may use the the DFC [DeFine Constant] directive,
which also means the same thing.)

e Incrementing and decrementing the X and Y registers.
e Using comparison and branching instructions together.

e Advanced looping and branching.

In this chapter, we will be making extensive use of the CHROUT routine in the
Commodore kernal (call address $FFD2). Remember that routine? It is the one
you used to print the character X on your computer screen back in Chapter 5.

You will get a chance to print some messages on your screen by incor-
porating the CHROUT routine into a couple of interesting programs that you
will be writing. Here is the first of those programs. It was written using the Com-
modore 64 Macro Assembler, but you will be provided with all of the instructions
that you will need to type and run the program in Merlin-compatible and Pan-
ther-compatible versions.

110 Principles and Techniques of Assembly Language Programming

SETTING OUT ON A QUEST

Here is one of the programs that we will be working with for the rest of this
chapter:

THE QUEST

10 ;

20 ;THE QUEST

30 ;

40 *=8000 ;OR 'ORG EQU $8000' (OR $2000)
50 ;

60 BUFLEN=23

70 CHROUT=$FFD2

80 ;

90 JMP BEGIN

100 ;

110 TEXT .BYTE 87,72,69,82,69,32,73,83
120 .BYTE 32,84,72,69,32,67,79,77
130 .BYTE 77,79,68,79,82,69,63
140 ;

150 BEGIN LDX #0

160 ;

170 LOOP LDA TEXT,X

180 JSR CHROUT

190 INX

200 CPX #BUFLEN

210 BNE LOOP

220 RTS

This program is called (for reasons you will soon discover) THE QUEST. 1t is
designed to print a cryptic message on your video screen.

Another listing of the same program, but typed using a Merlin 64
assembler, is given in Appendix B.

RUNNING THE QUEST

When you have finished typing THE QUEST, you can run it immediately. Just
assemble it, and save it on a disk in both its source-code and object-code ver-
sions. For the sake of consistency, I suggest that you save the program under
the file names QUEST.SRC, QUEST.ASM (if you use the Commodore 64 assem-
bler), and QUEST OB]J.

Once THE QUEST program is safely stored on a disk, you can run it
using any of the three methods that were covered in Chapter 5: with your
machine-language monitor, under DOS control, or from a BASIC program.

When you run the program, you will see what it does, but how does it
do it? I will explain.

Looping and Branching 111

Let's start with an explanation of the Assembly language .BYTE direc-
tive, which appears in Lines 110 to 130. (As previously mentioned, the Merlin 64
equivalent of this directive is DFB, and the Panther C64 equivalent is DFC.)

The BYTE/DFB/DFC directive is sometimes called a pseudo-operation
code, or pseudo-op, because it appears in the op-code column of Assembly lan-
guage source-code listing but is not actually a part of the 6510/8502 Assembly
language instruction set. Instead, it is a specialized directive that varies in for-
mat from assembler to assembler. There are also many other pseudo-ops with
formats that differ from one assembler to another. There are no generally
accepted standards for writing pseudo-op directives, so pseudo-op codes
designed for one assembler often will not work with another.

When the BYTE directive (or one of its equivalents) is used in a pro-
gram, the bytes that follow the directive are assembled into consecutive loca-
tions in RAM. In the program THE QUEST, the bytes that follow the label TEXT
are ASCII codes for a series of text characters—as you can see when you run
the program.

LOOPING THE LOOP

As explained in Chapter 6, the X and Y registers in the 6510/8502 chip can be
progressively incremented and decremented during loops in a program. In the
Quest program, the X register is incremented from 0 to 23 during a loop in which
characters in a text string are read. The characters to be read are written as
ASCII codes in Lines 110 through 130.

In Line 150, the statement LDX #0 is used to load the X register with a
zero. Then, in Line 170, the loop begins.

INCREMENTING THE X REGISTER

The first statement in the loop is LDA TEXT,X. Each time the loop cycles, this
statement uses indexed addressing to load the accumulator with an ASCII code
for a text character. Then, in Line 180, the kernal routine CHROUT is used to
print each character in the screen.

By the time the loop ends, all 23 characters in lines 110 through line
130 have been printed on the screen.

The first time the program hits Line 170, there will be a 0 in the X regis-
ter (since a 0 has just been loaded into the X register). So the first time the
program encounters the statement LDA TEXT X, the accumulator is loaded with
the hexadecimal number $54—what programmers sometimes call the Oth byte
after the label TEXT. The hex number $54 is, of course, the ASCII code for the
letter T. So, in Line 180, the kernal routine CHROUT takes the hex number $54
from the accumulator, recognizes it as the ASCII code for a T, and prints a T on
the screen.

Incidentally, there is no need for #'s in front of the numbers in Line
110, since numbers that follow the .BYTE directive and its variants are automati-
cally interpreted as literal numbers.

112 Principles and Techniques of Assembly Language Programming

Now let's move on to line 190. The mnemonic you see there—INX—
means "increment the X register.”

The first time the program makes its way through the loop that starts at
Line 170, the X register will hold a 0. But as soon as the CHROUT routine has
printed its first character on the screen, the INX instruction in Line 190 will incre-
ment that 0 to a 1.

Next, in Line 200, we see the instruction CPX #BUFLEN. Look back at
Line 60, and you will see that BUFLEN is a constant which has been equated to
the number 23. So the instruction CPX #BUFLEN means “compare the value in
the X register to the literal number 23.”

The reason we want this comparison to be performed is so we can
determine whether 23 characters have been printed on the screen yet. There
are 23 characters in the text string that we are printing, and when we have
printed all of them, we will want to print a carriage return and end our program.

COMPARING VALUES

There are three comparison instructions in 6510/8502 Assembly language: CMP,
CPX, and CPY.

CMP means "compare to a value in the accumulator.” When the
instruction CMP is used, followed by an operand, the value expressed by the
operand is subtracted from the value in the accumulator. This subtraction oper-
ation is not performed to determine the exact difference between these two val-
ues, but merely whether or not they are equal—and, if they are not equal, which
one is larger than the other.

It the value in the accumulator is equal to the tested value, the zero (Z)
flag of the processor status (P) register will be set to 1. If the value in the accu-
mulator is not equal to the tested value, the Z flag will be left in a cleared state.

It the value in the accumulator is less than the tested value, then the
carry (C) flag of the P register will be left in a clear state.

It the value in the accumulator is greater than or equal to the tested
value, then the Z flag will be set to 1 and the carry flag will also be set.

CPX and CPY work exactly like CMP, except that they are used to
compare values with the contents of the X and Y registers, respectively. They
have the same effects that CMP has on the status flags of the P register.

USING COMPARISON AND BRANCHING
INSTRUCTIONS TOGETHER

The three comparison instructions in Commodore Assembly language are usu-
ally used in conjunction with eight other Assembly language instructions—the
eight conditional branching instructions that I mentioned in Chapter 6.

Looping and Branching 113

The sample program that I have called THE QUEST contains a condi-
tional branching instruction in Line 210. That instruction is BNE LOOP, which
means “'branch to the statement labeled loop if the zero flag (of the processor
status register) is not set.”

This instruction uses what can be a confusing convention of the
6510/8502 chip. In the 6510/8502's processor status register, the zero flag is set
(equals 1) it the result of an operation that has just been performed is 0, and the
zero flag is cleared (equals 0) if the result of an operation that has just been
performed is not zero.

This is all quite academic, however, as far as the result of the state-
ment BNE LOOP is concerned. When your computer encounters the BNE LOOP
instruction in Line 210, it will keep branching back to Line 170 (the line labeled
LOOQOP) as long as the value of the X register has not yet reached 23.

Once the value of the X register has reached 23, the statement BNE
LOOQRP in Line 210 will be ignored, and the program will move on to the next line,
and that line contains an RTS instruction that terminates the program.

CONDITIONAL BRANCHING
INSTRUCTIONS

Now let's talk a little more about conditional branching instructions. As you may
recall from Chapter 6, there are eight conditional branching instructions in
6510/8502 Assembly language. They all begin with the letter B, and they are
also called relative-addressing, or branching instructions. These eight instruc-
tions, and their meanings, are:

BCC—Branch if the carry (C) flag of the processor status (P) reg-
ister is clear. (If the carry flag is set, the operation will have no
effect.)

BCS—Branch if the carry (C) flag is set. (If the carry flag is clear,
the operation will have no effect.)

BEQ—Branch if the result of an operation is zero (if the zero [Z]
flag is set).

BMI—Branch on minus (if an operation results in a set N [nega-
tive] flag).

BNE—Branch if not equal to zero (if the zero [Z] flag is not set).

BPL—Branch on plus (if an operation results in a cleared nega-
tive [N] flag).

BVC—Branch if the overflow (V) flag is clear.
BVS—Branch if overflow (V) flag is set.

114 Principles and Techniques of Assembly Language Programming

HOW BRANCHING DIFFERS FROM
JUMPING

In a few moments, we will use some of these instructions in another Assembly
language program. First, though, this might be a good time to point out some
important differences between the branching instructions in the preceding list
and another category of 6502/6510/8502 instructions: jump instructions, which
have been mentioned earlier in this book and which we will briefly review now.

There are two jump instructions in 6502 Assembly language: JMP and
JSR. As you may recall from previous chapters, the JMP mnemonic is used much
like the GOTO instruction in BASIC. When a JMP instruction is encountered in
an Assembly language program, the program jumps to whatever memory
address is specified by the operand that follows the JMP instruction.

The Assembly language instruction JSR is used much like BASIC's
GOSUB instruction. When a JSR instruction is encountered in Assembly lan-
guage program, the memory address of the next instruction in the program is
stored on the hardware stack. Then the program jumps to whatever memory
address is specified by the operand that follows the JSR instruction.

The mnemonic JSR is designed primarily for use with subroutines. In
6502/6510/8502 Assembly language, subroutines almost always end with RTS
instructions.

In Assembly language, RTS is the opposite of JSR. When an RTS
instruction is encountered in a program, a memory address is removed from the
stack, and processing immediately jumps to that address. If the RTS instruction
has been used to end a subroutine, then the address pulled from the stack will
ordinarily be the one that was deposited there by the JSR instruction that was
used to invoke the subroutine. Processing of the program will resume where it
left off—at the line following the JSR instruction that was used to invoke the
subroutine.

[have already described one difference between branching instruc-
tions and the jump instructions JMP and JSR: branching instructions are condi-
tional; jump instructions are unconditional When a jump instruction is
encountered in a program, it will always be carried out, but when a branching
instruction is encountered in a program, it will be carried out only if certain
specific conditions are fulfilled.

OTHER DIFFERENCES

There is also another important difference between a jumping instruction and a
branching instruction. In machine language, the operand that follows a jump
instruction is always expressed as a two-byte value and is always interpreted
as the starting address of the destination of the jump instruction. But when a
branching instruction is assembled into machine language, the operand that
follows the branching instruction, is always converted to a signed one-byte
number. Then, when the program is executed, this signed one-byte number is

Looping and Branching 115

interpreted as an offset that points to the starting address of the destination of
the branch instruction.

This all sounds quite complicated, but some simple examples should
make it clearer. Let's start with a sample statement containing a jump
instruction:

JMP $C000

If the above statement were assembled into machine language, and then exe-
cuted, the result would be quite straightforward. The value $C000 would be
loaded into your computer’s program counter, and a jump to Memory Address
$C000 would occur.

Unfortunately, branching instructions are a little more complicated
than jump instructions. Here is a sample program that uses a branching instruc-
tion: BCC, which means "branch if carry set.” I have named the program
BRANCHIT.S, for obvious reasons.

THE BRANCHIT.S PROGRAM (SOURCE-CODE VERSION)
BRANCHIT.S

ORG $8000
*

1

2

3 WHAZIS EQU $02A7
4 *

5 LDA #5

6 CLC

7 ADC WHAZIS

8 BCS RETURN

9 TAX

0

10 RETURN RTS

This little routine is very straightforward. In Line 5, the literal number 5 is loaded
into the accumulator. Then the 6510/8502 carry flag is cleared, and the value
stored in Memory Address $02A7 (which has been labeled WHAZIS) is added to
the value stored in the accumulator (now 5). Next, in Line 8, a branching
instruction is invoked. If adding 5 to the value of WHAZIS has resulted in a
carry—that is, if the sum of 5 and WHAZIS is greater than 255—then the routine
will branch to Line 10 and will end, but if the sum of 5 and WHAZIS does not
result in a carry—that is, if the sum is less than 255—then the sum will be trans-
ferred to the X register before the routine ends.

ASSEMBLING THE BRANCHIT.S ROUTINE

Now let's take a look at an assembled listing of the BRANCHIT.S program:

116 Principles and Techniques of Assembly Language Programming

THE BRANCHIT.S PROGRAM (ASSEMBLED VERSION)

8000: 1 ORG $8000
8000: 2 *

8000: 3 WHAZIS EQU $02A7
8000: 4

8000:A9 05 5 LDA #5
8002:18 6 CLC

8003:6D A7 02 7 ADC WHAZIS
8006:B0 01 8 BCS RETURN
8008:AA 9 TAX

8009:60 10 RETURN RTS

HOW BRANCHING INSTRUCTIONS WORK

Caretully examine Lines 8 through 10 of this assembled listing, and you will see
how the branching instruction in the BRANCHIT.S program works. In Line 8, to
the left of the line number, these figures appear:

8006:B0 01

The first figure in this line—8006—is the memory address in which the instruction
BCS will be stored when it has been assembled into machine language. The
second figure in the line—B0—is the actual machine-language equivalent of the
BCS instruction, and the third number—01—is an offset value that must be com-
puted by your computer’'s 6510 or 8502 chip before it can carry out the BCS
instruction.

OFFSET VALUES

What exactly is an offset value? Well, in a 6510/8502 branching instruction, an
offset value is a signed number that must be added to a given memory address
in order to compute the destination address of the branching instruction. The
address to which it must be added is always the address that follows the state-
ment containing the branching instruction. Therefore, the offset in Line 8 of the
BRANCHIT.S program is 1. When that 1 is added to the address of the instruc-
tion following the branching instruction—8008—the sum is 8009, and that is the
address of the RTS instruction that ends the BRANCHIT.S program.

Here are more details about how that works. When you write a
branching instruction in Assembly language, you can follow it with either a lit-
eral address or a label that equates to an address. But then, when your pro-
gram is assembled into machine language, your assembler will convert the
literal address or label which you have used into an offset value. From then on,
each time your computer's 6510 or 8502 chip encounters a branching instruction
during the execution of the assembled program, it will automatically

Looping and Branching 117

use the offset that follows each branching instruction to compute the destination
address of the branch.

ANOTHER IMPORTANT POINT

Another fact that is important to remember is that an offset which follows a
branching instruction can never be more than one byte long. Since this one byte
is always interpreted by the 6510/8502 chip as a signed number, a branching
offset can be no smaller than —128 and no larger than + 127. Since this displace-
ment is always added to the address of the first instruction that follows a
branching instruction, the effective displacement of a branching instruction can
range only between -126 and +129 bytes from the current address. So
branches which occur as the result of branching instructions are subject to cer-
tain length limitations; specifically, the destination address of a branching
instruction cannot be more than 126 bytes lower than, or more than 129 bytes
higher than, the address of the first instruction that follows the branching
instruction.

What if @ programmer wants to write an instruction that will branch to
an address that does not fall within these limitations? Well, that is not too diffi-
cult. If you want to exceed the distance limitations of a branching instruction, all
you have to do is use the instruction to branch to a jumping instruction, which
has no such restrictions. Here is an example of how that can be done:

THE BRANCHIT.S PROGRAM
(WITH A JUMP INSTRUCTION ADDED)

1 ORG $8000

2 *

3 WHAZIS EQU $02A7

4L *

5 LDA #5

6 CLC

7 ADC WHAZIS

8 BCC CONT

9 JMP FARJMP ;(CAN BE ANYWHERE IN MEMORY)

10 CONT TAX

11 RTS
SOMETHING FANCY

As you can see, a very neat trick has been used here to overcome the distance
limitations of a branching instruction. In this version of the BRANCHIT.S pro-
gram, the BCS instruction that appeared in the original program has been
replaced by a BCC instruction, and a new line, containing a JMP instruction that
can jump to any address in memory, has been inserted following the line con-
taining the BCC instruction. In this version of the program, if the addition of 5 to

118 Principles and Techniques of Assembly Language Programming

the value of WHAZIS results in a carry, the program will jump to an address that
has been labeled FAR]JMP, which can be situated anywhere. Otherwise, the
program jumps to Line 10, labeled CONT (for "continue”), and proceeds as
before.

HOW CONDITIONAL BRANCHING INSTRUCTIONS
ARE USED

As you may have noticed from the programming examples provided so far in
this chapter, the usual way to use a conditional branching instruction in
6510/8502 Assembly language is as follows. First, you load the A register (or a
memory register) with a value to be used for a comparison, then do some type of
comparison. Then you use a conditional branching instruction to tell your com-
puter what P register flags to test, and what to do if these tests succeed or fail.

This all sounds very complicated, and, until you get the hang of it, it
may be. However, once you understand the general concept of conditional
branching, you can use a simple table for writing conditional branching instruc-
tions. Here is one such table:

Table 7-1. Conditional Branching Instructions

TO TEST FOR: DO THIS: AND THEN THIS:
A = VALUE CMP #VALUE BEQ

A <> VALUE CMP #VALUE BNE

A >= VALUE CMP #VALUE BCS

A > VALUE CMP #VALUE BEQ and then BCS
A < VALUE CMP #VALUE BCC

A = (ADDR) CMP $ADDR BEQ

A <> (ADDR) CMP $ADDR BNE

A >= (ADDR) CMP $ADDR BCS

A > (ADDR) CMP $ADDR BEQ and then BCS
A < (ADDR) CMP $ADDR BCC

X = VALUE CPX #VALUE BEQ

X <> VALUE CPX #VALUE BNE

X >= VALUE CPX #VALUE BCS

X > VALUE CPX #VALUE BEQ and then BCS
X < VALUE CPX #VALUE BCC

X = (ADDR) CPX $ADDR BEQ

X <> (ADDR) CPX $ADDR BNE

X >= (ADDR) CPX $ADDR BCS

X > (ADDR) CPX $ADDR BEQ and then BCS
X < (ADDR) CPX §ADDR BCC

Y = VALUE CPY #VALUE BEQ

Y <> VALUE CPY #VALUE BNE

Y >= VALUE CPY #VALUE BCS

Y > VALUE CPY #VALUE BEQ and then BCS
Y < VALUE CPY #VALUE BCC

Y = (ADDR) CPY §ADDR BEQ

Looping and Branching 119

Y <> (ADDR) CPY $ADDR BNE
Y >= (ADDR) CPY $ADDR BCS
Y > (ADDR) CPY $ADDR BEQ and then BCS
Y < (ADDR) CPY $ADDR BCC

ASSEMBLY-LANGUAGE LOOPS

In 6510/8502 Assembly language, comparison instructions and conditional
branch instructions are usually used together. In the sample program called
THE QUEST, the comparison instruction CPX and the branch instruction BNE
are used together in a loop controlled by the incrementation of a value in the X
register.

Each time the loop in the program goes through a cycle, the value in
the X register is progressively incremented or decremented, and each time the
program comes to Line 200, the value in the X register is compared to the literal
number 23. When that number is reached, the loop ends

The program will therefore keep looping back to Line 170 until 23 char-
acters have been printed on the screen.

Got it? Good. Then we are ready to make some improvements in the
program called THE QUEST. These improvements will make the program more
versatile and more useful, and will even make it easier to understand.

IMPROVING THE QUEST PROGRAM

10 ;

20 ; RESPONSE

30 ;

40 *=%$8000 ;OR 'ORG EQU $8000' (OR $2000)
50 ;

60 EOL=13 ;END-OF-LINE CHARACTER

70 BUFLEN=40 ;LENGTH OF TEXT BUFFER
80 FILLCH=%$20 ;ASCII CODE FOR A SPACE
90 CHROUT=$FFD2

100 ;

110 JMP START

120 ;

130 TEXT .BYTE 'YOU CAN FIND HIM IN 64K',13
140 ;

150 ;CLEAR TEXT BUFFER

160 ;

170 START LDA #FILLCH

180 LDX #BUFLEN

190 STUFF DEX

200 STA TXTBUF,X

210 BNE STUFF

220 ;

230 ;STORE MESSAGE IN BUFFER
240 ;

120 Principles and Techniques of Assembly Language Programming

250 LDX #0

260 LOOP1 LDA TEXT,X
270 STA TXTBUF,X
280 CMP HEOL

290 BEQ PRINT

300 INX

310 CPX #BUFLEN

320 BCC LOOP1

330 ;

340 ;PRINT MESSAGE
350 ;

360 PRINT LDX #0

370 LOOP2 LDA TXTBUF,X

380 PHA
390 JSR CHROUT
400 PLA

410 CMP #EOL
420 BNE NEXT
430 JMP FINI
440 NEXT INX

450 CPX #BUFLEN
460 BCC LOOP2

470 ;
480 FINI
490 RTS
500 ;

510 TXTBUF=%
520 *=*+BUFLEN
530 ;

540 .END

Appendix B contains another listing of the RESPONSE.S program,
typed on a Merlin 64 assembler.

As you can see, the RESPONSE program is quite similar to THE
QUEST. With a few modifications you can also type it, assemble it, and run it on
a Panther assembler/editor system. If you have a Panther assembler, you will
have to use a DFC directive in place of the BYTE directive in the version of the
program prepared on the Commodore assembler. If you are using the Merlin 64,
you can replace the BYTE directive with an ASC directive, and you will have to
use the HEX directive to enter the number 13 (the ASCII code for a carriage
return) that follows the text string in Line 130. For an example of how to do that,
you can take a look at the listing for the NAME GAME program later in this
chapter, which was written using a Merlin 64 assembler.

Now, if you like, you may type, assemble, and save the RESPONSE
program. Then we will discuss the difference between THE QUEST and the
RESPONSE program.

When you run the RESPONSE program, you will see that it performs
essentially the same kind of operation that THE QUEST did, but it does it in a

Looping and Branching 121

slightly different way. The most obvious difference between the two programs is
the way they handle text strings. In the program called THE QUEST, we used a
text string made up of ASCII codes. There is also a text string in RESPONSE, but
it is made up of actual characters. Because of that difference, RESPONSE was a
much easier program to write than THE QUEST and it is much easier to read,
too.

Another important difference between RESPONSE and its predecessor
is the way the loop that reads the characters is written. In THE QUEST, the loop
counted the number of characters that had been printed on the screen, and
ended when the count hit 23.

Now that is a perfectly good system—for printing text strings that are
23 characters long. Unfortunately, it is not so great for printing strings of other
lengths. So it is not a very versatile routine for printing characters on a screen.

TESTING FOR A CARRIAGE RETURN

RESPONSE is more versatile than THE QUEST because it can print strings of
almost any length on a screen. That is because the RESPONSE program does
not keep track of the number of characters it has printed by maintaining a run-
ning count of how many letters have been printed. When the program
encounters a character, it tests the character to see whether its value is $0D—the
ASCII code for a carriage return or end-of-line (EOL) character. If the character
is not an EOL, the computer prints it on the screen and goes on to the next
character in the string. If the character is an EOL character, then the computer
prints a carriage return on the screen and the routine ends.

TEXT BUFFER

Another difference between THE QUEST and RESPONSE is that the latter pro-
gram does not read characters and print them on the screen in the same step.
Instead, the characters are first placed in a buffer, and then the contents of the
buffer are printed on the screen.

Text butfers are often used in Assembly language programs because
they are both versatile and easy to use. Text can be loaded into a buffer in
many ways: from a keyboard, for example, or from a telephone modem, or even
directly from a computer’'s memory. Once a string is in a buffer, it can be
removed from the buffer in just as many different ways—no matter how the char-
acters got into the buffer in the first place, and no matter what characters they
are. So, once a few subroutines have been written to fill a buffer and then to
process it in some manner, those subroutines can be used for many different
purposes. A buffer can therefore serve as a central repository for text strings,
which will then be accessible with great ease and in many different ways.

Betfore you use a text buffer, though, it is always a good idea to clear it
out; otherwise, it might be cluttered up with leftover characters. So a buffer-
clearing routine has been written into the RESPONSE program. It is a short and
simple routine, but it does the job. It will clear a text buffer—or any other block of
memory that does not exceed its length limitations—and will stuff the buffer with
spaces, zeros, or any other value you might choose. In the RESPONSE program,

122 Principles and Technigues of Assembly Language Programming

the routine stuffs the buffer with a string of spaces, which will appear as blank
spaces on your computer screen.

As you continue to work with Assembly language, you will find that
memory-clearing routines such as this one can come in very handy in many
different kinds of programs. Word processors, telecommunications programs,
and many other kinds of software packages make extensive use of routines that
can clear values from blocks of memory and replace them with other values.

The memory-clearing routine in the RESPONSE program is not very
complicated. Using indirect addressing and an X-register countdown, it will fill
each memory address in a text buffer (TXTBUF) with a designated "fill charac-
ter” (FILLCH). Then the program ends.

The butfer-clearing routine in RESPONSE will work with any 8-bit fill
character, and with any buffer length (BUFLEN) up to 255 characters. Later on
in this book, you will find some 16-bit routines that can stuff values into longer
blocks of RAM.

ONE MORE PROGRAM

The final program in this chapter will make use of many of the programming
techniques we have learned so far. The program is called THE NAME GAME,
and [wrote it in BASIC years ago. In fact, it was the first game program I ever
wrote that worked. Later [wrote an Assembly language version of it for Atari
Roots (Datamost, 1984), my book on Atari Assembly language. The current ver-
sion was written on a Commodore 64 using a Merlin 64 assembler, but, if you
own a Panther or Commodore 64 assembler, you should not have much trouble
converting it into source code that is compatible with your assembler system. All
of the programming conventions that THE NAME GAME contains have either
been explained or will be before this chapter is finished, so if you own a Com-
modore or Panther assembler, you should be able to translate it into source
code that will work on your assembler without too much difficulty.

*

* THE NAME GAME
*

ORG $8000

*

EOL EQU $0D ;RETURN
EOF EQU $03 ;EOF CHR
FILLCH EQU $20 ;SPACE
BUFLEN EQU 40

CHRIN EQU $FFCF
CHROUT EQU $FFD2
TEMPTR EQU $FB

*

JMP START
*

TXTBUF DS 40

—_
ONVOoO~NOWVMT P~ WN =

PR N S G G §
[« NV, I S S O I\ S

Looping and Branching 123

17 *

18 TITLE ASC 'THE NAME GAME'
19 HEX 0D

20 HELLO ASC 'HELLO, '

21 HEX 03

22 QUERY ASC 'WHAT IS YOUR NAME?'
23 HEX 0D

24 NAME ASC 'GEORGE'

25 HEX 0D

26 REBUFF ASC 'GO AWAY, '
27 HEX 03

28 DEMAND ASC 'BRING ME GEORGE!'
29 HEX 0D

30 GREET ASC 'HI, GEORGE!'
31 HEX 0D

32 *

33 x CLEAR TEXT BUFFER

34 *

35 FILL LDA #FILLCH

36 LDX H#BUFLEN

37 DOFILL DEX

38 STA TXTBUF,X

39 BNE DOFILL

40 RTS

41 *

42 PRINT LDY #0

43 SHOW LDA (TEMPTR),Y

44 CMP HEOF

45 BEQ DONE

46 PHA

47 JSR CHROUT

48 PLA

49 CMP HEOL

50 BNE NEXT

51 JMP DONE

52 NEXT INY

53 CPY #BUFLEN

54 BCC SHOW

55 DONE RTS

56 *

57 * PRINT 'THE NAME GAME'
58 *

59 START LDA #EOL

60 JSR CHROUT

61 LDA H#<TITLE

62 STA TEMPTR

63 LDA H>TITLE

64 STA TEMPTR+1

124 Principles and Techniques of Assembly Language Programming

65 JSR PRINT

66 LDA HEOL

67 JSR CHROUT

68

69 *

70 * PRINT 'HELLO . . .'
71 %

72 LDA H<HELLO

73 STA TEMPTR

74 LDA #>HELLO

75 STA TEMPTR+1

76 JSR PRINT

77 *

78 * PRINT 'WHAT IS YOUR NAME?'
79 *

80 ASK LDA #<QUERY

81 STA TEMPTR

82 LDA #>QUERY

83 STA TEMPTR+1

84 JSR PRINT

85 LDA HEOL

86 JSR CHROUT

87 *

88 * INPUT A TYPED LINE
89 *

90 JSR FILL

91 LDX #0

92 KEY JSR CHRIN

93 STA TXTBUF,X

94 CMP HEOL

95 BEQ COMPARE

96 INX

97 JMP KEY

98 *

99 * IS THE NAME 'GEORGE'?
100 *

101 COMPARE JSR CHROUT ;PRINT RETURN
102 LDX #O

103 CHECK LDA TXTBUF,X
104 CMP NAME,X

105 BNE NOGOOD

106 CMP HEOL

107 BEQ DUNIT

108 INX

109 CPX HBUFLEN

110 BCS DUNIT

111 JMP CHECK

112 *

Looping and Branching

125

113 * NO; PRINT

114

*

'GO AWAY . . .'

115 NOGOOD LDA HEOL

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

JSR
LDA
STA
LDA
STA

JSR
*

CHROUT
#<REBUFF
TEMPTR
#>REBUFF
TEMPTR+1
PRINT

* PRINT PLAYER'S NAME

*
LDA
STA
LDA
STA
JSR
LDA

JSR
*

#<TXTBUF
TEMPTR
#>TXTBUF
TEMPTR+1
PRINT
HEOL
CHROUT

* PRINT 'BRING ME GEORGE!'

*

LDA
STA
LDA
STA
JSR
LDA
JSR

#<DEMAND
TEMPTR
#>DEMAND
TEMPTR+1
PRINT
HEOL
CHROUT

JMP ASK

*

* YES;

*

PRINT GREETING

DUNIT LDA #EOL

JSR
LDA
STA
LDA
STA
JSR
RTS

CHROUT
#<GREET
TEMPTR
#>GREET
TEMPTR+1
PRINT

PLAYING "THE NAME GAME"”

It you have typed, assembled and executed the programs called THE QUEST
and RESPONSE, you should not have much trouble understanding how this one
works. Using several fairly simple subroutines, it prints a short message on your

126 Principles and Techniques of Assembly Language Programming

screen and then waits for you to type in a response. If you type a response
which the program considers incorrect, it prompts you to try again. When you
finally enter the line the program is looking for, you get a "reward” message
and the program ends.

This little routine, as simple as it may seem, is actually an excellent
introduction into the fascinating field of artificial intelligence. When you play
THE NAME GAME, you actually do match wits with a computer—and, since
computers are much more patient than most people are, THE NAME GAME is,
in the long run, a game that the computer usually wins. Most people who play
THE NAME GAME eventually give in and type the line that the computer has
been waiting for. The computer therefore wins the game, and the game ends.

After you have played THE NAME GAME two or three times, it is quite
likely that you will grow tired of it and will never care to play it again. However,
the programming principles that were used to create the game could also be
used in the development of commercial-quality entertainment and educational
programs. With a little imagination and a dash of creativity, THE NAME GAME
could serve as the basis for some very interesting programs.

HOW THE PROGRAM WORKS

In addition to the kernal routine CHROUT, which is often used in Commodore
programs to print characters on a computer screen, THE NAME GAME makes
use of another kernal routine—called CHRIN—which can read characters that
are typed in on a computer keyboard. The call address of the CHRIN routine is
$FFCF, and detailed instructions on how it is used can be found on page 277 of
the Commodore 64 Programmer'’s Reference Guide.

CHRIN, CHROUT, and other constants are defined in Lines 6 through
12 of THE NAME GAME program. Then, in Line 14, there is a jump instruction
that causes execution of the program to start at Line 59.

Before the program begins, some space is set aside for a text buffer (in
Line 16), and the lines of text that are used in THE NAME GAME are listed as
strings of data in Lines 18 through 31. Next there are two subroutines that will be
used later on in the program. One, labeled FILL, will clear the text buffer when-
ever it is called. The other subroutine, called PRINT, uses the Commodore
CHROUT routine to print messages on the screen.

As you type, assemble, and run THE NAME GAME, you may notice
that it uses its text butfer for lines that are typed in at the keyboard, not for lines
that are called from RAM. Some kind of buffer is obviously needed for typed-in
lines, since the computer must hold them in its memory long enough to do some
comparison and printing operations. Another text buffer could have been set up
for the lines stored in RAM, but it would have accomplished no real purpose
except to consume more memory and take up more processing time.

Another part of THE NAME GAME program that may be worth a spe-
cial mention is the technique that is used for storing 16-bit numbers in high-
order and low-order 8-bit memory locations. The technique first appears in
Lines 72 through 75:

Looping and Branching 127

72 LDA H#<HELLO
73 STA TEMPTR

74 LDA #>HELLO
75 STA TEMPTR+1

You can probably figure out what that sequence does without too much diffi-
culty. In source code produced by the Merlin 64 assembler and the Commodore
64 assembler, the string # <HELLO means "the low byte of the address labeled
'HELLO',” and the string # >HELLO means "the high byte of the address
labeled 'HELLO'."” (Not the contents of the address, by the way, but the address
itself, since in 6502/6510/8502 Assembly language, the symbol # is used to
identify a literal number.) So here is what the above sequence of code does.
First it stores the low-order byte of the 16-bit address of the string HELLO into
the memory location labeled TEMPTR (which, as you can see by looking at the
program'’s symbol table, is Memory Address $FB). Then it stores the high-order
byte of the address of the string labeled HELLO into Memory Location
TEMPTR + 1, or $FC.

Now here is an important warning: Not all assemblers interpret the
symbols < and > in the same way. In source code produced by the Panther
C64 assembler, for example, # <HELLO would mean the high byte of the
address of the line labeled HELLO, and # >HELLO would mean the low byte of
the address of the line labeled HELLO—precisely the opposite of what these two
strings mean in source-code programs written on the Merlin and Commodore 64
assemblers.

RUNNING THE PROGRAM

The main part of THE NAME GAME program starts at Line 57 with a routine that
prints the program'’s title on the screen. The next two routines print the line
"Hello, what is your name?"

After this question is asked, the program clears the text buffer and
waits for the player of THE NAME GAME to type in a response. As the player
types in an answer, each character that is typed is placed in the text buffer.
That is all that happens until the player stops typing characters and enters a
carriage return.

Once a carriage return is typed, the program examines the characters
that have been stored in the text buffer to see whether they spell the name
GEORGE. If the player has not typed in the name GEORGE, the computer prints
"GO AWAY, [TYPED NAME], BRING ME GEORGE!" Then the game starts
again. This process will continue until the player weakens and types the name
GEORGE. Then the computer will print "HI, GEORGE,"” and the game will end.

Programming
Bit by Bit
Single-Bit Operations on
Binary Numbers

There are 65,536 bytes of memory in a Commodore 64 computer, and up to
524,288 bytes of memory in a Commodore 128. Since there are eight bits in every
byte, this means that there are 524,288 bits in a Commodore 64, and up to
4,194,304 bits in @ Commodore 128. If you know how to perform single-bit opera-
tions on binary numbers, you can control every binary bit in your Commodore
automatically. That is a tremendous amount of control to have over a com-
puter—and you can wield that kind of control if you are proficient in Assembly
language.

In an earlier chapter of this book, you learned how to control one of
the most important bits in your Commodore's central microprocessor, the carry
bit of the 6510/8502 processor status register. Manipulating the P register’s carry
bit is one of the most important bit-manipulation techniques in 6510/8502
Assembly language, and you have already had considerable experience in
using the carry bit in addition programs.

In this chapter, you will have an opportunity to teach your computer
how to perform some new tricks using the carry bit of its 6510/8502 processor
status (P) register.

USING THE CARRY BIT

As I have pointed out a number of times now, your Commodore's 6510/8502
microprocessor is an 8-bit chip; it cannot perform operations on numbers larger
than 255 without putting them through some fairly tortuous contortions.

In order to process numbers that are larger than 255, the 6510/8502
must split them up into 8-bit chunks, and then perform the requested operations
on each chunk of a number. Then each number that has been split must be put
back together and made whole again.

Once you are familiar with how this is done, it is not nearly as difficult
as it sounds. In fact the electronic scissors that are used in all of this electronic

130 Principles and Technigues of Assembly Language Programming

cutting and pasting are actually contained in one tiny bit—the carry bit in the
6510/8502's processor status register.

FOUR BIT-SHIFTING INSTRUCTIONS

You have seen how how carry operations work in several programs in this book,
but in order to get a clearer look at how the carry works in 6510/8502 arithmetic,
it would be usetful to examine four very specialized machine-language instruc-
tions: ASL (arithmetic shift left), LSR (logical shift right), ROL (rotate left), and
ROR (rotate right).

These tour instructions are used extensively in 6510/8502 Assembly
language. We will look at them one a time, starting with the ASL (Arithmetic
Shift Left) instruction.

ASL (ARITHMETIC SHIFT LEFT)

As you may recall from the chapter on binary arithmetic, every round number in
binary notation is equal to twice the preceding round binary number. In other
words, 1000 0000 ($80) is double the number 0100 0000 ($40), which is double the
number 0010 0000 ($20), which is double the number 0001 0000 ($10), and so on.

[t is extremely easy to multiply a binary number by 2. All you have to
do is shift every bit in the number left one space, and place a zero in the bit that
has been emptied by this shift—Bit 0, or the rightmost bit of the number.

If Bit 7 (the leftmost bit) of the number to be doubled is a 1, then provi-
sion must be made for a carry.

The entire operation we have just described—shifting a byte left, with a
carry—can be performed by a single instruction in 6510/8502 Assembly lan-
guage. That instruction is ASL, which stands for "arithmetic shift left.”

Figure 8-1 shows how the ASL instruction works.

PROCESSOR STATUS REGISTER
BITS

Figure 8-1 The ASL (Arithmetic Shift Lelt) Instruction

Programming Bit by Bit 131

As you can see from this illustration, the instruction ASL moves each
bit in an 8-bit number one space to the left—each bit, that is, except Bit 7. That
bit drops into the carry bit of the processor status (P) register.

The ASL instruction is used for many purposes in 6510/8502 Assembly
language. It is often used, for instance, as an easy way of multiplying numbers
by two. Here is what a number-doubling routine might look like in a program
created using a Commodore 64 assembler:

10 ;

20 *=$8000

30 ;

40 LDA #$40 ;REM 0100 0000

50 ASL A ;SHIFT VALUE IN ACCUMULATOR TO LEFT
60 STA $FB

70 .END

If you run this little program, and then use your assembler’'s machine-language
monitor to examine the contents of Memory Address $FB, you will see that the
number $40 (0100 0000) has been doubled to $80 (1000 0000) before being stored
in Memory Address $FB.

Another use for the ASL instruction is to "pack’” data, and thus
increase a computer’s effective memory capacity. Later in this chapter, there
will be an example of how to pack data using the ASL instruction.

LSR (LOGICAL SHIFT RIGHT)

The instruction LSR ("'logical shift right”) is the exact opposite of the instruction
ASL—as you can see from Figure 8-2.

LSR, like ASL, works on whatever binary number is in the 6510/8502's
accumulator, but it will shift each bit in the number one position to the right. Bit
7 of the new number, left empty by the LSR instruction, will be filled in with a
zero, and the LSB will be dumped into the carry flag of the P register.

PROCESSOR STATUS REGISTER
BITS

O0——f 7 6 5 4 3 2 1 0

Figure 8-2 The LSR (Logical Shift Right) Instruction

The LSR instruction can be used to divide any even 8-bit number by 2,
as follows:

10 ;
20 ;DIVIDING BY 2 USING LSR
30 ;

132 Principles and Techniques of Assembly Language Programming

40 VALUE1=%FB

50 VALUE2=$FC

60 ;

70 *=%$8000

80 ;

90 LDA #6 ;0R ANY OTHER 8-BIT NUMBER
100 STA VALUE1

110 ;

120 ;NOW WE'LL DIVIDE BY 2
130 ;

140 LDA VALUE1

150 LSR A

160 STA VALUEZ2

170 .END

As you can see, this routine divides the number stored in VALUEI by 2, and
stores the result of that calculation in VALUEZ2. As a side benetit, it can also tell
you whether the number it has divided is odd or even. It leaves that bit of infor-
mation (no pun intended) in the carry bit of the 6510/8502 P register. If the rou-
tine leaves the carry bit set, the number that was just divided is odd. If the carry
bit is clear, the value is even.

Here is a program you can type, execute, and check using your
assembler’s machine-language monitor to see whether a number is even or
odd. It is not very useful, but it does illustrate a point. In Lines 120 and 130 of this
routine, a memory register called FLGADR (for "flag address”) is cleared to
zero. Then the contents of another memory register, called VALUEI, are shifted
to the right one position and stored in a third register, called VALUEZ. If the
value being shifted is even, then the shift operation does not set the carry bit,
and the subroutine ends. If this operation does set the carry bit, the program
jumps to Line 220, and the carry bit, now set, is rotated into the register called
FLGADR using an instruction called ROL (which you will learn more about in
just @ moment). So if the routine leaves a 0 in FLGADR, then the number that
was divided is even, but if the routine ends with a 1 stored in FLGADR, then the
number that was divided is odd.

10 ;

20 ;ODDTEST

30 ;

40 VALUE1=%FB

50 VALUE2=$FC

60 FLGADR=$FD

70 ;

80 *=%$8000

90 ;

100 LDA #7 ;(ODD)
110 STA VALUE1
120 LDA #0

130 STA FLGADR ;CLEARING FLGADR

Programming Bit by Bit 133

140 ;

150 LDA VALUE1

160 LSR A ;PERFORM THE DIVISION
170 STA VALUE2 ;DONE

180 ;

190 BCS FLAG

200 RTS ;END ROUTINE IF CARRY CLEAR . . .
210 ;

220 FLAG

240 ROL FLGADR

250 RTS ;. . . AND END THE PROGRAM

As previously mentioned, you can also use LSR to unpack data that has been
packed using ASL, but to unpack data, you also have to use another type of
Assembly language instruction called a logical operator. We will discuss logi-
cal operators (and look at some sample routines for packing and unpacking
data) later in this chapter.

Meanwhile, let's examine two more bit-shifting operators—ROL and

ROR.

ROL (ROTATE LEFT) AND
ROR (ROTATE RIGHT)

The instructions ROL ("'rotate left”) and ROR (''rotate right”) are also used to
shift bits in binary numbers, but they use the carry bit in a totally different man-
ner. Figure 8-3 shows how the ROL instruction works.

ROL, like ASL, can be used to shift the contents the accumulator or a
memory register one place to the left, but ROL does not place a zero in the Bit 0
position of the number being shifted into the carry bit. Instead, it rotates the
carry bit into Bit 0 of the register being shifted, and then moves every other bit in
that register one place to the left, rotating Bit 7 back into the carry bit. If the
carry bit is set when that happens, then a 1 is placed in the Bit 0 position of the
byte being shifted. If the carry bit is clear, then a zero goes into the Bit 0 position
of the shifted register.

PROCESSOR STATUS REGISTER

> C -

Figure 8-3 The ROL (Rotate Left) Instruction

134 Principles and Techniques of Assembly Language Programming

ROR works just like ROL, but in the opposite direction (see Figure 8-4).
[t moves each bit of the byte being shifted one position to the right, and rotates
the carry bit into the Bit 7 position of the shifted byte. Meanwhile, as part of the
same rotation process, Bit 0 of the shifted byte is moved into the carry bit of the
processor status register.

PROCESSOR STATUS REGISTER

- C -

Figure 8-4 The ROR (Rotate Right) Instruction

ROL and ROR are often used in 6502/6510/8502 multiplication and
division routines, and in many other types of routines in which bits are shifted
and tested.

THE LOGICAL OPERATORS

Betfore we move on to conventional binary arithmetic, let's take a briet glance at
four important Assembly language mnemonics called logical operators. These
instructions are AND (“and”), ORA (‘or"), EOR (“exclusive or”), and BIT
("bit"”).

The four 6510/8502 logical operators look very mysterious at first
glance, but, in typical Assembly language fashion, they lose much of their mys-
tery once you understand how they work.

AND, ORA, EOR and BIT are all used to compare values, but they
work differently from the comparison operators CMP, CPX and CPY. The
instructions CMP, CPX, and CPY all yield very general results. All they can
determine is whether two values are equal—and, if the values are not equal,
which one is larger than the other.

AND, ORA, EOR, and BIT are much more specific instructions. They
are used to compare single bits of numbers, and hence have all sorts of uses.

The four logical operators in Assembly language use principles of
mathematical science called Boolean logic. In Boolean logic, the binary num-
bers 0 and 1 are used not to express values, but to indicate whether a statement
is true or false. If a statement is proved true, its value in Boolean logic is said to
be 1. If it is false, its value is said to be 0.

Programming Bit by Bit 135

THE AND OPERATOR

In 6510/8502 Assembly language, the operator AND has the same meaning that
the word "and’ has in English.

If one bit AND another bit have a value of 1 (and are thus "true’’), then
the AND operator also yields a value of 1, but if any other condition exists—if
one bit is true and the other is false, or if both bits are false—then the AND
operator returns a result of 0, or false.

The results of logical operators are often illustrated with diagrams
called truth tables. Here is a truth table for the AND operator:

TRUTH TABLE FOR AND
0 0 1 1
AND 0 AND 1 AND 0 AND 1
0 0 0 1

In 6510/8502 Assembly language, the AND instruction is often used in an opera-
tion called bit masking. The purpose of bit masking is to clear specific bits of a
number. The AND operator can be used, for example, to clear any number of
bits by placing a zero in each bit that is to be cleared.

This is how that kind of bit-masking operation could work:

100 LDA #AA ;BINARY 1010 1010
110 AND #FO ;BINARY 1111 0000

If your computer encountered this routine in a program, the following AND
operation would take place:

1010 1010 (contents of accumulator)
AND 1111 0000

1010 0000 (new value in accumulator)

As you can see, this operation would clear the low nibble of $AA to $0 (with a
result of $A0), and the same technique would work with any other 8-bit number.
No matter what the number being passed through the mask 1111 0000 might be,
its lower nibble would always be cleared to $00—and its upper nibble would
always emerge from the AND operation unchanged.

THE ORA OPERATOR

When the instruction ORA (“or”) is used to compare a pair of bits, the result of

the comparison is 1 (true) if the value of either bit is 1. This is the truth table for
ORA:

136 Principles and Techniques of Assembly Language Programming

TRUTH TABLE FOR ORA
0 0 1
ORA O ORA 1 ORA 0 ORA 1

0 1 1

—

ORA is also used in bit-masking operations. Here is an example of a masking
routine using ORA:

LDA VALUE
ORA #$0F
STA DEST

Suppose that the number in VALUE were $22 (binary 0010 0010). This is the
masking operation that would then take place:

0010 0010 (in accumulator)
ORA 0000 1111 (#$0F)

0010 1111 (new value in accumulator)

THE EOR OPERATOR

The instruction EOR (“exclusive or”) will return a true value (1) if one—and only
one—of the bits in a pair being tested is a 1.
This is the truth table for the EOR operator:

TRUTH TABLE FOR EOR
0 0 1 1
EORU EOR 1 EOR D EOR I
0 1 1 0

The EOR instruction is often used for comparing bytes to determine if they are
identical, since if any bit in two bytes is different, the result of a comparison will
be non-zero. Here is an illustration:

EXAMPLE 1 EXAMPLE 2
1011 0110 1011 0110
EOR 1011 0110 BUT: ECR 1011 0111
0000 0000 0000 0001

In Example 1, the bytes being compared are identical, so the result of the com-
parison is zero. In Example 2, one bit is different, so the result of the comparison
IS non-zero.

Programming Bit by Bit 137

The EOR operator is also use to complement values. If an 8-bit value is
EOR'd with $FF, every bit in it that is a 1 will be complemented to a 0, and every
bit that is a 0 will be complemented to a 1—like this:

1110 0101 (in accumulator)

EOR 1111 1111

0001 1010 (new value in accumulator)

Still another usetful characteristic of the EOR instruction is that when it is per-
formed twice on a number using the same operand, the number will first be
changed to another number, and then restored to its original value. For
example:

11100101 (in accumulator)

ECR 0101 0011

1011 0110 (new value in accumulator)
EOR (0101 0011 (same operand as above)

1110 0101 (original value in accumulator restored)

This capability of the EOR instruction is often used in high-resolution graphics
to put one image over another without destroying the one underneath.

PACKING DATA IN MEMORY

Now we are ready to discuss the packing and unpacking of data using bit-
shifting and bit-testing instructions. First let's talk about how you can pack data
to conserve space in your computer’'s memory.

To get an idea of how data-packing works, suppose that you had a
series of 4-byte values stored in a block of memory in your computer. These
values could be ASCII characters, BCD numbers (more about those later), or
any other kinds of 4-bit values.

Using the ASL instruction, you could pack two such values into every
byte of the block of memory in which they were stored. You could thus store the
values in half the memory space that they had previously occupied in their
unpacked form.

Here is a routine you could use in a loop to pack each byte of data:

10 ;
20 ;PACKDATA
30 ;
40 *=3%$8000
50 ;
60 NYB1=$FB
70 NYB2=$FC

138 Principles and Technigues of Assembly Language Programming

80 PKDBYT=$FD

90 ;

100 LDA #3$04 ;0R ANY OTHER 4-BIT VALUE
110 STA NYB1

120 LDA #$06 ;O0R ANY OTHER 4-BIT VALUE
130 STA NYB2

140 ;

150 CLC

160 LDA NYB1
170 ASL A
180 ASL A
190 ASL A
200 ASL A

210 ORA NYBZ2
220 STA PKDBYT
230 RTS

This routine will load a 4-bit value into the accumulator, will shift that value to
the high nibble in the accumulator, and will then—using the ORA logical opera-
tor—place another 4-bit value in the low nibble of the accumulator. The accu-
mulator will thus be “packed” with two four-bit values—and those two values
will then be stored in PKDBYT, a single 8-byte memory register.

TESTING THE RESULTS

Type the program into your computer, and you can then execute it using your
assembler’s machine-language monitor. Then, when you have run the program,
you can use your monitor to peek into your computer’'s memory to see exactly
what has been done. If you are using a Commodore or Panther assembler, you
can check the results of your work by typing the monitor command M (for “mem-
ory display.”) If you are a Merlin owner, you can use the H (for "hex dump”)
command. Your computer will then respond with a line that looks something like
this:

.:00FB 04 06 46 00 00 00 0O 0O
or like this:

00FB-04 06 46 00 00 00
What you can tell from either of these lines is that your program has stored the
number $04 in Memory Address $FB, and has stored the number $06 in Memory

Address $FC. Then both of these values have been packed into Memory
Address $FC. It does not take much imagination to see how this technique can

Programming Bit by Bit 139

increase your computer's capacity to store 4-bit numbers—or ASCII characters,
which can be stored in memory in the form of 4-bit numbers. By packing data,
you can actually double the text-storage capacity of an 8-bit computer, since
you can store two characters in each 8-bit register in the computer’s memory.

UNPACKING DATA IN MEMORY

It would not do any good to pack data, of course, if it could not later be
unpacked. It so happens that data packed using ASL can be unpacked using
the complementary instruction LSR (“'logical shift right”’), together with the logi-
cal operator AND. Here is a sample routine for unpacking data:

10 ;

20 ;UNPACKIT

30 ;

40 PKDBYT=$FB

50 LOWBYT=$FC

60 HIBYT=$FD

70 ;

80 *=$%$8000

90 ;

100 LDA #255 ;OR ANY OTHER 8-BIT VALUE
110 STA PKDBYT

120 LDA #0 ;CLEAR LOWBYT AND HIBYT
130 STA LOWBYT

140 STA HIBYT

150 ;

160 LDA PKDBYT

170 AND #$0F ;BINARY 0000 1111

180 STA LOWBYT

190 LDA PKDBYT

200 LSR A

210 LSR A

220 LSR A

230 LSR A

240 STA HIBYT
250 RTS

This routine works much like the previous one, but in reverse. First, the accumu-
lator is loaded with an 8-bit byte into which two 4-bit values have been packed.
The upper four bits of this packed byte are then zeroed out using the logical
operator AND. Then the lower nibble of the byte is stored into a memory register
called LOWBYT.

Atter that is all done, the accumulator is loaded for a second time with
the packed byte. This time the byte is shifted four places to the right using the
instruction LSR. The result of this maneuver is a 4-bit value that is finally stored
in a memory register called HIBYT. The packed value in PKDBYT has thus been

140 Principles and Techniques of Assembly Language Programming

split, or "unpacked,” into two 4-bit values—one stored in LOBYT and the other in
HIBYT. Each of those 4-bit numbers—which may represent an ASCII character
or any other 4-bit value—can now be processed as a separate entity.

THE BIT OPERATOR

That brings us to the BIT operator, an instruction that is a little more compli-
cated than AND, ORA, or EOR.

The BIT instruction is used to determine whether the value stored in a
memory register matches a value stored in the accumulator. The BIT instruction
can be used only with absolute or zero-page addressing. Here are two exam-
ples of correct formats for the BIT instruction:

BIT $02A7
or:
BIT $FB

When the BIT instruction is used in either of these formats, a logical AND opera-
tion is performed on the byte being tested. The opposite of the result of this
operation is then stored in the zero flag of the processor status register. In other
words, if any set bits in the accumulator happen to match any set bits that are
stored in the same positions in the value being tested, then the Z flag will be
cleared. If there are no set bits that match, the Z flag will be set.

Here is a sample routine in which the BIT instruction is used:

1 LDA #01

2 BIT $02A7
3 BNE MATCH
4 JMP NOGOOD
5 MATCH RTS

In this routine, a check is made to determine whether BIT 0 is set in the value
stored in Memory Register $02A7. If the bit is set, the zero (Z) flag of the P regis-
ter will be cleared, and the program will branch to the line labeled MATCH. It
there is no match, the Z flag will be set, and the program will jump to whatever
routine has been labeled NOGOOD.

The BIT mnemonic also performs a couple of other functions. When the
BIT instruction is used, Bits 6 and 7 of the value being tested are always depos-
ited directly into Bits 6 and 7 of the processor status register. That can be a very
useful thing to know, since Bit 6 and Bit 7 are very important flags in the
6510/8502 chip's processor status register; Bit 6 is the P register’'s overtlow (V)
flag, and Bit 7 is its negative (N) flag. Therefore, the BIT instruction can also be
used as a quick and easy method for checking either Bit 6 or Bit 7 of any 8-bit
value. If Bit 6 of the value being tested is set, then the P register's V flag will also
wind up being set, and a BVC or BVS instruction can then be used to determine
what will happen next in the program. If Bit 7 of the tested value is set, then the

Programming Bit by Bit 141

P register’s N flag will wind up being set, and a BPL or BMI instruction can be
used to determine the outcome of the routine.

It is also important to note that after all of these actions take place, the
value in the accumulator (and the memory location being tested) always
remains unchanged. So if you ever want to perform a logical AND operation
without disturbing the value of the accumulator or the memory register you
want to check, the BIT mnemonic may be the best instruction to use.

Assembly
Language Math

Addition, Subtraction,
Multiplication, and Division

In Chapters | through 8, we have been doing a lot of reading, and a lot of
writing, and now it is time to do some arithmetic. In this chapter, you will learn
how your Commodore adds, subtracts, multiplies, and divides.

As you may have noticed by now, your Commodore 64 or 128 can deal
with many kinds of numbers—including binary, decimal, hexadecimal, signed,
and unsigned numbers. Other kinds of numbers that your computer can deal
with include binary coded decimal numbers, floating-point decimal numbers,
signed and unsigned numbers, and possibly a few other varieties of numbers. In
this chapter, we are going to take at least cursory looks at each of these types of
numbers—and maybe a few other kinds, too.

To understand how your computer works with numbers, it is essential
to have a fairly good understanding of the busiest flag in the 6510/8502 micro-
processor chip: the carry flag of the 6510/8502's processor status register. So
let's take a good close look at the 6510/8502's carry flag right now.

THE CARRY BIT

The best way to get a closeup view of how the carry bit works is to examine it
through an “electronic microscope’ at the bit level. Look at these two simple 4-
bit hexadecimal and binary addition problems and you will see clearly how
neither addition operation generates a carry in either binary or hexadecimal
notation.

HEXADECIMAL BINARY
$04 0100
+ $01 + 0001

$05 0101

144 Principles and Techniques of Assembly Language Programming

$08 1000
+ §03 + 0011
$0B 1011

Now let's look at a couple of problems that use larger (8-bit) numbers. The first
of these two problems does not generate a carry, but the second one does.

HEXADECIMAL BINARY
$8E 1000 1110

+ §$23 + 0010 0011

3Bl 1011 0001

$8D 1000 1101

+ $FF + 1111 1111

$018C (1) 1000 1100

Note that the sum in the second problem is a 9-bit number: 1 1000 1100 in binary
and 18C in hexadecimal.

Here is an Assembly language program that will perform that very
addition problem. Type it into your computer and run it, and you will be able to
see how the carry flag in your computer works:

8-BIT ADDITION WITH A CARRY
10 ;ADDNCARRY

20 *=3$8000
30 CLD
40 cLcC
50 LDA #38D
60 ADC #S$FF
70 STA $FB
80 RTS

When you have typed this program, assemble it and then run it using your
assembler’s machine-language monitor. When the program has been executed,
use your monitor to take a look at the contents of Memory location $FB. Just type
an M or H instruction (depending on what kind of assembler you have), and
your computer should respond with a line that looks something like this:

00FB 8C 00 00 00 00 0O

That line shows us that Memory Address $FB now holds the number $8C. That is
not the sum of the numbers $8D and $FF, but it is close. In hexadecimal arithme-
tic, the sum of $8D and $FF is $§18C—exactly the sum we got, plus a carry.

So where is the carry?

Assembly Language Math 145

Well, if everything you have learned about the carry bit so far is true,
then our missing carry must be tucked away just where it is supposed to be:
namely, in the carry bit of your computer’s processor status register. So let's go
there and look for it, right now.

A BIT IN A HAYSTACK?

Looking for a carry bit inside a Commodore may seem like looking for a needle
in a haystack, but a carry bit really is not too hard to find, once you know where
to look for it. For example, here is one way to locate the carry that is missing
from the ADDNCARRY program. All it takes is the insertion of a few additional
lines into the ADDNCARRY program. Here is an expanded version of the pro-
gram, with those extra lines inserted:

ADDITION WITH A CARRY (IMPROVED VERSION)
10 ;ADDNCARRY2

20 *=$%$8000
30 CLD

40 cCLC

50 LDA #$8D
60 ADC #S$FF
70 STA $FB
80 LDA #0
90 ROL A
100 STA S$FC
110 RTS

In the lines we have now added to this program, the accumulator is cleared,
and the bit-shifting operator ROL is then used to rotate the P register’s carry bit
into the accumulator. The contents of the accumulator are then deposited into
Memory Register $FC using an ordinary STA instruction. If this routine works, it
means that we have found our missing carry bit.

The best way I can think of to see whether the program works is to type
it, assemble it, and run it. Once you have done that, you can peek into Memory
Addresses $FB and $FC using your machine-language monitor and see whether
the calculation in the ADDNCARRY program resulted in a carry.

So let's do it. Assemble the program, execute it, and then use your
monitor to take a look at the contents of Memory Address $FB and the seven
memory locations that follow. You should then see this line (or a variation
thereof, depending upon the kind of assembler you are using):

00FB-8C 01 00 00 00 00

This line tells you two things: that Memory Address $FB once again holds the
number $8C (the result of our ADDNCARRY calculation without its carry) and
that the carry resulting from the calculation now resides in Memory Register

$00FC.

146 Principles and Techniques of Assembly Language Programming

16-BIT ADDITION

We will now take a look at a program that will add two 16-bit numbers. The
same principles used in this program can also be used to write programs that
will add numbers having 24 bits, 32 bits, and more.

Here is the program:

A 16-BIT ADDITION PROGRAM

10 ;

20 ;ADD16

30 ;

40 ;THIS PROGRAM ADDS A 16-BIT NUMBER IN $FB AND $FC
50 ;TO A 16-BIT NUMBER IN $FD AND $FE

60 ;AND DEPOSITS THE RESULTS IN $02A7 AND $02A8

70 ;

80 *=$8000

90 ;

100 CLD

110 CLC

120 LDA $FB;REM LOW HALF OF 16-BIT NUMBER IN $FB AND
$FC

130 ADC $FD;REM LOW HALF OF 16-BIT NUMBER IN $FD AND
$FE

140 STA $02A7 ;LOW BYTE OF SUM
150 LDA $FC ;REM HIGH HALF OF 16-BIT NUMBER IN $FB

AND $FC

160 ADC $FE ;REM HIGH HALF OF 16-BIT NUMBER IN $FD
AND S$FE

170 STA $02A8 ;HIGH BYTE OF SUM

180 RTS

When you look at this program, remember that your Commodore computer
stores 16-bit numbers in the reverse order from what you might expect—with the
low-order byte first, and the high-order byte second. Once you understand that
fluke—a characteristic of all 6502/6510/8502-based computers—then 16-bit
binary addition is not hard to comprehend.

In this program, we first clear the carry flag of the P register. Then we
add the low byte of a 16-bit number in $FB and $FC to the low byte of a 16-bit
number in §FD and $FE.

The result of this half of our calculation is then placed in Memory
Address $02A7. It there is a carry, the P register's carry bit will be set
automatically.

In the second half of the program, the high byte of the number in $FB
and $FC is added to the high byte of the number in $FD and $FE. If the P regis-
ter's carry bit has been set as a result of the preceding addition operation, then
a carry will also be added to the high bytes of the two numbers. If the carry bit
is clear, there will be no carry.

Assembly Language Math 147

When this half of our calculation has been completed, its result is
deposited into Memory Address $02A8. Then, finally, the results of our com-
pleted addition problem are stored—low byte first—in Memory Addresses $02A7
and $02A8.

16-BIT SUBTRACTION

Here is a 16-bit subtraction program:

10 ;

20 ;SuB16

25 ;

30 ;THIS PROGRAM SUBTRACTS A 16-BIT NUMBER IN $FB AND
$FC

40 ;FROM A 16-BIT NUMBER IN $FD AND S$FE

50 ;AND DEPOSITS THE RESULTS IN $02A7 AND $02A8

60 ;

70 *=3%$8000

80 ;

90 CLD

100 SEC ;REM SET CARRY

110 LDA $FD;REM LOW HALF OF 16-BIT NUMBER IN $FD AND
$FE

120 SBC $FB;REM LOW HALF OF 16-BIT NUMBER IN $FB AND
$FC

130 STA $02A7 ;LOW BYTE OF THE ANSWER

140 LDA $FE ;REM HIGH HALF OF 16-BIT NUMBER IN $FD

AND S$FE

150 SBC $FC ;REM HIGH HALF OF 16-BIT NUMBER IN $FB
AND $FC

160 STA $02A8 ;HIGH BYTE OF THE ANSWER

170 RTS

Since subtraction is the exact opposite of addition, the carry flag is set, not
cleared, before a subtraction operation is performed in 6510/8502 binary arith-
metic. In subtraction, the carry flag is treated as a borrow, not a carry, and it
must therefore be set so that if a borrow is necessary, there will be a value to
borrow from.

After the carry bit is set, a 6510/8502 subtraction problem is quite
straightforward. In our sample problem, the 16-bit number in $FB and $FC is
subtracted, low byte first, from the 16-bit number in $FD and $FE.

The result of our subtraction problem—including a borrow from the
high byte, if one was necessary—is then stored in Memory Addresses $02A7 and
$02A8, in the low-byte-first convention that is typical in 6502/6510/8502-based
computers.

148 Principles and Techniques of Assembly Language Programming

BINARY MULTIPLICATION

Binary numbers are multiplied in the same way that decimal numbers are. Here
is an example:

0110 ($06)
x 0101 ($05)
0110
0000
0110
0000

0011110 ($1E)

Unfortunately, however, there are no 6510/8502 Assembly language instructions
for multiplication or division. To multiply a pair of numbers using 6510/8502
Assembly language, you have to perform a series of addition operations. To
divide numbers, you have to perform subtraction sequences.

Look closely at the multiplication problem presented above, however,
and you will see that it is not difficult to split a multiplication problem into a
series of addition problems. In the example given above, the binary number
0110 is first multiplied by 1. Then the result of this operation—also 0110—is writ-
ten down.

WHAT HAPPENS NEXT

Next, 0110 is multiplied by 0. The result of that operation —a string of zeros—is
also shifted one space to the left and written down. Then 0110 is multiplied by 1
again, and the result is once again shifted left and written down. Finally,
another multiplication by zero results in another string of zeros, which are also
shifted left and duly noted.

Once that is done, all of the partial products of our problem are added
up, just as they would be in a conventional multiplication problem. The result of
this addition, as you can see, is the final product $1E.

This multiplication technique works fine, but it is really quite arbitrary.
Why, for example, did we shift each partial product in this problem to the left
betore writing it down? We could have accomplished the same result by shifting
the partial product above it to the right betore adding.

In 651078502 multiplication, that is exactly what is often done; instead
of shifting each partial product to the left before storing it in memory, many
6510/8502 multiplication algorithms shift the preceding partial product to the
lett before adding it to the new one.

Here is a program that will show you how that works:

10 ;

20 ;MULT16

30 ;

40 MPR=$FD ;MULTIPLIER

Assembly Language Math

149

50 MPD1=$FE ;MULTIPLICAND

60 MPD2=$02A7 ;NEW MULTIPLICAND AFTER 8 SHIFTS

70 PRODL=$02A8 ;LOW BYTE OF PRODUCT

80 PRODH=$02A9 ;HIGH BYTE OF PRODUCT

90 ;

100 *=$8000

110 ;

120 ;THESE ARE THE NUMBERS WE WILL MULTIPLY

130 ;

140 LDA #250

150 STA MPR

160 LDA #2

170 STA MPD1

180 ;

190 MULT CLD

200 cCLC

210 LDA #0 ;CLEAR ACCUMULATOR

220 STA MPD2 ;CLEAR ADDRESS FOR SHIFTED MULTIPLICAND

230 STA PRODH ;CLEAR HIGH BYTE OF PRODUCT ADDRESS

240 STA PRODL ;CLEAR LOW BYTE OF PRODUCT ADDRESS

250 LDX #8 ;WE WILL USE THE X REGISTER AS A COUNTER

260 LOOP LSR MPR ;SHIFT MULTIPLIER RIGHT; LSB DROPS
INTO CARRY BIT

270 BCC NOADD ;TEST CARRY BIT; IF ZERO, BRANCH TO
NOADD

280 LDA PRODH

290 CLC

300 ADC MPD1 ;ADD HIGH BYTE OF PRODUCT TO
MULTIPLICAND

310 STA PRODH ;RESULT IS NEW HIGH BYTE OF PRODUCT

320 LDA PRODL ;LOAD ACCUMULATOR WITH LOW BYTE OF
PRODUCT

330 ADC MPD2 ;ADD HIGH PART OF MULTIPLICAND

340 STA PRODL ;RESULT IS NEW LOW BYTE OF PRODUCT

350 NOADD ASL MPD1 ;SHIFT MULTIPLICAND LEFT; BIT 7
DROPS INTO CARRY

360 ROL MPD2 ;ROTATE CARRY BIT INTO BIT 7 OF MPD1

370 DEX ;DECREMENT CONTENTS OF X REGISTER

380 BNE LOOP ;IF RESULT ISN'T ZERO, JUMP BACK TO
LOOP

390 RTS

400 .END

QUITE A PROBLEM

As you can see, 8-bit binary multiplication is not exactly a snap. There is a lot of

lett and right

bit-shifting involved, and it is hard to keep track of. In the above

150 Principles and Techniques of Assembly Language Programming

program, the most difficult manipulation to follow is probably the one involving
the multiplicand (MPD1 and MPD2). The multiplicand is only an 8-bit value, but
it is treated as a 16-bit value because it keeps getting shifted to the left, and
while it is moving, it takes a 16-bit address (actually two 8-bit addresses) to hold
it.

To see for yourself how the program works, type it out on your key-
board and assemble it. Then use the G command of your monitor to execute it.
Then, while you are still in the monitor mode, you can take a look at the con-
tents of Memory Addresses $02A8 and $02A9. These two registers should now
hold the number $01F4 (low byte first, remember). That is the hex equivalent of
the decimal number 500, and that, of course, is product of the number 2 and the
decimal number 250, which our program was supposed to multiply.

AN IMPROVED MULTIPLICATION PROGRAM

Although the program you have just tried works fine (provided you have done it
right), it is not the only 16-bit multiplication program around; in fact, it is not
even a very good one. There are many algorithms for binary multiplication, and
some of them are shorter and more efficient than the one we just executed. The
following program, for example, is considerably shorter, and theretfore is both
more memory-efficient and faster-running. One of the neatest tricks in this
improved multiplication program is that it uses the 6510/8502's accumulator,
rather than a memory address, for temporary storage of the problem's results.

10 ;

20 ;MULT16B

30 ;(AN IMPROVED 16-BIT MULTIPLICATION PROGRAM)
40 ;

50 PRODL=$FD

60 PRODH=$FE

70 MPR=$02A7

80 MPD=%$02A8

90 ;

100 *=%$8000

110 ;

120 VALUES LDA #10
130 STA MPR

140 LDA #10
150 STA MPD
160 ;

170 LDA #0
180 STA PRODH
190 LDX #8

200 LOOP LSR MPR
210 BCC NOADD

Assembly Language Math 151

220 cCLC

230 ADC MPD
240 NOADD ROR A
250 ROR PRODH
260 DEX

270 BNE LOOP
280 STA PRODL
290 RTS

You may want to test out this improved multiplication program the same way we
tested the previous one: by executing it using your machine-language monitor,
and then using your monitor to take a look at its results.

You can play around with these two multiplication problems as much
as you like, trying out different values and seeing how those values are pro-
cessed in each program.

However, the best way to become intimately familiar with how binary
multiplication works is to do a few problems by hand—using those two tools of
our forefathers, a pencil and a piece of paper. Work enough binary multiplica-
tion problems on paper, and you will soon begin to understand the principles of
651078502 multiplication.

MULTIPRECISION BINARY DIVISION

Earlier in this chapter, we discovered that subtraction is reverse addition. Now it
is time to point out that division is nothing but reverse multiplication. This being
the case, it would be logical to assume that the 6510/8502 chip, which has no
specific instructions for multiplying numbers, would also have no instructions for
dividing numbers, and, unfortunately, that is true.

Still, it is possible to perform division—even multiple-precision long
division—using instructions that are available to the 6510/8502 microprocessor.
As we have seen, the 6510/8502 chip can multiply numbers, provided that the
multiplication problems presented to it are broken down into sequences of addi-
tion problems. So you probably will not be surprised to learn that the 6510/8502
chip can also divide numbers—provided that the division problems presented to
it are broken down into sequences of subtraction problems. The next sample
program you see in this chapter will be a routine designed to divide one number
into another number by breaking the division process down into a series of sub-
traction routines.

During the execution of this division program, the high part of the divi-
dend will be stored in the accumulator, and the low part of the dividend will be
stored in a variable called DVDL.

The program contains a lot of shifting, rotating, subtracting, and
decrementing of the X register. When the main body of the program ends, the
quotient will be stored in a variable labeled QUOT, and the quotient’s remain-
der will be in the accumulator. Then, in Line 380, the remainder will be moved
out of the accumulator and into a variable called RMDR. Finally, an RTS
instruction will end the program.

152

Principles and Techniques of Assembly Language Programming

A BINARY LONG-DIVISION PROGRAM

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

-
’

;DIV8/16

*=$8000

DVDH=$FD ;LOW PART OF DIVIDEND
DVDL=$FE ;HIGH PART OF DIVIDEND
QUOT=%$02A7 ;QUOTIENT
DIVS=$02A8 ;DIVISOR

RMDR=

4

LDA
STA
LDA
STA
LDA
STA
LDA
LDX

SEC
SBC

$02A9 ;REMAINDER

#$1C ;JUST A SAMPLE VALUE

DVDL

#%$02 ;THE DIVIDEND IS NOW $021C
DVDH

#$05 ;ANOTHER SAMPLE VALUE

DIVS ;WE'RE DIVIDING BY 5

DVDH ;ACCUMULATOR WILL HOLD DVDH
#08 ;FOR AN 8-BIT DIVISOR

DIVS

DLOOP PHP ;SAVE P REGISTER (ROL & ASL AFFECT IT)

ROL
ASL
ROL
PLP
BCC
SBC
JMP

QuoT

DVDL

A

;RESTORE P REGISTER
ADDIT

DIVS

NEXT

ADDIT ADC DIVS

NEXT
BNE
BCS
ADC
CLC

FINI
STA
RTS

DEX
DLOOP
FINI
DIVS

ROL QUOT
RMDR

The above program can be used to divide any unsigned 16-bit number by any
unsigned 8-bit number. As written, it divides the hexadecimal number $021C

Assembly Language Math 153

(540 in decimal notation) by 5. The quotient is stored in Memory Register $02A7,
and the remainder, if any, is stored in Memory Register $02A9.

Type the program, assemble and run it, and then use your monitor to
inspect the contents of Memory Addresses $02A7 and $02A9. Address $02A7
should now hold the hexadecimal number $6C (108 in decimal notation), and
there should be a zero in address $02A9, since the quotient of 540 divided by 5 is
108, with no remainder.

NOT THE ULTIMATE DIVISION PROGRAM

As you can see, it is even more difficult to write a division routine for a Commo-
dore than it is to write @ Commodore multiplication program. In fact, writing just
about any kind of multiple-precision math program for an 8-bit computer is usu-
ally more trouble than it is worth. When you have to write a program in which
just a few calculations have to be made, you can sometimes get away with
using short, simple routines such as the ones presented in this chapter, but
Assembly language is usually not the best language to use for writing long,
complex programs that contain a lot of multiple-precision math. If you ever have
to write such a program, you might find it worthwhile to write part of the pro-
gram in Assembly language and the other part—the part with all of the math—in
BASIC. That way, you can take advantage of the excellent floating-point math
package that is built right into the BASIC interpreter in your Commodore. If you
cannot do that, it might still be best to write the program in some language—
almost any language—besides Assembly language. Because of the extraordi-
nary amount of work that it takes to write mathematical routines for computers
in the Commodore class, it is usually much better to write complex mathemati-
cally oriented programs in BASIC, Pascal, COBOL, Logo, or almost any other
high-level programming language than it is to try to write them in Assembly
language.

If, despite this warning, you still have a yen to write complex math
routines in 6510/8502 Assembly languages, there are a few books that may pro-
vide you with some help. One text that contains an abundance of fairly complex
math routines that are yours for the typing is 6502 Assembly Language Subrou-
tines, by Lance A. Leventhal and Winthrop Saville and published by
Osborne/McGraw Hill. There are also quite a few type-and-run math routines
in some of the other manuals and texts listed in this book's Bibliography.

SIGNED NUMBERS

Before we move on to the next chapter, there are three more topics that we
should briefly cover: signed numbers, binary-coded decimal (BCD) numbers,
and floating-point numbers. First we will talk about signed numbers.

To represent a signed number in binary arithmetic, all you have to do
is let the leftmost bit (Bit 7) represent a positive or negative sign.

154 Principles and Techniques of Assembly Language Programming

In signed binary arithmetic, if Bit 7 of a number is zero, the number is
positive, but if Bit 7 is a 1, the number is negative.

Obviously, if you use one bit of an 8-bit number to represent its sign,
you no longer have an 8-bit number. What you then have is a 7-bit number—or,
if you want to express it another way, you have a signed number that can repre-
sent values from —128 to + 127 instead of from 0 to 255.

MORE THAN A BIT OF WORK

It should also be obvious that it takes more than the redesignation of a bit to
turn unsigned binary arithmetic operations into signed binary arithmetic opera-
tions. Consider, for example, what we would get if we tried to add the numbers
+ 5 and —4 by doing nothing more than using Bit 7 as a sign:

0000 0101 (+Y9)
+ 1000 0100 (—4)

1000 1001 (—=9)

That answer is wrong. The answer should be + 1.

The reason we arrived at the wrong answer is that we tried to solve the
problem without using a concept that is fundamental to the use of signed binary
arithmetic: the concept of complements.

Complements are used in signed binary arithmetic because negative
numbers are complements of positive numbers, and complements of numbers
are very easy to calculate in binary arithmetic. In binary math, the complement
of a0is a1, and the complement of a 1 is a 0.

A REASONABLE ASSUMPTION

It might be reasonable to assume that the negative complement of a positive
binary number could be arrived at by complementing each 0 in the number to a
1, and each | to a 0 (except for Bit 7, of course, which must be used for the
purpose of representing the number’s sign).

This technique—calculating the complement of a number by flipping
its bits from 0 to | and from | to 0—has a name in Assembly language circles. It
is called one’s complement.

To see if the one's complement technique works, let's try using it to add
two signed numbers—say +8 and -5.

0000 1000 (+8)
+ 1111 1010 (—5) (one's complement)

0000 0010 (+2) (plus carry)

Oops. That is wrong, too. The answer should be plus 3.
Well, that takes us back to the drawing board. One's complement
arithmetic does not work.

Assembly Language Math 155

However, there is another technique, which comes very close to one's
complement, that does work. It is called two’s complement, and it works as
tfollows.

First calculate the one's complement of a positive number. Then simply
add one, and that will give you the two's complement—the true complement—of
the number.

Then you can use the conventional rules of binary math on signed
numbers—and, if you do not make any mistakes, they will work every time.

Here is how:

0000 0101 (+5)
+ 11111000 (—8) (two's complement)

1111 1101 (=3)
Another two's complement addition problem:

1111 1011 (=9) (two's complement)
+ 0000 1000 (+8)

0000 0011 (+3) (plus carry)

A FEW EXAMPLES

As | said, it works every time. It is not easy to explain why, but when you have
worked with signed binary numbers for a while, you begin to get a feel for them.
It helps to remember this: since the highest bit of a binary number is always
interpreted as a sign in two's complement notation, a binary number with the
highest bit set is always interpreted as a negative number. So the hexadecimal
number $7F, which equates to the decimal number 127, is the highest positive
number that can be expressed in 8-bit two’s complement notation. Increment the
hex number $7F, and you will see why this is true. In binary notation, §7F is
written %0111 1111—a binary number in which the high bit is not set. But incre-
ment $7F, and what you will get is $80, or %1000 0000—a number that has its
high bit set, and will therefore be interpreted in 8-bit two's complement notation
as —128, not + 128. So the largest positive number that can be expressed in 8-bit
two's complement notation is 127.

Now let's take a look at some negative binary numbers. In two's com-
plement arithmetic, negative numbers start at -1 and work backwards, just as
conventional negative numbers do in ordinary arithmetic. In conventional arith-
metic, there is no such number as -0, so when you decrement a 0, what you get
is not -0, but —1. Decrement -1, and what you get is —2, which may look at first
glance like a larger number, but is really a smaller one. Decrement -2, and you
get =3, and so on.

Two's complement arithmetic works in a similar fashion. Decrement 0
using 8-bit two's complement arithmetic, and, since there is no such number as
-0, what you will get is $§FF, which equates to -1 in decimal notation. Decrement
$FF in two's complement, and you get $FE, the 8-bit signed-binary equivalent of

156 Principles and Techniques of Assembly Language Programming

~2. The decimal number -3 is written $FD in 8-bit two's complement notation,
and the decimal number 4 is written $FC, and so on.

Keep working backwards, and you will eventually discover that the
smallest negative number that can be expressed in 8-bit two's complement nota-
tion is the hexadecimal number $80, which equates to =128 in conventional deci-
mal numbers.

It you do not quite understand all of that, please do not panic. It will
probably be quite a while before you will have any need to write any programs
that make use of signed binary numbers, and if ever do start writing such pro-
grams, you will need instructions that are much more detailed than the ones
you will find in this book. In this chapter, my intention is not to make you an
expert in signed binary numbers, but merely to introduce you to some of the
techniques that are often used in programs that contain signed binary numbers.
Then, when you run across a program that makes use of signed binary num-
bers, you will at least know something about what is going on.

USING THE OVERFLOW FLAG

Before we move on to another topic, there is one more fact that [would like to
point out about signed binary arithmetic: When you carry out calculations
using signed numbers, the overflow (V) flag of the processor status register —not
the carry flag of the processor status register—is used to carry numbers from one
byte to another.

The reason for this is as follows. The carry flag of the P register is set
when there is an overflow from Bit 7 of a binary number. But when the number is
a signed number, Bit 7 is the sign bit—not part of the number. So the carry flag
cannot be used to detect a carry in an operation that involves signed numbers.

You can solve this problem by using the overflow bit of the processor
status register. The overflow bit is set when there is an overflow from Bit 6, not bit
7. So it can be used as a carry bit in arithmetic operations on signed numbers.

As you may recall from high-school algebra and beyond, the rules of
adding, subtracting, multiplying, and dividing signed numbers are rather com-
plex; they vary according to the signs of the numbers that are involved in the
calculations, and according to what kinds of calculations are being performed.
So it should come as no surprise that the rules for using the overflow flag in
calculations involving signed binary numbers are also a little complicated. You
can find them in textbooks on advanced Assembly language programming, but
they are well beyond the scope of this chapter. So let’s leave the topic of signed
binary numbers, and move on to our next subject: BCD (binary-coded decimal)
numbers.

BCD NUMBERS

In BCD notation, the digits 0 through 9 are expressed just as they are in conven-
tional binary notation, but the hexadecimal digits $A through $F (%1010
through %1111 in binary) are not used. Long numbers must therefore be repre-

Assembly Language Math 157

sented differently in BCD notation than they are in conventional binary
notation.

The decimal number 1258, for example, would be written in BCD nota-
tion as:

1 2 S 8
0000 0001 0000 0002 0000 0101 000 1000

In conventional binary notation, the same number would be written as:

$0 b4 BE A
0000 0100 1110 1010

—which equates to $04EA, or the hexadecimal equivalent of 1258.

BCD notation is often used in bookkeeping and accounting programs
because BCD arithmetic, unlike straight binary arithmetic, is 100% accurate.
BCD numbers are also sometimes used when it is desirable to print them out
instantly, digit by digit as they are being used—for example, when numbers are
being used for onscreen scorekeeping in a game program.

The main disadvantage of BCD numbers is that they tend to be difficult
to work with. When you use BCD numbers, you must be extremely caretul with
signs, decimal points, and carry operations, or chaos can result. You must also
decide whether you want to use an 8-bit byte for each digit, which wastes mem-
ory since it really only takes 4 bits to encode a BCD digit, or pack two digits into
each byte, which saves memory but consumes processing time.

FLOATING-POINT NUMBERS

Now we have come to a topic that strikes fear into the heart of even expert
Assembly language programmers: floating-point numbers.

Floating-point numbers, as you may know, are numbers that enable
computers and calculators to perform mathematical calculations on decimal
values and fractions. Most calculators use floating-point numbers to perform
mathematical calculations, and so does the BASIC interpreter that is built into
your Commodore. In the Commodore's floating-point package, numbers are
broken down into three-parts—an exponent, a mantissa and a sign—and are
stored in a block of memory called a floating-point accumulator. This accumula-
tor resides in Memory Registers $61 to $66, and there is another one just like it in
Memory Registers $69 through $6E.

YOUR COMPUTER'S FLOATING-POINT PACKAGE

Unfortunately for Assembly language programmers, it is extremely difficult to
understand how floating-point routines work, and it is even more difficult to
write them. So it is nice to know that there is a very good floating-point package

158 Principles and Techniques of Assembly Language Programming

built right into your Commodore, and that whenever you decide you need it, it is
right there. To use the Commodore floating-point package in an Assembly lan-
guage program, all you have to do is write the program partly in Assembly
language and partly in BASIC, and then intermix the BASIC and Assembly lan-
guage sections of your program using the USR(X) function that was explained
back in Chapter 5. When you write a program in this fashion, you can use
Assembly language for the portions of the program in which high speed or high
performance are required; you can use BASIC to access your computer’s built-
in floating-point package for portions of the program that require high-precision
math.

Since this package exists, and is so easy to use, you may never need to
know most the programming techniques that have been described in this chap-
ter. However, an understanding of how they work will definitely make you a
better Commodore Assembly language programmer.

Knowing how to write complex Assembly language math routines is a
little like knowing how to perform first aid; you may never have to use your
knowledge, but if you do, it will certainly come in handy. Furthermore, you have
to know at least the fundamentals of 6510/8502 arithmetic if you want to become
a good Commodore Assembly language programmer. After all, mathematical
processing, in one form or another, is what computer programming is all about.
Since your Commodore adds, subtracts, compares, and bit-shifts its way
through every program it processes, it would be difficult to imagine writing
Commodore programs for any length of time without knowing at least some-
thing about binary addition, subtraction, multiplication, and division. So even
though you may never have to write an Assembly language routine that will
perform long division on signed numbers, accurate to 17 decimal places,
chances are pretty good that you will eventually have to use some arithmetic
operations in at least some of the programs that you write. So before you move
on to the next chapter, make sure that you understand this one.

Assembly Language
Graphics and Sound

Memory Magic

The Memory Map of the Commodore

The engineers who designed the Commodore 64 accomplished quite a feat: they
stuffed 88K of memory into a 64K machine. The Commodore 128 has an even more
prodigious memory; it has 128 kilobytes of memory built in and can be expanded
into a 512K computer with the addition of an optional RAM disk module.

Since this book is designed to be used with either a Commodore 64 or
a Commodore 128, the extra memory that is built into the C128 will not be dis-
cussed in this chapter. Instead, we focus our attention on the 64K of memory that
is common to both machines. If you own a Commodore 64, everything in this
chapter is applicable to your computer, and, since the Commodore 128 has a
Commodore 64 built in, what you read in this chapter is also applicable to the
Commodore 128, as long as the machine is operating in its C64 mode.

MAPPING THE MEMORY OF THE
COMMODORE 64

From a memory-organization standpoint, the Commodore 64 is a rare breed of
computer. Most 64K computers have only 48K or so of addressable RAM, plus
around 16K of ROM, for a total of 64K. But the Commodore 64 has a full 64K of
user-addressable RAM, plus 24K of built-in ROM: 88K of built-in memory.

This 88K of memory is controlled by a pair of special memory registers
that occupy Memory Addresses $0000 and $0001. These two registers are all
that distinguish the 6510 chip used in the Commodore 64 from its predecessor,
the 6502, which is used in computers manufactured by Apple, Atari, and several
other companies.

A PROGRAMMER'S DELIGHT

With the help of these two memory registers, at RAM Addresses $0000 and $0001, a
skilled programmer can wield a tremendous amount of control over the features
and capabilities of the Commodore 64. By simply switching certain bits in this pair

164 Assembly Language Graphics and Sound

of registers on and off, a programmer can actually determine what portions of the
computer's memory will be used as RAM and what blocks will be used as ROM.

If you wanted to, you could switch off every byte of ROM in the C64,
opening up every bit of the the computer’'s memory for use as RAM. So, if you
were a good enough programmer, you could theoretically turn the Commodore
64 into a totally customized computer, with an operating system and a set of
input/output drivers of your own design.

We are not going to get nearly that ambitious, but we are going to
discuss how large blocks of RAM and ROM can be juggled around inside the
Commodore 64, adapting it to the individual needs of the C64 programmer.

Once you know how to manipulate Memory Registers $0000 and $0001,
you can perform some pretty fancy tricks. For example, you can switch off the Com-
modore 64's BASIC interpreter and use the memory space it consumes as addi-
tional RAM. You can copy the C64's built-in character set from ROM into RAM, and
then modity it and use it in programs however you choose. With the additional
assistance of some other special memory registers, you can even use some blocks
of the Cb4's memory capacity as both RAM and ROM—at the same time.

READING THE MEMORY MAP

Betfore we start discussing how Registers $0000 and $0001 work, let's take a look
at a memory map of the Commodore 64. Figure 10-1 is a simplified map that
shows its default configuration—that is, what its memory configuration looks like
when its power is first turned on. This simple map is only a general guide to the
C64's memory; a much more detailed memory map can be found on pages 310
through 334 of the Commodore 64 Programmer'’s Reference Guide.

Most of the labels on this map have not yet been covered in this book.
So let's take a look now at what they mean.

ADDRESSES $0000 THROUGH $0FFF
(Page-Zero RAM)

Page Zero, the block of memory that extends from $0000 to $00FF, is the “high-
rent district’ in your computer's RAM. Memory space on Page Zero is so desir-
able that the engineers who designed the Commodore 64 used most of it for the
computer's operating system and BASIC interpreter. Consequently, very little
Page Zero space is available for user-written programs.

This shortage of space on Page Zero can create tough problems for
the Assembly language programmer. It restricts the use of Page-Zero address-
ing, which could make programs run taster, and it also makes it difficult to use
indirect indexed addressing, which will not work at all unless space on Page
Zero is available. To write good Assembly language programs, therefore, it is

Memory Magic

165

$FFFF

$DBFF
$D800

$D000

$C000

$A000

$0800

$0400

$0100

$0000

Figure 10-1 A Simplified Memory Map of the Commodore 64 (Not to Scale)

OPERATING
SYSTEM ROM
_(THE COMMODORE KERNAL)

COLOR MEMORY

VIDEO, SOUND, AND
1/O RAM AND ROM

FREE RAM

BASIC ROM

FREE RAM

VIDEO
MEMORY

OPERATING SYSTEM
RAM

PAGE ZERO RAM—USED
BY OPERATING SYSTEM

absolutely essential to find at least a few free memory locations on Page Zero. It
you look carefully, that is how many free memory locations you will find on

Page Zero: a few.

A MAP OF THE HIGH-RENT DISTRICT

MEMORY DESCRIPTIONS OF REGISTERS' FUNCTIONS

ADDRESSES

$00-$01 Special 6510 I/O control registers (more about these later)
$0002 Not used

$O3-PFA Registers used by BASIC and by C64 operating system
SFB-3FE Bytes left free tor user-written programs

S00FF Used by BASIC interpreter

166 Assembly Language Graphics and Sound

Specitically, these are the memory addresses on Page Zero that you
can and cannot use in your programs, with the conditions under which they are
and are not available.

$FB. $FC, $FD, AND $FE

As you can see from the memory map, there are only four bytes on Page Zero,
$FB, 3FC, $FD, and $FE, that are permanently reserved for use by user-written
programs. But a good programmer can sometimes find other Page Zero
addresses that can be safely used in Assembly language programs. For exam-
ple, many of the addresses on Page Zero are reserved for use by the Commo-
dore 64 BASIC interpreter, and a number of others are used only by the
floating-point math routines that are built into the C64's operating system. In
Assembly language programs that are not designed to be called from BASIC
and so do not require the use of the C64's floating-point math package, many of
these registers are free for use by user-written programs. (A complete listing of
Page-Zero memory addresses, with briet annotations that can help you select
which ones you might be able to use in your programs, can be found on the
memory map that starts on page 310 of the Commodore 64 Programmer’s Refer-
ence Guide.)

ADDRESSES $0100 THROUGH $01FF
(The Hardware Stack)

Page One of the Commodore 64's memory, the RAM space that extends from
$0100 through $01FF, is reserved for use by the computer’'s hardware stack. The
hardware stack is a section of memory that the 6510 processor uses to keep
track of the return addresses of machine-language subroutines and interrupts
(temporary interruptions in normal program processing). The stack is also used
for temporary storage of the contents of memory registers. It is heavily used by
the Commodore 64's operating system and is also available for user-written
programs.

ADDRESSES $0200 THROUGH $03FF
(OS RAM and Free RAM)

Most of the RAM space that extends from $0200 through $03FF is reserved for
use by the Commodore 64 operating system, but there is one small block of
memory in this area that is usually free for use in user-written programs. This
free block, 88 bytes long, extends from Memory Register $02A7 through Memory
Register $02FF. This segment of memory is too short to do much programming in,
but it is often ideal for data tables that are used in Assembly language
programs.

If you own a Merlin 64 assembler, however, a word of caution about
the $02A7-$02FF memory block is in order. The Merlin 64 uses some of this mem-
ory for its own purposes, so programs that are written with the Merlin and use

Memory Magic

167

the $02A7-$02FF area for data storage may not always work properly when
they are executed using the Merlin editor or monitor. Such programs usually
wind up working fine, however, when they are removed from their Merlin envi-
ronment and executed without the help of the Merlin assembler/editor/monitor
package, using BASIC and/or DOS commands instead.

ADDRESSES $0400 THROUGH $07FF

(Video Memory RAM in Text Mode,
Color RAM in Bit-Mapped Mode)

At power-up time, Memory Registers $0400 through $07FF are designated as
video RAM, and are used to store the memory map which the Commodore 64
uses to generate its screen display. When the C64 is in its high-resolution (bit-
mapped mode), however, this segment of memory is far too short to hold a com-
plete screen map. (A low-resolution screen map consumes only 1,000 bytes of
memory, while a high-resolution screen map requires 8,000 bytes.) When a
programmer wants to use a high-resolution screen display, therefore, it is the
programmer's responsibility to find a segment of memory that does contain
enough space for a screen map, and to set up a high-resolution screen at that
location. Programs illustrating exactly how this is done will be presented in the
two chapters that follow this one.

Since the $0400-$07FF memory block is not used for high-resolution
screen mapping, it is generally used for another purpose when the C64 is in its
bit-map mode: to determine what colors will be used for the computer’s screen
display.

ADDRESSES $0800 THROUGH $9FFF
(Free RAM)

The 38K block of memory that extends from $0800 through $9FFF is totally free
RAM (RAM that is permanently set aside for use by user-written or user-
purchased programs). When you write a program in Assembly language, or in
BASIC, or any other language, this is the block of memory in which it will usu-
ally be stored.

At first glance, this looks like quite a large chunk of memory, but the
more closely you examine it, the smaller it gets. When you are writing an
Assembly language program, for example, your assembler, editor, and monitor
usually consume quite a bit of the memory space in this segment of memory.
When you write a program that requires both BASIC and Assembly language,
that can cramp your style even more, since you will then have to take special
precautions to keep the BASIC and machine-language portions of your pro-
gram from running into each other. So good memory management is always
important in Assembly language programming, even in a block of memory this
big. (Later on in this chapter, you will be provided with some tips on how to
steer clear of RAM that is used by assemblers and BASIC programs.)

168 Assembly Language Graphics and Sound

ADDRESSES $A000 THROUGH $BFFF
(RAM or BASIC ROM)

When you turn on the Commodore 64, Memory Addresses $A000 through $BFFF
are usually occupied by BASIC ROM, your computer’s built-in BASIC inter-
preter. If you do not need a BASIC interpreter, you can switch this block of
memory from ROM to RAM, and can thus add 8K of user-accessible RAM to your
computer’s memory. Explanations of how to do this will be provided later in this
chapter and the two chapters that follow.

ADDRESSES $C000 THROUGH $CFFF
(Free RAM—With Some Exceptions)

In Memory Locations $C000 through $CFFF, there is another 4K of RAM that is
usually free for use by user-written programs, but it is not always available to
the Assembly language programmer. In fact, all three of the assemblers that
were used to write the programs in this book make use of this block of memory in
one way or another. This does not mean that you cannot use this memory block
in Assembly language programs; there are ways to make use of it, if you are a
clever enough Assembly language programmer. A map showing how your
assembler uses the $CO00-FCFFF memory block can help you in this kind of
effort, and memory maps of all three assemblers that were used to write the
programs in this book can be found at the end of this chapter.

ADDRESSES $D000 THROUGH $D800
(I/0 RAM and Character ROM)

Memory Registers $D000 through $D800 serve double duty in the Commodore
64. With the help of some sophisticated bank-switching techniques, these
addresses are used as both RAM and ROM by the C64's operating system.
When they are used as RAM registers, their main job is to help control 170
devices. When they are used in their ROM mode, they are used to hold the data
which the C64 uses to print characters on its video monitor. The techniques that
are used to switch this block of addresses back and forth between RAM and
ROM will be explained later on in this chapter.

ADDRESSES $D800 THROUGH S$DBFF
(Color Memory in Text Mode; Otherwise, Free RAM)

When the Commodore 64 is in its text mode, Memory Addresses $D800 through
FDBFF are used for the storage of color data, the data that determines the col-
ors of characters displayed on the computer’s video screen. When the C64 is in
its high-resolution mode, this block of RAM is not used for the storage of color
data and is free for use by user-written programs.

Memory Magic

169

ADDRESSES $DBFF through $SFFFF
(Kernal ROM or Free RAM)

This block of memory is almost always occupied by the Commodore 64 kernal, a
block of machine-language input/output routines that are extensively used by
the C64 operating system and are also available for use in user-written pro-
grams. If you really wanted to, you could switch the C64's kernal ROM out of
this area, and use it as free RAM, but if you did that, you would have to write
your own operating system.

A complete list of kernal routines, and detailed instructions for using
them, can be found in Chapter 5 of the Commodore 64 Programmer’s Reference
Guide. That is a good chapter to become familiar with since the Commodore
kernal is an extremely valuable resource for the Commodore 64 Assembly lan-
guage programmer.

Now that you know how the Commodore 64's memory is organized, we
are ready to take a look at Memory Registers $0000 and $0001, which control all
memory-management operations of the C64.

$0000: THE DATA DIRECTION REGISTER

Memory Register $0000 is the 6510 chip's data direction register. In Assembly
language programs, it is often labeled D6510. The D6510 register is used to con-
trol the direction of the flow of data into and out of certain blocks of memory,
and also to control the direction of data flow to and from the Commodore 64
data cassette recorder.

$0001: THE 1I/O PORT

Memory Register $0001 is the Commodore 64's input/output port, or control port.
In Assembly language programs, it is often labeled R6510. The chief function of
the R6510 register is to determine which blocks of memory will be used as RAM
and which blocks will be used as ROM.

The R6510 register and the D6510 have eight bits each, but only five of
the bits in each register are significant. There is a direct one-to-one correspon-
dence between the remaining five bits in each register. Each significant bit of
the data direction register controls the direction of the data flow, which is con-
trolled by the corresponding bit of the I/O control register.

Bits 6, 7, and 8 of the D6510 and the R6510 registers are the bits that
are not significant. Bits 3 through 5 of each register are used to control a data
cassette recorder, if one is connected to the Commodore 64. Bits 0, 1 and 2 of
each register are used to determine whether specific blocks of the C64's memory
will be used as ROM or RAM, and what kinds of data will appear in the blocks
being used as RAM.

170 Assembly Language Graphics and Sound

BIT 5 4 3 2 | 0

Figure 10-2 The Significant Bits of the D6510 Register

THE D6510 REGISTER

When the Commodore 64 is powered up, the five significant bits of the D6510
register are set as shown in Figure 10-2.

There is rarely any need to change these bit settings in a user-written
program. The bits in the Commodore 64's other “"magic register’—Register
R6510—are reset much more often.

THE R6510 REGISTER

The RB510 register, like the D6510, has eight bits, five of which are significant.
When an R6510 bit is set, the function that it controls becomes an output function.
When a bit is cleared, the function that it controls becomes an input function.

Bits 6 through 8 of the R6510 register, like the corresponding bits of the
D6510 register, are not significant. Bits 3 through 5, like the same bits of the
D6510 register, are used to control the Commodore 64 data cassette recorder.
That leaves only three bits—Bits 0 through 2—for memory-control purposes, but
these are three of the most powerful bits on the Commodore 64's memory map.

To illustrate, here is a table showing the five significant bits of the
R6510 and D6510 registers, along with their functions.

TABLE 10-1. THE R6510 AND D6510 REGISTERS

SETTING AT
BIT NAME POWER-UP FUNCTION
0 LORAM 1 (Output) On: $AOO0-$BFFF is BASIC ROM
Oft: $A000-$BFFF is RAM
1 HIRAM 1 (Output) On: $EOO0-SFFFF is kernal ROM
Oft: SEO0O0-FFFFF is RAM
2 CHAREN 1 (Output) On: $D000-$DFFF is IO ROM

Off: $DO00—¥DFFF is character ROM

3 1 (Output) On: Write to cassette line
Oft: Read from cassette line

4 0 (Input) On: Cassette switch pressed
Off: Cassette switch not pressed

9 1 (Output) On: Cassette motor on
Oft: Cassette motor off

Memory Magic

171

BIT 0: LORAM

As you can see from Table 10-1, Bit 0 of the R6510 register (the bit called
LORAM) controls whether Memory Addresses $A000 through $BFFT will be
used as BASIC ROM or as user-addressable RAM. If Bit 0 is set, then the Com-
modore 64's built-in BASIC interpreter will consume Memory Registers $A000
through $BFFF, and can be used for writing and running BASIC programs. If Bit
0 of the R6510 register is cleared, then Memory Addresses $A000 through §BFFF
can be used as free RAM, and the computer'’s built-in BASIC interpreter will not
be available for use in writing or running BASIC programs.

BIT 1: HIRAM

Bit 1 of the R6510 register (the bit called HIRAM) controls whether the Commo-
dore 64 kernal will occupy Memory Registers $E000 through $FFFF, or whether
those registers will be made available for use as free RAM.

BIT 2: CHAREN

Bit 2 of the R6510 register (the CHAREN bit) is the "magic bit" that determines
whether Memory Addresses $D000 through $DFFF will be used as RAM registers
by the Commodore 64's operating system, or will be used as character genera-
tor ROM. When Bit 2 of the R6510 register is set, the $D000-through-§DFFF block
of memory is used as RAM by the C64's operating system, primarily the portion
of the operating system that controls the operation of I/O devices. When the
CHAREN bit is clear, all RAM stored in the $D000-$DFFF area becomes tempo-
rarily inaccessible, and 4K of character-generator ROM—Dbetter known to most
Commodore users as the C64's built-in character set—is switched in. That sort of
electric hocus-pocus is known in computer circles as bank-switching. It is a tech-
nique that is often used to stretch the memory capacity of a computer beyond
the machine’s nominal limits. Here is how it is used in the Commodore 64:

SOME MEMORY MAGIC

As you may recall from Chapter 1, the Commodore 64's screen graphics are
produced by a sophisticated microprocessor called the Video Interface Chip, or
VIC-II. To generate the characters that it displays on the Commodore 64's video
screen, the VIC-II chip uses a 4K character set that is permanently stored in
ROM addresses $D000 through $DFFF, but the VIC-II does not need access to
this data all the time. Under ordinary conditions, it has to refer to the data only
60 times each second (a snail’s pace to a computer), during a brief period of
time known as a video refresh cycle. A video refresh cycle, as you may know, is
a split-second "blackout”” period during which a computer’s screen goes blank
between video screen displays, and it is only during this lightning-fast flash of
time that the VIC-II chip has any need to access the ROM data stored in Mem-
ory Registers $D000 to $DFFF. The rest of the time—which is, of course, most of
the time—access to the ROM data in this segment of memory is not ordinarily

172 Assembly Language Graphics and Sound

required. So, to keep this rather large hunk of memory occupied when it is not
being used to generate video characters, the ROM data that it contains is tem-
porarily bank-switched right out of the Commodore 64's memory, and a 4K
block of RAM is switched in, and all of this happens so rapidly, 60 times every
second, that the whole process is totally transparent to the Commodore 64 user.

A MINOR PROBLEM AND HOW TO HANDLE IT

This bank-switching technique is an ingenious method for conserving memory,
but it sometimes creates a minor problem for Commodore 64 programmers. For-
tunately, this problem is not very difficult to solve, provided one knows how.

Here is the problem. Occasionally, a programmer needs access to the
Commodore 64's character-generator ROM for a slightly longer period of time
than the split-second refresh period between video frames provides. For exam-
ple, sometimes a programmer needs to copy the Commodore 64's character set
from ROM to RAM, so that it can be altered and then accessed in its new form.
(Yes, the C64's character set can be modified, and the ability to create custom-
ized character sets is one of the most powerful graphics techniques available to
the Commodore 64 programmer. You will learn how to create customized char-
acter sets in the next two chapters.)

To copy the C64's character set from ROM to RAM, it is usually neces-
sary to have access to the ROM data in $D000-$DFFF for a longer period of time
than the computer's video refresh cycle provides. This is where Bit 2 of the R6510
register comes in handy. To prevent the C64's character set from being switched
off while it is being copied, all a programmer has to do is turn off the CHAREN
bit while the data-duplication process is taking place. While the CHAREN bit is
off, the ROM data in the $D000-$DFFF ROM bank can be safely copied into
RAM. Then, when the copying process is finished, CHAREN can be turned back
on, and Memory Registers $D000 through $DFFF can be accessed once again
by the C64's operating system. A program that shows exactly how this process is
carried out will be presented in Chapter 11.

FOUR KINDS OF GRAPHICS DATA

We have now covered four types of graphics data that are used by the Commo-
dore 64. They are:

1. Character-generator ROM (the character set that is permanently
stored in ROM Registers $D000 through $DFFF). As we have men-
tioned, this character set can be moved into RAM, where it can be
modified and then used in its altered form in user-written programs. In
all, the C64's character set can be stored in any one of 32 blocks of
memory. A table showing where each of these blocks is situated will
be presented at the end of this chapter.

2. Screen memory (the C64 screen map). When you turn on the Commo-
dore 64, the computer’s screen memory map extends from Memory

Memory Magic

173

Address $0400 to Memory Address $0800. But, by storing certain values
in the upper four bits of a certain memory register (specifically, Mem-
ory Address $D018), you can place the Commodore’s screen map in
many other locations. You will also be provided with a table showing
all of these locations before you finish this chapter.

3. Sprite data. Sprites, as you may know, are user-definable graphics
characters that can be easily animated, completely independently of
any other graphics that may appear on a computer screen. The VIC-II
chip can display up to eight sprites on a screen at once, and the data
used to create sprites may be placed anywhere in the Commodore 64's
memory. But when sprites are used, the VIC-II must be provided with
eight pointers telling it where it must look to find the data that it needs
to draw each sprite on the screen. And these eight pointers are always
situated in the same place; they are the last eight bytes of the 1K block
of RAM used as screen memory.

4. A block of color memory RAM that extends from $D800 to $DBE7. This
block of memory cannot be moved. When it is used (it is not needed
when the C64 is in bit-mapped mode), it always occupies the 1,000
bytes of RAM beginning at Memory Address $D800.

THE VIC-II CHIP AND ITS FOUR MEMORY
BANKS

To understand how the Commodore 64 handles all of these types of data, it is
essential to understand one important concept about the C64's VIC-II graphics
chip.

The VIC-II chip can control up to 16 kilobytes of RAM, but that entire 16K
must be situated in one in block of memory called a memory bank. The Commo-
dore 64 has only four of these memory banks; Figure 10-3 shows their positions.

We have covered all of the blocks of memory that are identified on this
map, except for the two blocks labeled “character memory (ROM image)” that
appear in Banks 0 and 2. Here is an explanation of what those blocks are, and
how they are used.

As I have mentioned several times now, the Commodore 64's character-
generator ROM, better known as the C84's built-in character set, is permanently
stored in Memory Addresses $D000 through $DFFF. But, since the VIC-II chip can
“see"” only 16K of memory at a time, this block of ROM is not always accessible to
the VIC-IL So the engineers who designed your computer decided to provide the
VIC-II chip with two so-called "ROM images” of the C64 character set, one at Mem-
ory Locations $1000 to $2000, and the other in Memory Locations $3000 to $A000.

ROM IMAGES

A ROM image address is a kind of phantom memory address—a location that
has no meaning at all, except to the VIC-II chip. Since the block of memory in

174

Assembly Language Graphics and Sound

$3FFF

$3000

$2000

$1000
$0800
$0400

$0000

$BFFF

$B000

$A000

$9000

$8000

Figure 10-3 A Four-Bank Memory Map

BANK 0

FREE RAM

CHARACTER
MEMORY
(ROM IMAGE)

FREE RAM

VIDEO MEMORY

OPERATING SYSTEM RAM

BANK 2

BASIC ROM
OR FREE RAM

CHARACTER
MEMORY
(ROM IMAGE)

FREE RAM

$7FFF

$7000

$6000

$5000

$4000

$FFFF

$FO00

$E000

$D800

$D000

$C000

BANK 1

FREE RAM

BANK 3

OPERATION
SYSTEM RAM

COLOR MEMORY

VIDEO AND 170
RAM AND ROM

FREE RAM
(USUALLY)

which the C64's character ROM actually resides is not always accessible to the
VIC-II chip, the engineers who built the VIC chip purposely crossed the wires in
its direction-finding circuitry, fooling it into thinking that the C64 character set is
in a different place from where it actually is. So, although you and I know that
the Cb64's character set is in the $D000—$DFFF memory block, the VIC-II chip
does not know that. Instead, like a desert traveler looking at a mirage, VIC has

Memory Magic

175

been designed to look at a certain expanse of RAM and see an "image” of
character ROM that is not really there.

Actually, there are two such ROM images on the C64 map: one at
Memory Address $1000, and the other at Memory Address $3000. As you can
see from the four-bank map, the ROM images at $1000 and $9000 occupy the
same respective positions in Memory Banks 0 and 2. So the VIC-II chip sees the
ROM image at $1000 when it is looking at Bank 0, and sees the one at $3000
when it is looking at Bank 2.

In reality—and this is the most difficult part of this concept to under-
stand—both of these memory blocks contain just ordinary RAM, and this RAM
can be used just like any other RAM for non-graphics purposes in an Assembly
language program. But, since the VIC-II chip sees character data when it looks
at these two particular segments of RAM, neither of them can be used for any
other graphics purposes. If you try to store any kind of graphics data under
either of these "ROM images," the VIC-II chip will not be able to see it; VIC will
always see only "ROM image" character data in these two blocks of memory.

BANKS 1 AND 3

If you are still with me, you might now be asking another question: When the
VIC-II chip is looking at Bank 1 or Bank 3, which contain no ROM images, then
where does VIC find the character data that it needs to generate its screen
displays? The answer is nowhere. When the VIC-II chip has been set to look at
Bank 1 or Bank 3, it simply will not be able to find any character data at all—
unless the character ROM that actually resides at $D000 to $DFFF has been
copied into RAM, and VIC has been told where in RAM to tind it. When you
have copied a character set from ROM to RAM, you can tell VIC where the new
character set can be found by setting a certain series of bits (specifically, Bits 1
through 3) of a certain memory register (specifically, Memory Register $D018).
Once that has been done, the VIC-II chip can find the duplicate character set in
its new location.

If you do not quite understand all of that yet, please do not be too
concerned; it will become clearer in the next two chapters, when sample pro-
grams will be presented illustrating how the VIC-II chip finds and uses the char-
acter data stored in the Commodore 64's ROM.

Meanwhile, let's move on to our next topic: how to use the four memory
banks that are accessible to the VIC-II chip.

HOW TO SELECT A MEMORY BANK—AND WHY

When the Commodore 64 is first powered up, the memory bank that it uses for
storage of graphics data is Bank 0. As you can see from the four-bank memory
map presented in Figure 10-3, Bank 0 is a pretty crowded place; so crowded, in
fact, that it is not always the best spot in which to store graphics data. Some
programs require the use of a high-resolution screen, which consumes eight
times as much of memory as a text screen, and some programs even call for two
or more high-resolution screen displays. In addition, there are programs that
use more than one character set, and programs that use large amounts of sprite

176 Assembly Language Graphics and Sound

data. So a program that includes a lot of graphics can easily exceed the space
limitations of Bank 0.

Fortunately, when a program requires more room for graphics than
Bank 0 offers, it is not too difficult to switch the Commodore 64's graphics mem-
ory area from one memory bank to another. All you have to do to make such a
switch is stuff a certain two-code number into Bits 0 and 1 of a memory register
situated at Memory Address $DD00. A couple of sample programs that are
designed to perform this operation are presented in the next two chapters of this
book. In case you cannot wait that long, Table 10-2 lists the codes that must be
stored in Bits 0 and 1 of Memory Register $DD00 to determine what memory
bank will be used for the storage of graphics data.

Table 10-2 DESIGNATING A MEMORY BANK

TO SELECT AT THESE STORE THESE VALUES IN BITS 0 AND 1
BANK NO. ADDRESSES OF MEMORY REGISTER $DD00

(Binary) (Decimal/Hexadecimal)
0 $0000—-$3FFF 00 00
1 $4000-$7FFF 01 01
2 $8000—-$BFFF 10 02
3 $CO00-$FFFF 11 03
AN IMPORTANT WARNING

There is one important note of caution regarding the use of Table 10-2. Memory
Register §DD00 is a multi-purpose register that controls various input/output
functions of the 6510 chip, as well as designating the memory bank that is to be
used by the VIC-1I chip. So, when you load a value from the table into Bits 0 and
1 of Register $DDO0, it is important not to disturb the contents of the other bits in
the register. To alter Bits 0 and | without disturbing Bits 2 through 7, you can use
an Assembly language routine such as this:

LDA $DDOO

AND #$FC ;CLEAR BITS O AND 1

ORA #%02 ;A VALUE FROM THE ABOVE CHART
STA $DDOO

YOUR NEXT DECISION

Once you have decided what memory bank you want to use for graphics data,
you can also decide exactly where in that block you want to put the various
kinds of data that your computer’s VIC-II chip must address: your screen
map(s), your character set(s), and your sprite data (if you will be using any
sprites in your program). In the next section of this chapter, you will find

Memory Magic

177

detailed examples of how to make all of these decisions—and how to carry them
out once they have been made.

MOVING A CHARACTER SET

There are actually two character sets in the Commodore 64. One, which con-
tains uppercase letters and graphics characters, begins at Memory Address
$D000. The other set includes upper- and lowercase letters but no graphics
characters. It starts at $D800. (Complete listings of both character sets can be
found in Appendix E and Appendix F of the Commodore 64 User's Guide, and in
Appendix B and Appendix C of the Commodore 64 Programmer’s Reference
Guide.) You can copy either of these character sets from ROM to RAM—or, if
you wish, you can copy both of them. But whether you use a full character set or
a partial set, it must begin at a memory address that is evenly divisible by $800—
that is, on a 2K boundary. In a moment, you will be presented with a table that
lists all of the permissible starting addresses for a full or partial character set
copied from ROM to RAM, but first, here is an explanation of how to use the
table.

As mentioned a few paragraphs ago, you can put a character set in
any of the four banks of memory in the Commodore 64, provided that you tell
the VIC-II chip exactly where you put it, and the way to do that is to store a code
number into three bits of a certain memory register: specifically, $D018.

THE VIC-II MEMORY CONTROL REGISTER ($D018)

Memory Register $D018 is called the VIC-II Memory Control Register, and is
often labeled VMCSB in Assembly language programs. To tell the VIC-II chip
where a RAM character set has been located, all you have to do is store the
proper code in Bits 0 through 3 of the VMCSB register, as illustrated in Table 10-
3.

As you can see from this table, the meaning of the value stored in Bits
0 through 3 of the VMCSB register can vary, depending upon which bank of
memory the VIC-II chip is looking at. So, betfore this table is used, the VIC-II chip
must be told (in accordance with the instructions given in the previous section of
this chapter) which memory bank to look into for graphics data.

Here is another important tip: although bits 1 through 3 of the VMCSB
register are used to indicate the starting address of character sets, Bits 4
through 7 of the same register are used to inform the VIC-II chip of the starting
address of screen memory. So when you use Bits 1 through 3 of this register, you
have to be careful not to disturb whatever value might be stored in Bits 4
through 7. (You do not have to worry about Bit 0, since it is not significant.)

To set Bits 1 through 3 of VMCSB without disturbing the upper four bits
of the register, you can use a routine like this one:

ALTERING THE LOWER NIBBLE OF VMCSB
LDA VMCSB

178 Assembly Language Graphics and Sound

AND #$FO ;CLEAR LOWER NIBBLE
ORA #$0E ;(SAMPLE VALUE FROM CHART BELOW)
STA VMCSB

Here is a table showing values that can be used in this equation.

Table 10-3 RAM CHARACTER SET STARTING ADDRESSES
(Store Starting Address Code in $D018 (VMCSB) as Follows:)

BITS HEX STARTING ADDRESSES

TO SET NO. Bank 0 Bank 1 Bank 2 Bank 3
XXXX111X $0E $3800 $7800 $B800 N/A*
XXXX110X $0C $3000 $7000 $B000 N/A*
XXXX101X S0A $2800 $6800 $A800 N/A*
XXXX100X $08 $2000 $6000 $A000 N/A*
XXXXO011X 306 $1800** $5800 $9800** N/A*
XXXX010X $04 $1000** $5000 $9000** N/A*
XXXX001X $02 $0800 $4800 $8800 $C800
XXXX000X $00 N/A* $4000 $8000 $C000

*Memory block not normally available for storage of character data.

**These blocks are where ROM character images are stored; RAM stored there is not visible to the
VIC-II chip, and thus cannot be used for storage of user-generated character sets or any other kinds
of graphics data.

MOVING A SCREEN MAP

The address of screen memory, as previously noted, is changed by altering the
upper four bits of the VMCSB register (Memory Register $D018). When these
four bits are changed, care must be taken not to disturb the lower nibble of the
VMCSB register, since altering that nibble controls the location of the C64 char-
acter set. A routine such as this can be used to change the upper nibble of
VMCSB without changing the lower nibble:

ALTERING THE UPPER NIBBLE OF VMCSB

LDA VMCSB

AND #$0F ;CLEAR UPPER NIBBLE

ORA #$80 ;(SAMPLE VALUE FROM CHART BELOW)
STA VMCSB

Here is a table of values that can be used in this equation.

Memory Magic

179

Table 10-4 SCREEN MEMORY STARTING ADDRESSES
(Store Starting Address Code in $D018 (VMCSB) as Follows:)

BITS HEX STARTING ADDRESSES

TO SET NO. Bank 0 Bank 1 Bank 2 Bank 3
1TT1IXXXX $FO $3C00 $7C00 $BC00 N/A*
1110XXXX $SEQ $3800 $7800 $B800 N/A*
1101 XXXX $D0 $3400 $7400 $B400 N/A*
1100XXXX $C0 $3000 $7000 $B000 N/A*
101 1 XXXX $BO $2C00 $6C00 SACO0 N/A*
1010XXXX B$A0 $2800 $6800 $A800 N/A*
1001 XXXX $90 $2400 $6400 $A400 N/A*
1000XXXX $80 $2000 $6000 $A000 N/A*
01T1XXXX $70 $1C00** $5C00 $9C00*™ N/A*
0110XXXX $60 $1800** $5800 $9800** $DBO0***
0101 XXXX $50 $1400** $5400 $9400** N/A*
0100XXXX $40 $1000*~* $5000 $9000** N/A*
001 1XXXX $30 $0C00 $4C00 $8C00 $CCO00
0010XXXX $20 $0800 $4800 $8800 $C800
0001 XXXX 310 $0400 $4400 $8400 $C400
0000XXXX $00 N/A* $4000 $8000 $C000

*Block not normally available for storage of screen memory data.

**These blocks are where ROM character images are stored; RAM stored there is not visible to the
VIC-II chip, and thus cannot be used for storage of other kinds of graphics data.

***Default storage area for color memory. This memory block is not large enough for storage of a
high-resolution screen map, and must be used for storage of color data when C64 is in text mode. So
this address is normally not available for storage of screen-map data in either text or bit-map mode.

MEMORY MANAGEMENT OF
PROGRAMS CALLED FROM BASIC

When a machine-language program has to share memory space with a BASIC
program, problems in memory allocation may arise. BASIC uses memory regis-
ters all over the Commodore 64's memory map. So unless special precautions
are taken, a BASIC program may overwrite any machine language program
that is stored in the block of free RAM that extends from $0800 to $9FFF, even if
the machine-language program is located in the higher reaches of this block of
RAM.

One way to keep a BASIC program from clobbering a machine-lan-
guage program is to store the machine-language program in the $C000-$CFFF
block of memory, a segment into which BASIC does not intrude. However,
machine-language programs are often too long to fit into this 4K block of RAM.
And, as previously mentioned, the memory requirements of some assemblers
(such as the Merlin 64 and the Panther 64) make it difficult to write machine-
language programs that can be stored in this block of memory.

180 Assembly Language Graphics and Sound

Fortunately, there is @ way out of all this. You can keep a BASIC pro-
gram from taking over the higher regions of the $0800—-$SFFF block of memory
by changing the values stored in two pairs of memory registers, one called
FRETOP and one called MEMSIZ.

FRETOP is a pointer that resides at Memory Registers $33 and $34 (51
and 52 in decimal notation). Its job is to point to the top of the memory area in
which BASIC stores text strings and other kinds of data. BASIC is not permitted
to store data at any address higher than the one indicated by this pointer.

MEMSIZ is a pointer stored in Memory Registers $37 and $38 (55 and
56 in decimal notation). BASIC programs cannot advance beyond the memory
limit set by this pointer.

To keep a BASIC program from overwriting a machine-language pro-
gram, all you have to do is lower the values of FRETOP and MEMSIZ, and then
start your machine-language object code at a higher address. Normally, BASIC
programs are allowed to extend all the way from $0800 to $A000, the top of the
Commodore 64's free RAM, but with the help of FRETOP and MEMSIZ, the top of
the block of RAM available to BASIC can be lowered to almost any desired
value. The amount of free memory that should be allocated to a BASIC program
will depend, of course, on the size of the BASIC program being used, but very
few BASIC programs come anywhere close to consuming the 38K of free RAM
that is made available to BASIC programs by the Commodore 64.

Suppose now, that you were working with a very long BASIC program
that consumed a total of 24K of RAM. If such a program started at Memory
Address $800—as BASIC programs written for the Commodore 64 usually do—
then it would not require any RAM space past Memory Address $6000. In such a
case as this, the contents of both FRETOP and MEMSIZ could be set at $6000,
and the 16K block of memory extending from $6000 to $A000 could then be used
for storage of a machine-language program.

The contents of FRETOP and MEMSIZ could be altered in either the
BASIC segment or the machine-language segment of a BASIC/machine-lan-
guage program. However, since machine-language programs that share mem-
ory space with BASIC programs are usually called from BASIC, FRETOP and
MEMSIZ are most commonly altered using BASIC commands.

Here is an example of a BASIC routine that could be used to change
the contents of the FRETOP and MEMTOP pointers to a value of $6000 (24576 in
decimal notation):

CHANGING THE TOP OF BASIC RAM

10 NEW=24576:REM $6000
15 HI=INT(NEW/256):L0=NEW-HI*256
20 POKE 51,L0:POKE 52,HI:POKE 55, LO:POKE 56,HI:CLR

If you used a routine such as this one in a BASIC program, nothing contained in
the program would be permitted to extend past Memory Address $6000 (24576 in
decimal notation), and the block of RAM extending from $6000 to $A000 would
thus be a safe location for a machine-language program.

Memory Magic

181

One noteworthy feature of this program is the use of the instruction
CLR in Line 20. This instruction removes all previously declared variables from
memory, leaving all RAM above BASIC's new limits free for use by machine-
language programs. Caution must be exercised in the use of CLR, of course,
since any BASIC variables that have been declared prior to its appearance in a
program will be wiped out.

MEMORY PROBLEMS CAUSED BY ASSEMBLERS

Here is another point to remember. Occasionally, an Assembly language
programmer runs into unexpected difficulties when a machine-language pro-
gram overwrites the machine code used by the assembler, editor, or monitor on
which the program is being written. When that happens, the program being
written and the assembler that is being used to write it can mess each other up
terribly, sometimes with disastrous results.

To help keep that kind of calamity from taking place in Assembly lan-
guage programs that you write, here are three short memory maps—one for
each of the three assembler/editor packages that were used to write the pro-
grams in this book.

MEMORY MAP OF THE MERLIN 64 ASSEMBLER

ADDRESSES FUNCTIONS

$0000-$0IFF Used by Merlin and C64 operating system ($FB-$FF not
used by Merlin or C64)

$0200-50258 Not used by Merlin (but C64 uses this area for BASIC
and cassette recorder [/0)

$0259-3089F Used by Merlin and C64 operating system

$08A0-308FF Not used by Merlin or C64; free RAM

$0900-$09FF Used by Merlin; not used by C64

$OAC0-$7FFF Used for source code; can be altered with a Merlin
editing command (WO)

$8000—B9FFF Used for object code (starting address can be altered)

$AO00-BCFFF Area in which Merlin 64 assembler/editor program is
stored

You can see from this map why $8000 is a good starting address for object code
written using the Merlin 64 assembler, but it is not the only starting address that
can be used. You can declare a higher starting address with the ORG pseudo-op,
and you can also declare a lower starting address, provided that you first use
Merlin’s WO command to alter the upper limit of the assembler’s source-code text
buffer.

As you can also see from the above map, the program used to run the
Merlin assembler starts at $A000. User-generated programs can extend beyond
that address, but if they do, a special technique has to be employed to assemble

182 Assembly Language Graphics and Sound

them. When you assemble a program that will extend beyond Memory Address
$A000, its object code has to be written directly to disk instead of being stored in
the Commodore 64's memory. Once an object-code program has been assem-
bled on a disk in this fashion, it can be run like any other machine-language
program; it can be loaded into the C64's memory when Merlin is not present,
and can then be executed without the help of the Merlin package.

MEMORY MAP OF THE
COMMODORE 64 ASSEMBLER

From a memory-management point of view, the Commodore 64 Macro Assem-
bler Development System is by far the most versatile of the three assem-
bler/editor packages used in the writing of this book. The Commodore
assembler has two monitors—one at $8000 and the other at $C000—and two
machine language loaders, one at $0800 and the other at $C800. So, if you are
skilled at using the Commodore 64 assembler, you can use it to write machine-
language programs that can be stored anywhere in your computer’s memory.
Here is a table showing the memory locations of each program in the Commo-
dore 64 Macro Assembler package.

ADDRESS PROGRAM

$0800 LOADER64 (Machine-Language Loader No. 1)
$C800 HILOADER64 (Machine-Language Loader No. 2)
$8000 MONITOR$8000 (Machine-Language Monitor No. 1)
$C0O00 MONITORS$CO00 (Machine-Language Monitor No. 2)
$C000 EDITOR64 (Assembly Language Editor)

$080F Assembler64 (Machine-Language Assembler)
$CCO0 DOS WEDGE®B4 (DOS Wedge)

MEMORY MAP OF THE PANTHER C64

Here is @ map showing the memory requirements of the Panther C64 assembler.

ADDRESSES PROGRAM
$4000-$7FFF Source-Code Text Buffer (Default Location)
$8000-$8FFF Source-Code Symbol Table (Default Location)

$9000-$C7EC Panther C64 Assembler
SC7ED-$CFTFF Panther C64 Monitor

As you can see, the programs in the Panther C64 assembler package are all
situated in high RAM—from $4000 on up—and consume most of the Commo-

Memory Magic

183

dore's free RAM space above that address. That is why most of the programs in
this book that were written using the Panther C64 assembler start in low RAM—
memory address $2000. This is not my favorite location for machine-language
programs, since it severely restricts the size of any BASIC programs that may be
used together with machine-language programs.

The designers of the Panther C64 did provide a method for changing a
couple of the default settings of two of the programs in the Panther package.
The assembler is equipped with a TEXT command that can be used for chang-
ing the starting address of the assembler’s source-code text buffer, and there is
a SYMBOL command that can be used to move the symbol table, but, since the
other two Panther programs consume all free RAM from $3000 to $CFFF, there
are not many places left for the source-code text buffer and the symbol table,
even if one did want to move them.

High-Resolution
Commodore Graphics
Joystick Operations

If you are itching to start writing graphics and sound programs in Assembly
language, then this chapter is the one you have been waiting for. In this chap-
ter, and the ones that follow, you will have a chance to start learning (finally)
how to write Assembly language graphics and sound programs for your
Commodore.

The programs in this chapter, like those throughout the rest of the
book, were designed to be compatible with both the Commodore 64 and the
Commodore 128. So if you own a Commodore 128, you will have to put it into its
C64 mode before you type, assemble, and run the programs in this chapter and
the ones that follow. The Commodore 128 has a few special features —such as
an expanded memory and 80-column color graphics—that will not be speciti-
cally covered in the chapters, but if you learn everything that is in this section of
this book, you will have no trouble picking up the rest of what you need to
program the Commodore 128 when it has all its bells and whistles on.

PREVIEWS OF COMING ATTRACTIONS

In this chapter, you will get a chance to type, assemble, and run a program that
can turn the Commodore 64 screen into a bit-mapped graphics tablet. The pro-
gram is called SKETCHER, and once you understand how it works, you will be
able to create high-resolution pictures on your C64 screen using a light pen, a
trackball, or a joystick controller. In later chapters, you will learn how to create
custom-designed characters, how to create giant-sized headline characters,
how to program and animate sprites, and how to create music and special
effects on the Commodore 128 and the Commodore 64.

We will start with a short program that is written in BASIC rather than
Assembly language. In addition to creating a nice, colorful display with some
entertaining animation, it illustrates some important principles that are often
used in Commodore 64 graphics. So please do not skip over this program; you
will run across some of those same principles later on in the next few chapters,

186 Assembly Language Graphics and Sound

when we start examining some more complex graphics programs that are writ-
ten in Assembly language.

A GRAPHICS PROGRAM IN BASIC: FOLLOW THE BOUNCING BALL

10 REM #%** BALLBOUNCE.BAS %%

20 PRINT CHR$(147):REM CLEAR SCREEN

30 BALL=81:SPACE=-96:RULE=99:REM CODES TO PRINT
THINGS ON THE SCREEN

40 FOR L=55616 TO 55975:POKE L,2:NEXT L:REM MAKE BALL
RED

50 FOR L=55976 TO 56015:POKE L,7:NEXT L:REM MAKE
FLOOR YELLOW

60 POKE 53281,0:POKE 53280,6:REM BLACK BACKGROUND,
BLUE BORDER

70 PRINT CHR$(5):REM WHITE TEXT

80 PRINT:PRINT:PRINT " FOLLOW THE BOUNCING BALL . . ."

90 FOR L=1704 TO 1743:POKE L,RULE:NEXT L:REM DRAW
FLOOR

100 PSN=1664:CT=1:REM STARTING POSITION AND FRAME
COUNTER

110 FOR INC=1 TO 8:GOSUB 210:REM THIS LOOP DRAWS THE
BALL GOING UP

120 PSN=PSN-40+1:REM THE BALL GOES UP

130 IF CT>40 THEN PSN=1344:CT=1:GOTO 150:REM BALL OFF
SCREEN-BACK TO BEGINNING

140 NEXT INC

150 FOR DEC=1 TO TO 8:GOSUB 210:REM THIS LOOP DRAWS
THE BALL COMING DOWN

160 PSN=PSN+41:REM THE BALL COMES DOWN

170 IF CT>40 THEN 100:REM BALL OFF SCREEN-LOOP BACK

180 NEXT DEC

190 GOTO 110:REM DONE-START AGAIN

200 REM **** PRINT BALL ON SCREEN *%%x

210 POKE PSN,BALL

220 FOR L=1 TO 50:NEXT L

230 POKE PSN, SPACE

240 CT=CT+1:RETURN

250 END

HOW IT WORKS

It you are familiar with Commodore 64 graphics, you may know that the C64 is
capable of displaying up to 1,000 characters at a time on its screen, in a format
that measures 40 columns by 25 lines. To hold the 1,000 characters that it can
display on its screen, the Commodore 64 uses a specific block memory that is—

High-Resolution Commodore Graphics 187

0400 0427
(1024 DECIMAL) (1063 DECJ}N\AL)

07Co 07E7)

(1984 DECIMAL) (2023 DECIMAL)

Figure 11-1 Screen Memory Map of the Commodore 64 (Default Addresses)

not surprisingly—1,000 bytes long. This block of memory, called screen memory,
normally starts at Address No. 1024 ($400 in hexadecimal notation) and extends
to Address No. 2023 ($7E7 in hex). This block of screen memory can be visual-
ized as a grid of squares measuring 40 columns wide by 25 lines high, with each
square representing one screen location.

When you type a character on the Commodore 64's keyboard, your
computer's operating system translates the character you have typed into a
special code, and then prints the character on your screen by storing its code
number in the appropriate screen memory location. The character codes that
are used for this purpose are not the standard ASCII codes that are commonly
used by computer printers and for computer-to-computer communications.
Instead, the Commodore 64 uses a special set of screen codes that includes
many special characters as well as the standard set of ASCII characters. You
can find a complete listing of this set of screen codes beginning on page 132 of
your Commodore 64 User's Guide, and on page 376 of the Commodore 64
Programmer’s Reference Guide.

Once you know what these screen display codes are, and where the
screen display memory in your computer is, you can print text and graphics
characters on your computer's screen by poking their screen-code values
directly into the appropriate screen memory locations. In this way, you can
bypass your computer’s operating system and screen editor at any time you
like, and can print anything you like directly on your screen.

In addition to its 1,000-byte block of screen memory, the Commodore
64 also has a corresponding 1,000-byte block of color memory. This block of
color RAM begins at Memory Location 55236 ($D800 in hexadecimal notation)
and extends to Memory Location 56295 (hexadecimal $DBE7). This bank of color
memory can also be thought of as a 40-column by 25-line matrix of squares, with
each square representing one pixel (picture element) on your computer screen.

188 Assembly Language Graphics and Sound

D800 D827
(55296 DECIMAL) (565335 DECIMAL)

DBCO DBE7
(56256 DECIMAL) (56295 DECIMAL)

Figure 11-2 Color Memory Map of the Commodore 64 (Default Addresses)

The block of screen memory and the block of color memory inside your
computer are designed to be used together. In addition to its screen display
codes, the Commodore 64 also has a set of 16 color codes. And, by poking those
codes into your computer’s color memory map, you can determine the color of
each individual text or graphics character that appears on your computer
screen.

Table 11-1 lists the color codes used by the Commodore 64.

Table 11-1 COMMODORE 64 COLOR CODES

0 Black 8 Orange

1 White 9 Brown

2 Red 10 Light Red

3 Cyan 11 Gray 1

4 Purple 12 Gray 2

o Green 13 Light Green
6 Blue 14 Light Blue

7 Yellow 15 Gray 3

Take a look at the two screen maps that were presented earlier in this chapter—
the screen map and the color map—and you can see how the C64's screen
memory and color memory work together. Since both maps have exactly the
same measurements—40 columns wide by 25 columns deep—the 16 colors that
can be used on the color map can be visualized as a set of 16 colored overlays.
By placing these overlays on the appropriate portions of your computer’s screen
map, you can make the characters on the grid appear in any color you choose.

High-Resolution Commodore Graphics 189

Look at the screen color map, and you can see exactly how this color
overlay concept was used in creating the BALLBOUNCE program. In Line 40, a
loop is used to place a red overlay over the top two thirds of the screen—from
the top line of the screen all the way down to the line that begins at Memory
Location 55976. When this red overlay is first laid down, it is invisible, since
nothing has been drawn on the screen so far. But as soon as something is
printed on the portion of the screen covered by the overlay—for example, a
bouncing ball—the character will show up in red, as you have just seen if you
ran the program.

After the red overlay is in place, a yellow one is laid down. This yellow
overlay is just one pixel high; it runs across the screen horizontally in the form of
a line that extends from Location 55976 to Location 56015. Next, a line is drawn
across the screen, and comes out yellow because it lies under our yellow
overlay.

Once the red and yellow overlays are in place, the words "FOLLOW
THE BOUNCING BALL . . .” are printed across the top of the screen in white
letters, using conventional PRINT commands. Then, in Lines 210 through 240, a
red ball is sent bouncing across the screen. The animation technique employed
here is quite simple; a circle (Screen Code 81) is drawn on the screen, then
suddenly erased and redrawn in a new location. The square in which the ball
appears keeps changing, and the effect is one of crude animation. When you
consider that the program is written in BASIC, and that sprites (movable,
arcade-style graphics characters) are not used, the animation in this little pro-
gram is pretty effective. But a number of far better animation techniques are

available to Assembly language programmers, as you will discover later on in
this book.

CONTROLLING ANIMATION
WITH JOYSTICKS

Now we will continue our exploration of Commodore 64 graphics with a BASIC
program called JOYSTIX BAS. This program also contains some very important
principles that are also applicable to graphics programs written in Assembly
language. Type it and run it; it will help you understand the Assembly lan-
guage programs that follow.

To run the program, you will need one game controller: a joystick or,
even better, a trackball. Plug the controller into Joystick Port A, load the pro-
gram into RAM, and type RUN. After a few moments, a flickering yellow dot
should appear in the middle of your screen.

Move your joystick, and the yellow dot will move around the screen.
Press your joystick's trigger button while you are moving the stick, and the yel-
low dot will leave a trail of dots behind as it moves around. When you move the
dot over other dots, with the trigger button up, it will erase the other dots. Try it,
and watch the show.

Here is the program:

190

Assembly Language Graphics and Sound

10
20
30
40
50
60

70
80
90
100

110
120
130

140

150

160
170

100
110
111
120
121
130
140
141
150
151
152
160
161
162
170
180
181
190
191
192
200
201
202

REM *%%%x* JOYSTIX.BAS ***kkkkkkkk
PRINT CHR$(147):REM CLEAR SCREEN
BASE=1024:REM START OF SCREEN MEMORY
X=INT(40/2):REM POSITION X HALFWAY ACROSS SCREEN
Y=INT(25/2):REM POSITION Y HALFWAY DOWN SCREEN
POKE 53280,4:POKE 53281,0:REM PURPLE BORDER, BLACK
BACKGROUND
FOR L=55296 TO 56295:REM LOW-RES SCREEN COLOR MAP
POKE L,7:NEXT L:REM YELLOW CHARACTERS
REM **%%x READ JOYSTICK **%x%*
POKE BASE+X+40*Y,81:REM PRINT DOT AT SCREEN
POSITION X,Y
JV=PEEK(56320):REM GET JOYSTICK VALUE
TB=JV AND 16:REM GET TRIGGER BUTTON STATUS
JV=15-(JV AND 15):REM CONVERT SWITCH VALUES TO A
NR BETWEEN O AND 10
IF TB=16 THEN POKE BASE+X+40%Y ,32:REM IF TB NOT
PRESSED, PRINT SPACE
IF JV<>0 THEN 170:REM JOYSTICK HAS BEEN
ACTIVATED; READ IT
GOTO 100
ON JV GOTO
1100,1200,1300,1400,1500,1600,1700,1800,1900,2000
0 REM ***x*x%x*x* READ POINTER ***%xkx%x%%%
0 Y=Y-1:IF Y<0 THEN Y=24:REM UP
0 GOTO 100:REM PRINT PIXEL
0O Y=Y+1:IF Y>24 THEN Y=0:REM DOWN
0 GOTO 100
0 GOTO 100:REM NO ACTION
0 X=X-1:1IF X<0 THEN X=39:REM LEFT
0 GOTO 100
0 X=X-1:IF X<0 THEN X=39:REM LEFT...
0 Y=Y-1:1IF Y<O0 THEN Y=24:REM AND UP
0 GOTO 100
0 X=X-1:IF X<O0 THEN X=39:REM LEFT...
0 Y=Y+1:IF Y>24 THEN Y=0:REM AND DOWN
0 GOTO 100
0 GOTO 100:REM NO ACTION
0 X=X+1:IF X>40 THEN X=0:REM RT..
0 GOTO 100
0 X=X+1:IF X>40 THEN X=0:REM RT..
0 Y=Y-1:IF Y<O THEN Y=24:REM ..AND UP
0 GOTO 100
0 X=X+1:IF X>40 THEN X=0:REM RT..
0 Y=Y+1:IF Y>24 THEN Y=0:REM AND DOWN
0 GOTO 160

High-Resolution Commodore Graphics 191

PRINCIPLES OF THE PROGRAM

Most of the graphics principles that are used in this program were explained
pretty thoroughly in Chapter 10. And you may recall others that were men-
tioned in the text that accompanied the program BALLBOUNCE.BAS.

Here is how the JOYSTIX program works.

In Line 3, an important constant called BASE is defined. The value of
this constant, 1024 ($400 in hexadecimal notation), is the default starting
address of the Commodore 64's low-resolution screen map. Then in Lines 40
and 50, two variables (called X and Y) are set up for use as screen coordi-
nates. Their initial values are defined as INT(40/2) for X and INT(25/2) for Y.
Since the Commodore's low-resolution screen measures 40 columns wide by
25 lines high, these values will cause a dot to be printed at midscreen when
the program begins.

Line 60 sets the border and background screen colors for the JOYSTIX
screen display. Then, in Lines 70 and 80, the value 7 is stored in every byte of
RAM in the memory block that extends from Memory Register 55296 ($D800) to
56295 ($DBE7). This block-fill operation ensures that all of the characters which
we will be printing on the screen will be yellow. As you may recall from the
BALLBOUNCE program in Chapter 1, the block of RAM that extends from $D800
to $DBE7 can be thought of as a color overlay that can be placed over the
Commodore 64's screen map. When a color is stored in a pixel on this overlay,
then the corresponding pixel on the Commodore screen map will be displayed
in the chosen color. Since the number 7 is the Commodore 64's code for the color
yellow (for a list of all color codes, see the table in Appendix D of the Commo-
dore 64 Programmer’s Reference Guide), storing a 7 in every byte of memory
from $D800 through $DBE7 will make every character that appears on the
screen yellow; hence, what you will get in the JOYSTIX program is yellow dots.

A JOYSTICK-READING ROUTINE

The next section of the JOYSTIX BAS program is the one that reads the game
controller in Port A. The Commodore 64 has a pair of joystick ports that are
often referred to as Port A and Port B. The status of Port A can be determined by
peeking into an 8-bit memory register located at Memory Address 56320. The
status of Port B can be determined by peeking into a similar memory register at
Memory Address 56321.

Each of the two joysticks that can be plugged into the Commodore 64
contains five on/off switches. Four of these switches correspond to the four pri-
mary directions in which a joystick can be pushed: up, down, left, and right. If
the joystick is moved diagonally, two switches can be activated simultaneously,
and can be read in combination. In this way, diagonal movements of the joys-
tick can be detected.

The fifth switch inside a joystick is used to determine whether the joys-
tick's trigger button is pressed or not pressed.

The JOYSTIX.BAS program is designed to read a joystick that is
plugged into Port A of the Commodore 64 console. The program reads the joys-

192

Assembly Language Graphics and Sound

tick by peeking into Memory Address 56320. Table 11-2 shows all possible val-
ues that can be found in that location, and their meanings.

Table 11-2 COMMODORE 64 JOYSTICK VALUES

SWITCH BINARY
VALUE VALUE MEANING

0 0000 0000 No action

1 0000 0001 Up

2 0000 0010 Down

3 0000 0011 None

4 0000 0100 Left

S 0000 0101 Left + up

6 0000 0110 Left + down

7 0000 0111 None

8 0000 1000 Right

9 0000 1001 Right + up

10 0000 1010 Right + down

11 0000 1011 None

12 0000 1100 None

13 0000 1101 None

14 0000 1110 None

15 0000 1111 None

16 0001 0000 Trigger button pressed
17 0001 0001 Trigger + up

18 0001 0010 Trigger + down

19 0001 0011 None
20 0001 0100 Trigger + left
21 0001 0101 Trigger + left + up
22 0001 0110 Trigger + left + down
23 0001 0111 None
24 0001 1000 Trigger + right
25 0001 1001 Trigger + right + up
26 0001 1010 Trigger + right + down
26 0001 1010 None

Atter the flashing dot is placed in the center of the screen in the JOYSTIX BAS
program, a loop is set up to determine the value of the joystick's direction
switches. But before the direction of the joystick is read, a test is conducted to
determine whether the trigger button is being pressed. If the trigger button is
pressed, then a small circle is drawn on the screen at the current joystick posi-
tion. If the trigger button is not being pressed, no circle is drawn, and a space is
printed on the screen to erase any circle that may have been previously printed

in that location.

High-Resolution Commodore Graphics 193

The result of all of this plotting, drawing, and erasing of tiny circles is
quite entertaining. By pressing a joystick trigger and moving the joystick
around, you can draw patterns of circles all over your computer screen. By mov-
ing the joystick and not pressing the trigger button, you can move your cursor
without drawing any patterns, and you can also erase any patterns that may lie
in your path.

WHEN BASIC IS ENOUGH

The JOYSTIX program works so well in BASIC that there is absolutely no reason
tor translating it into Assembly language. In fact, if it were converted to Assem-
bly language, it would run too fast. At one point, I did translate it into Assembly
language, and the results were totally unsatisfactory. Each time the joystick was
moved, long strings of dots would instantly appear on the screen, instead of
moving across the screen gently and controllably, as they do in the BASIC ver-
sion of the program.

BASIC is not such a great language, though, for writing high-resolu-
tion graphics programs. High-resolution programs have to be written using an
extremely complicated technique called bit-mapping, and BASIC is far too slow
to handle bit-mapping routines efficiently. This next program in this chapter,
called BLACKBOARD, will clearly demonstrate how unbearably slow a high-
resolution program written in BASIC can be, but as you sit and wait for the
program to crawl through its paces, please do not get too impatient. Later on,
you will get an opportunity to type, assemble, and execute an Assembly lan-
guage version of exactly the same program—and I guarantee that you will
notice the change.

First, though, type this program and run it. You will then see very
clearly why BASIC is not considered the best language for writing high-resolu-
tion graphics programs, and why fast-action arcade games are almost always
written in Assembly language.

A HIGH-RESOLUTION BASIC PROGRAM

10 REM *** '"BLACKBOARD.BAS'" **xxxx*

20 BASE=2*4096:POKE 53272,PEEK(53272)0R8:REM PUT
HIGH-RES MAP AT 8192

30 POKE 53265,PEEK(53265)0R32:REM ENTER HIGH-RES BIT-
MAP MODE

40 FOR I=BASE TO BASE+7999:POKE I,0:NEXT:REM CLEAR
BIT MAP

50 FOR I=1024 TO 2023:POKE I,16:NEXT I:REM BLACK
BACKGROUND, WHITE LINE

60 GOTO 200

80 REM **%%%* PLOT ROUTINE #***kkkkkkk

90 CHAR=INT(HPSN/8)

100 ROW=INT(VPSN/8)

110 LINE=VPSN AND 7

194 Assembly Language Graphics and Sound

120 BYTE=BASE+ROW*320+8*CHAR+LINE

130 BIT=7-(HPSN AND 7)

140 POKE BYTE,PEEK(BYTE) OR (2BIT)

150 RETURN

200 REM **** DRAW VERTICAL LINE **%kk¥

220 FOR VPSN=0 TO 199:REM PLOT LINE FROM TOP TO
BOTTOM OF SCREEN

225 FOR HPSN=159 T0 160

230 GosuB 80

240 NEXT HPSN:NEXT VPSN

245 REM *** DRAW HORIZONTAL LINE #**%**x*

250 VPSN=100:REM HALFWAY DOWN SCREEN

260 FOR HPSN=0 TO 319:REM PLOT LINE FROM LEFT SIDE TO
RIGHT SIDE OF SCREEN

270 GosuB 80

280 NEXT HPSN

290 GOTO 290

HOW BLACKBOARD.BAS WORKS

Now let's take a look at how the BLACKBOARD.BAS program works.

The Commodore 64, as pointed out in previous chapters, has two pri-
mary display modes: a text mode and a high-resolution graphics mode. (There
is also a multi-color text mode, and there is a multi-color graphics mode, but we
will not be discussing either of those modes in this chapter.)

When the C64 is in its text mode, it displays 25 lines of 40 typed char-
acters each, or a total of 1,000 characters, on its monitor screen. Each of these
characters is made up of eight bytes of binary data.

In its high-resolution mode, the Commodore produces a screen display
320 dots (or pixels) wide and 200 pixels high. That's a total of 64,000 separate
dots, each of which requires one bit of memory. So it takes 8,000 bytes of mem-
ory to produce a high-resolution screen display.

When the Cb4 is in its text mode, the characters that it uses to create its
text display are stored in its memory in the form of binary data. It takes eight
bits of data to create one character. When the eight bits of data that form a
character's image are displayed on the screen, they are arranged as shown at
the top of the next page.

When your Commodore is in its text mode and you type a character on
the screen, a code number representing that character is stored in the block of
RAM that has been designated as screen memory. (Sometimes, as you remem-
ber from Chapter 10, this block of memory is called a screen map.) Each time
the C64's VIC-II graphics chip creates a screen display (and it does that 60
times every second), it fetches each character code that is stored in the screen
memory, and uses it as a pointer to another block of memory called character

High-Resolution Commodore Graphics 195

BINARY NOTATION HEXADECIMAL NOTATION APPEARANCE

00000000 00

00011000 18 XX
00111100 3C XXXX
01100110 66 XX XX
01100110 66 XX XX
01111110 7E XXX
01100110 66 XX XX
00000000 00

generator ROM. In the block of memory called character generator ROM, a 64-
bit image of every character in the Commodore 64's character set is stored in
the form of a series of eight bytes. And those eight bytes are what the VIC-II
chip uses to create the characters which it displays on the Commodore 64's
video screen.

SETTING UP A BIT-MAPPED DISPLAY

When your computer is in one of its bit-mapped modes, it does not use the
preprogrammed characters stored in character-generator ROM. Instead, each
individual dot on its video screen map is represented by one bit of data in the
block of RAM that is used as a high-resolution screen map. So, if you know the
exact position of a dot on the screen, you can turn that dot off or on by simply
setting or clearing its corresponding bit in video memory. In this way, you can
control every dot on the screen.

This would make bit-mapping a very simple matter if a dot could be
plotted on the Commodore's screen using simple X/Y coordinates. Unfortu-
nately, that is not the way high-resolution bit-mapping works on the Commo-
dore 64. The dots that make up the Commodore's screen display do not run
straight across and down the screen as they do in text mode. Instead, they are
arranged just like they would be if they were dots in text characters—in 8-dot by
8-dot matrixes. These matrixes are placed on the screen in a 40-column by 25-
line configuration, just as if they were standard text characters. This arrange-
ment produces a high-resolution screen display that measures 320 dots (pixels)
wide by 200 dots (pixels) high. That is a total of 64,000 dots, each one of which
can be individually turned off and on.

Table 11-3 shows where a Commodore 64 gets the data that it uses for
the first two rows of data on a high-resolution screen.

This zigzag layout makes it easy to mix text and bit-mapped graphics
on the Commodore 64, since text and high-resolution graphics are laid out on
the screen in exactly the same way. Unfortunately, it also makes the job of bit-
mapping the C64 screen rather complicated. To map a dot on a Commodore 64
high-resolution display, you have to use a fairly complex mathematical formula.
First you have to figure out where the dot lies on a 320-square by 200-square
grid, using a pair of variables (which I will call X and Y) for the grid's column
(X) and row (Y) coordinates. Then, since the C64 screen map is subdivided in 8-

196 Assembly Language Graphics and Sound

Table 11-3
COLUMN1 COLUMN2 COLUMN3 ... COLUMN 40
LINE 1 Byte 0 Byte 8 Byte 16 Byte 312
LINE2 Bytel Byte 9 Byte 17 Byte 313
LINE3 Byte2 Byte 10 Byte 18 Byte 314
LINE4 Byte3 Byte 11 Byte 19 Byte 315
LINES Byte4 Byte 12 Byte 20 Byte 316
LINE6 Byte 5 Byte 13 Byte 21 Byte 317
LINE7 Byteb Byte 14 Byte 22 Byte 318
LINE8 Byte?7 Byte 15 Byte 23 Byte 319
LINES Byte 320 Byte 328 Byte 336 Byte 632
LINE 10 Byte 321 Byte 329 Byte 337 Byte 633
LINE 11 Byte 322 Byte 330 Byte 338 Byte 634
LINE 12 Byte 323 Byte 331 Byte 339 Byte 635
LINE 13 Byte 324 Byte 332 Byte 340 Byte 636
LINE 14 Byte 325 Byte 333 Byte 341 Byte 637
LINE 15 Byte 326 Byte 334 Byte 342 Byte 638
LINE 16 Byte 327 Byte 335 Byte 343 Byte 639

etc.

dot by 8-dot matrixes, you have to break the screen map down into 8-dot by 8-

dot subdivisions by dividing each coordinate by 8. Here is the way that is done
in the BLACKBOARD BAS program:

90 CHAR=INT(HPSN/8)
100 ROW=INT(VPSN/8)

Next, you have to figure out your dot's coordinates inside the 8-by-8 dot matrix
in which it lies. You can do that with three more instructions such as these:

110 LINE=VPSN AND 7
120 BYTE=BASE+ROW*320+CHAR*8+LINE

Finally, you can turn on the bit you have selected with a line such as this:

140 POKE BYTE,PEEK(BYTE) OR (2'BIT)

This formula takes a long time to work out in BASIC, and that is why high-reso-
lution graphics programs written in BASIC run so slowly. Fortunately, as you
will soon see, the calculation takes much less time in Assembly language.

High-Resolution Commodore Graphics 197

HIGH-RESOLUTION COLOR GRAPHICS

Another thing to remember when you use Commodore 64 high-res graphics is
that the colors used in bit-mapped Cb4 graphics do not usually come from the
1,000-byte block of color RAM that begins at Memory Location 55296 ($D800
hex). Instead, they come from a screen memory map with a default address of
1024 ($400 in hexadecimal notation). When your computer is in its 320-dot by
200-dot bit-mapped mode, the values stored in what is ordinarily its screen
memory do not equate to screen codes for ASCII characters. Instead, the upper
four bits of each location in screen memory define the color of any bit that is set
to 1 in a corresponding 8-dot by 8-dot area on your computer’s video display.
The lower four bits define the color of any bit that is set to a 0 in that same 8-by-
8 block on the screen.

It is not too difficult to put the C64 into either of its high-resolution
graphics modes. All you have to do is use a series of instructions like these:

20 BASE=2*4096:POKE 53272,PEEK(53272)0R8
30 POKE 53265,PEEK(53265)0R32

The first of these instructions—BASE =2*4096—informs your computer’'s VIC-II
chip that you are going to be using a bit map that starts at Memory Address
8192 (32000 in hexadecimal notation). Then, in the second instruction on Line
20—POKE 53272,PEEK (53272) OR8—the VIC chip is told where to place its screen
map and where to find the data that it will need to display a bit-mapped screen.
As you may recall from Chapter 10, Memory Address 53272 (3D018 in hexa-
decimal notation) is a memory register often referred to as VMCSB. When the
C64 is in bit-mapped mode, the lower four bits of the VMCSB register are used to
specify screen colors, and the upper four bits are used to point to the location of
the bit map that will be used for the display.

In the instruction in Line 30, the VIC chip is finally instructed to go into
high-resolution mode. This instruction is issued by setting Bit 4 of an important
memory register that is often referred to as the SCROLY register. SCROLY is a
multipurpose register that resides at Memory Address 53265 ($D011 in hexa-
decimal notation). One function of the SCROLY register is to enable fine scroll-
ing—but we will not go into that in this chapter. For now, just remember that the
SCROLY register is also used to determine whether the Commodore 64 will gen-
erate a text screen or a high-resolution display. If Bit 4 of the SCROLY register is
set, the C64 will generate a high-resolution bit-mapped screen. If Bit 4 is clear,
the computer will produce a text display.

Line 60 of the BLACKBOARD.BAS program is nothing but a jump to
Line 200. In Lines 200 through 240, a vertical line is drawn down the center of
the screen using a bit-mapping plot subroutine that appears in Lines 80 through
250. This subroutine employs the plotting formula described earlier in this chap-
ter to print white dots on a black background on the screen.

The line that is drawn down the screen in Lines 220 through 240 is two
dots wide. That is because it takes a two-dot width to form a good solid line on a
Commodore 64 high-resolution screen display; because of video-display techni-

198 Assembly Language Graphics and Sound

calities, a vertical line that is one one dot wide comes out not strong and white,
but pale and gray. In the BLACKBOARD program, therefore, a two-step loop is
used to make the vertical line on the screen two dots wide. This loop appears in
Lines 225 to 240.

Atfter the vertical line is drawn, a horizontal line is mapped across the
screen in Lines 245 through 280. Horizontal lines that are one dot high look fine
on a C64 screen display, so a two-dot loop is not needed in this horizontal line

routine.
The BLACKBOARD program ends with an infinite loop at Line 290.

Drawing Pictures
in High-Resolution
Graphics

Some Advanced Features of
Assembly Language

Now we are ready to take a look at how much better the BLACKBOARD pro-
gram works in Assembly language. Here is what the program looks like when it
is translated into Assembly language source code created with a Merlin 64
assembler:

THE BLACKBOARD PROGRAM IN ASSEMBLY LANGUAGE

*

* BLACKBOARD
*

ORG $8000

*

COLOR EQU $10
BASE EQU $2000
SCROLY EQU $D011
VMCSB EQU $D018
COLMAP EQU $0400
*

HMAX EQU 320
VMAX EQU 200
HMID EQU 160
VMID EQU 100

*

SCRLEN EQU 8000
MAPLEN EQU 1000
*

TEMPA EQU $FB
TEMPB EQU TEMPA+2
*

TABPTR EQU TEMPA
TABSIZ EQU $9000

*

HPSN EQU TABSIZ+2

—_
ovoeoe~NOUVPHPWN =

NN NNNNN_ QD QQQQQ A
OV WN_OVOONOUNTPSWN =

202

Assembly Language Graphics and Sound

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
b4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

VPSN EQU HPSN+2
CHAR EQU VPSN+1
ROW EQU CHAR+1

LINE
BYTE
BITT
*

MPRL
MPRH
MPDL
MPDH

PRODL EQU MPDH+1
PRODH EQU PRODL+1

*

FILVAL EQU PRODH+1
JSV EQU FILVAL+1

*CIAPRA EQU $DCOO

EQU
EQU
EQU

EQU
EQU
EQU
EQU

ROW+1
LINE+1
BYTE+2

BITT+1
MPRL+1
MPRH+1
MPDL+1

JMP START

*

* BLOCK FILL ROUTINE

*

BLKFIL LDA FILVAL

LDX TABSIZ+1
BEQ PARTPG

LDY

FULLPG STA (TABPTR),Y

INY
BNE
INC
DEX
BNE

PARTPG LDX TABSIZ
BEQ FINI

LDY

PARTLP STA (TABPTR),Y

INY
DEX

#0

FULLPG
TABPTR+1

FULLPG

#0

BNE PARTLP

FINI
*

* 16-BIT MULTIPLICATION ROUTINE

*

RTS

MULT16 LDA #0
STA PRODL
STA PRODH

LDX #17

Drawing Pictures in High-Resolution Graphics

203

75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
117
118
119
120
121
122
123

CcLC

MULT ROR PRODH

ROR PRODL
ROR MPRH
ROR MPRL
BCC CTDOWN
CLC

LDA MPDL
ADC PRODL
STA PRODL
LDA MPDH
ADC PRODH
STA PRODH
CTDOWN DEX
BNE MULT

RTS
*

* PLOT ROUTINE

*

* ROW=VPSN/8 (8-BIT DIVIDE)

*

PLOT LDA VPSN
LSR A

LSR A

LSR A

STA ROW
*

* CHAR=HPSN/8 (16-BIT DIVIDE)

*
LDA HPSN
STA TEMPA
LDA HPSN+1
STA TEMPA+1
LDX #3

DLOOP LSR TEMPA+1

ROR TEMPA
DEX

BNE DLOOP
LDA TEMPA

STA CHAR
*

*
LDA VPSN
AND #7

STA LINE
*

* BITT=7-(HPSN AND 7)

*

204

Assembly Language Graphics and Sound

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

LDA
AND
STA
SEC
LDA
SBC

STA
*

* BYTE=BASE+ROW*HMAX+8*CHAR+LINE

*

* FIRST MULTIPLY ROW * HMAX

*
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
LDA
STA
LDA
STA

*

* ADD PRODUCT TO BASE

*
CLC
LDA
ADC
STA
LDA
ADC

STA
*

HPSN
#7
BITT

#7
BITT
BITT

ROW
MPRL
#0
MPRH
#<HMAX
MPDL
#>HMAX
MPDH
MULT16
MPRL
TEMPA
MPRL+1
TEMPA+1

#<BASE
TEMPA
TEMPA
#>BASE
TEMPA+1
TEMPA+1

160 * MULTIPLY 8 * CHAR

161
162
163
164
165
166
167
168
169
170
171

*
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
LDA

#8
MPRL
#0
MPRH
CHAR
MPDL
#0
MPDH
MULT16
MPRL

Drawing Pictures in High-Resolution Graphics 205

172 STA TEMPB

173 LDA MPRH

174 STA TEMPB+1
175 *

176 * ADD LINE

177 *

178 CLC

179 LDA TEMPB

180 ADC LINE

181 STA TEMPB

182 LDA TEMPB+1
183 ADC 0

184 STA TEMPB+1
185 *

186 * BYTE = TEMPA + TEMPB
187 *

188 CLC

189 LDA TEMPA

190 ADC TEMPB

191 STA TEMPB

192 LDA TEMPA+1
193 ADC TEMPB+1
194 STA TEMPB+1
195 *

196 * POKE BYTE,PEEK(BYTE)OR2'BIT
197 *

198 LDX BITT

199 INX

200 LDA #0

201 SEC

202 SQUARE ROL

203 DEX

204 BNE SQUARE
205 LDY #O

206 ORA (TEMPB),Y
207 STA (TEMPB),Y

208 RTS

209 *

210 * MAIN ROUTINE STARTS HERE

211 *

212 * FIRST DEFINE BIT MAP AND ENABLE
213 * HIGH-RESOLUTION GRAPHICS

214

215 START LDA #%$18
216 STA VMCSB
217 *

218 LDA SCROLY
219 ORA #32

206

Assembly Language Graphics and Sound

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

STA
*

SCROLY

* SELECT GRAPHICS BANK 1

*
LDA
ORA
STA

*
LDA
ORA

STA
*

$DD02
#3$03
$DD02

$DDO0
#303
$DD0O0

* CLEAR BIT MAP

*
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA

JSR
*

#0

FILVAL

#<BASE

TABPTR

#>BASE

TABPTR+1240 LDA #<SCRLEN
TABSIZ

#>SCRLEN

TABSIZ+1

BLKFIL

* SET BKG AND LINE COLORS

*
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

JSR
*

#COLOR
FILVAL
#<COLMAP
TABPTR
#>COLMAP
TABPTR+1
#<MAPLEN
TABSIZ
#>MAPLEN
TABSIZ+1
BLKFIL

* DRAW HORIZONTAL LINE

*
LDA
STA
LDA
STA
STA

AGIN
INC

#VMID
VPSN

#0

HPSN
HPSN+1
JSR PLOT
HPSN

Drawing Pictures in High-Resolution Graphics 207

269 BNE NEXT

270 INC HPSN+1

271 NEXT LDA HPSN+1
272 CMP #>HMAX
273 BCC AGIN

274 LDA HPSN

275 CMP #<HMAX
276 BCC AGIN

277 *

278 * DRAW VERTICAL LINE
279 *

280 LDA #0

281 STA VPSN

282 POINT LDA #<HMID
283 STA HPSN

284 LDA H#>HMID

285 STA HPSN+1

286 JSR PLOT

287 INC HPSN

288 BNE SKIP

289 INC HPSN+1

290 SKIP JSR PLOT
291 LDX VPSN

292 INX

293 STX VPSN

294 CPX H#VMAX

295 BCC POINT

296 INF JMP INF

SOME BASIC DIFFERENCES

There are two obvious differences between BLACKBOARD.BAS and its Assem-
bly language counterpart. One is that the Assembly language version of the
program is much longer, and the other is that it runs much faster.

In most other respects, the BASIC and Assembly language versions of
the BLACKBOARD program are quite a bit alike. There are a few features of the
Assembly language program that may be worth pointing out, however.

One such feature is the subroutine labeled BLKFIL. It starts at Line 50,
and it is the first routine in the program. (It is not the first routine that executes,
however; look at Line 46, and you will see that the first thing the BLACKBOARD
program does is jump to Line 215, which is labeled START. That is where execu-
tion of the program begins. BLKFIL—and the other routines that precede Line
215—are all subroutines that are designed to be called from the main body of
the program.)

Now let's take a close look at the BLKFIL routine that begins at Line 50.
In the BLACKBOARD program, this subroutine is used to clear a bit map and a
color map, and to fill both of those memory blocks with the same values they

208 Assembly Language Graphics and Sound

were stuffed with in the BLACKBOARD.BAS program. But the BLKFIL routine—
unlike the FOR/NEXT loops that were used for the same purpose in the BLACK-
BOARD.BAS program—operates at lightning speed. It can clear an 8K memory
block so fast that you may miss the whole thing if you blink your eyes.

One reason the routine executes so fast is that it is designed to move
data one "page’” at a time. In 6502 Assembly language, a 256-byte chunk of
memory is often referred to as a page. Since the hexadecimal equivalent of 256
is $0100, the address of any hexadecimal "page’ in a computer's memory can
be defined in two parts—a high-order byte and a low-order byte. The BLKFIL
routine in the BLACKBOARD.S program manages memory pages very effi-
ciently because it fills memory blocks a page at a time. After the high-order byte
of the address of a page is defined, the routine fills every byte on that page with
a desired value. Only then does it go to the next page. Once all full pages have
been filled with data, it fills the remaining partial page. Because of this tech-
nique the routine can use one-byte addresses rather than two-byte addresses,
speeding up its block-filling mission considerably.

In Lines 69 through 90, you will see the most sophisticated 16-bit multi-
plication routine that has appeared in this book so far. This routine can multiply
two unsigned 16-bit numbers and can handle a product up to 32 bits long.
When the routine ends, the low half of the product is stored in the variables
labeled MPRL and MPRH, and the high half of the product is stored in PRODL
and PRODH. This multiplication subroutine is used twice in the BLACKBOARD
program: once in Lines 134 to 148, and again in Lines 160 to 174. Neither of these
routines requires the use of a 32-bit product, so neither routine makes use of the
variables PRODL and PRODH, but if you ever do need a multiplication routine
that can handle a 32-bit product, here is one that fills the bill.

The 16/32-bit multiplication routine in the BLACKBOARD program is
followed by a plotting routine that is much longer, but also runs much faster,
than the plotting routine that accomplished the same task in the BLACK-
BOARD BAS program.

One more point: while you are typing BLACKBOARD.S on your com-
puter keyboard, you may notice that a couple of the equates in the program'’s
symbol table do not appear in the main body of the program. Do not be con-
cerned about that; we will be expanding the program later on, and these
equates will be used then.

After the main body of BLACKBOARD.S begins (at Line 199), the pro-
gram works exactly like its BASIC predecessor. It clears the bit map that starts
at $2000, sets background and dot colors (you can change those if you like),
and then draws a pair of crosshairs on your Commodore screen. Don't blink, or
you might miss all of the action. I think you will agree that there is simply no
comparison between the BLACKBOARD.S program'’s execution speed and that
of its BASIC predecessor.

ONE MORE PROGRAM

Now we have come to the really fun part of this chapter—an Assembly lan-
guage program that combines the best features of the JOYSTIX BAS program

Drawing Pictures in High-Resolution Graphics 209

and the BLACKBOARD .BAS routine. This program is called SKETCHER, and it is
an electronic version of those plastic, carbon-filled Etch-a-Sketch drawing
screens that you may remember from your childhood. The SKETCHER program
is actually nothing but an expanded version of the BLACKBOARD.S program.
So, if you have typed and assembled the BLACKBOARD.S program, you can
easily expand your BLACKBOARD.S source-code listing into a SKETCHER pro-
gram. Here is all you will have to do.
First, change Line 2 of the BLACKBOARD program to read:

2 * SKETCHER

Then replace Lines 259 through 296 of the BLACKBOARD program with Lines
259 through 424 as follows:

259 *

260 * PRINT DOT AT MIDSCREEN
261 *

262 LDA H#VMID

263 STA VPSN

264 LDA H#<HMID

265 STA HPSN

266 LDA #>HMID

267 STA HPSN+1

268 JSR PRINT

269 *

270 * READ JOYSTICK

271 *

272 * FIRST CHECK TRIGGER BUTTON
273 *

274 READJS LDA CIAPRA
275 AND #310

276 BEQ START

277 *

278 * NOW READ JOYSTICK
279 *

280 LDA #30F

281 PHA

282 AND CIAPRA

283 STA JSV

284 PLA

285 SEC

286 SBC JSV

287 STA JSv

288 =*

289 TAX

290 BEQ READJS

291 LDA RELADS-1,X
292 STA MODREL+1

Assembly Language Graphics and Sound

293 MODREL BNE *

294 MODR1

295 *

296 NIL1 JMP READJS
297 *

298 * ROUTINES TO MOVE JOYSTICK
299 *

300 UP JSR MOVEUP

301 JMP DOIT

302 *

303 DOWN JSR MOVEDN
304 JMP DOIT

305 *

306 LEFT LDX HPSN

307 LDY HPSN+1

308 TXA

309 BNE DECLB

310 DEY

311 DECLB DEX

312 STX HPSN

313 STY HPSN+#1

314 JMP DOIT

315 *

316 UPANDL JSR MOVEUP
317 JMP LEFT

318 *

319 DNANDL JSR MOVEDN
320 JMP LEFT

321 *

322 NIL2 JMP READJS
323 *

324 RIGHT LDX HPSN
325 LDY HPSN+#1

326 INX

327 BNE NOINCR

328 INY

329 NOINCR STX HPSN
330 STY HPSN#1

331 JMP DOIT

332 *

333 UPANDR JSR MOVEUP
334 JMP RIGHT

335 *

336 DNANDR JSR MOVEDN
337 JMP RIGHT

338 *

339 * SUBROUTINES TO MOVE UP & DOWN
340 *

Drawing Pictures in High-Resolution Graphics

211

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

MOVEUP LDX VPSN
DEX
STX VPSN
RTS

*

MOVEDN LDX VPSN
INX
STX VPSN
RTS

*

* "DOIT" SUBROUTINE
*

DOIT JSR PRINT
JMP READJS

MORE SUBROUTINES START HERE

MAKE SURE DOT IS WITHIN RANGE

¥ * % F *

CHECK LDA VPSN
BEQ RAISE
CMP #VMAX-1
BCS LOWER
JMP HCHECK
RAISE INC VPSN
JMP HCHECK
LOWER LDA #VMAX-1
STA VPSN
*
HCHECK BIT HPSN+1
BPL OKLOW
LDA #1
STA HPSN
LDA #0
STA HPSN+1
RTS
*
OKLOW LDA #<HMAX-2
CMP HPSN
LDA #>HMAX-2
SBC HPSN+1
BCC TOOHI
RTS
*
TOOHI LDA #<HMAX-2
STA HPSN
LDA #>HMAX-2
STA HPSN+1

212

Assembly Language Graphics and Sound

389 RTS
390 *
391 * PRINT DOT ON SCREEN
392 *
393 PRINT JSR CHECK
394 JSR PLOT
395 *
396 LDA HPSN
397 PHA
398 LDA HPSN+1
399 PHA
400 *
401 LDA HPSN
402 BNE SKIP
403 DEC HPSN+1
404 SKIP DEC HPSN
405 JSR CHECK
406 JSR PLOT
407 *
408 PLA
409 STA HPSN+1
410 PLA
411 STA HPSN
412 RTS
413 *
414 RELADS DFB UP-MODR1
415 DFB DOWN-MODR1
416 DFB NIL1-MODR1
417 DFB LEFT-MODR1
418 DFB UPANDL-MODR1
419 DFB DNANDL-MODR1
420 DFB NILZ2-MODR1
421 DFB RIGHT-MODR1
422 DFB UPANDR-MODR1
423 DFB DNANDR-MODR1
424 *

HOW IT WORKS

When you have assembled and run the SKETCHER program, you will see that it
works slightly differently from the JOYSTIX.BAS program. It allows you to draw
on the screen using a game controller, just as the JOYSTIX program does, but its
method of reading the controller’'s trigger button is slightly different. In the
JOYSTIX program, the trigger button is used to prevent the printing of a dot on
the screen. In the SKETCHER program, depressing the joystick trigger com-
pletely erases the screen display.

If you understand how the BLACKBOARD.S and JOYSTIX.BAS pro-
grams work, there is not a lot that is new to explain in the SKETCHER program.

Drawing Pictures in High-Resolution Graphics 213

It employs the same techniques that were used for plotting on the screen in
BLACKBOARD.S, and it reads joysticks in much the same way that they were
read in JOYSTIX BAS. But there are also a couple of new features that may be
worth noting.

Orne of these features is an error-checking subroutine in Lines 358
through 389. This subroutine is quite straightforward, but it is also quite impor-
tant, since its job is to prevent what is being printed on the screen from
extending beyond the boundaries of RAM space that have been designated as
screen memory. Error-checking routines such as this one are very important in
Assembly language programming, since they keep screen data from overshoot-
ing its boundaries and winding up in memory blocks where it has no right to be.
When data gets out of hand and goes bounding off into never-never land, it can
bring a program to a crashing halt, and you do not want that to happen in your
Assembly language programs.

Another important teature of the SKETCHER program is a short routine
that appears in Lines 291 to 296. This segment of code is a relative address
modification routine, and it takes advantage of a strange and wonderful capa-
bility of Assembly language and some other programming languages: the abil-
ity of a program to modity itself.

The relative address modification routine in the SKETCHER program
serves exactly the same purpose as an ON . . . GOTO routine in BASIC. It reads
a numeric value—in this case, a value provided by a joystick—and then
branches to a routine that has been assigned a corresponding value in a pro-
gram. This is a tairly sophisticated programming technique, even in BASIC. So,
before we examine how it works in Assembly language, let's take a brief look at
a somewhat simpler sort of address-modification program. The short segment of
code that follows is not a relative address modification, like the one in the
SKETCHER program, but a direct address modification subroutine that is even
more often used in Assembly language programs. Once you understand the
principle of direct address modification, it will be easier to grasp the relative
address moditication technique used in the SKETCHER program.

A SIMPLE ADDRESS-MODIFICATION ROUTINE

LINE SOURCE-CODE LISTING MEM. MACHINE
NR. Label Code ADR. LANGUAGE
100 ADDRESS LDA VALUE 8040 AD A7 02
101 INC ADDRESS + 1 8043 EE 41 80

102 BNE NEXT 8046 D0 03

103 INC ADDRESS +2 8048 EE 42 80

104 NEXT RTS 804B 60

The above example lists both the source code and the object code of a short
address-modification routine, along with the addresses of the memory registers
into which the machine code is stored. You should be able to get a clear picture

214 Assembly Language Graphics and Sound

of how the program works by looking at its object code: the machine-language
part of the listing.

Look carefully at the routine’s object code, and you will see that when
the subroutine is first called, the accumulator is loaded with a value which 1
have labeled—logically enough—VALUE. As you can see in the object-code list-
ing of Line 100, that value is fetched from Memory Register $02A7.

In the next three lines of the routine, something quite extraordinary
occurs. As you may be able to recognize by now, the instructions in Lines 101
through 103 are a standard set of instructions for incrementing a 16-bit number,
but what number is being incremented here? Well, look again at the object-
code part of the program, and you will see that the value which is incremented
is whatever 16-bit value happens to be stored in Memory Registers $8041 and
$8042, and what value is that? Why, it is the value that follows the mnemonic
LDA in Line 100 of the program.

Now take a very close look at the object-code listing of this routine,
and you will see that the routine has now rewritten itself. The next time the
routine is called, Line 100 will load the accumulator not with the value stored in
Memory Register $02A7, but by that value plus one—and that value will con-
tinue to be incremented by one every time the routine is called.

Address modification is a very powerful programming technique that
is used quite often in high-performance Assembly-language programs. Routines
that use address modification are compact and fast-running, and they do not
require the use of zero-page memory, which is always in short supply. So a
good knowledge of the principles of address modification can be of great value
to the Assembly language programmer.

RELATIVE ADDRESS MODIFICATION

Now let's take a look at relative address modification: the kind used in the
SKETCHER program. As already mentioned, Assembly language programs use
relative address modification in much the same way that BASIC programs use
ON ... GOTO routines. In SKETCHER, relative address modification is used to
make the program branch to an UP, DOWN, LEFT or RIGHT routine—or a com-
bination thereof—depending on the direction of a joystick.

The address-modification routine in the SKETCHER makes use of a
data table that has been placed at the end of the program, in Lines 414 through
424. As you can see, this data table is labeled RELADS (which stands for “rela-
tive address”). But notice that the values of the bytes in the RELADS table are
not defined as specific values. Instead, each value in the table is defined as the
result of a calculation, specifically, the difference between the value in the table
and a given line in the SKETCHER program.

Look caretully at the definitions of the bytes in the RELADS table, and
you will see that each value in the table has been defined as being equal to the
address of one specific joystick-movement routine, minus the value of the
address of Line 338 of the SKETCHER program, which is labeled MODREL (an
abbreviation, in a backwards sort of way, for "relative modification”).

Drawing Pictures in High-Resolution Graphics 215

Now examine Lines 290 through 297, and you will be able to see how
an Assembly language program can actually rewrite part of itself while it is
running, using the technique of relative address modification.

In Line 290, when the address-modification routine begins, the direc-
tion switch of a game controller has just been read, and the value thus obtained
has been stored in the 6510 chip's X register. If the controller’s trigger button is
currently being pressed, the screen is cleared and the joystick is read again, but
if the trigger button has not been pressed, the accumulator is loaded with an 8-
bit value that is designed to point to a specific address: namely, the address of
one of the joystick-movement routines in Lines 298 through 350 of the
SKETCHER program.

Next, examine Lines 291 and 292. In Line 291, an eight-bit value point-
ing to the desired address is loaded into the accumulator. Then, in Line 292, that
value is stored in a given memory address. How is that memory address
obtained? Well, it has to be calculated using the label/offset combination
MODREL+1.

And just where is MODREL + 1? Well, look at Line 293 and you will find
the answer:

293 MODREL BNE =*

Now the label of that line, as you can see, is MODREL. From a machine-lan-
guage point of view, one could also say that MODREL is the label of one spe-
cific memory register: the register that holds the machine-language equivalent
of the Assembly-label mnemonic BNE. So, if you wanted to assign a label to the
address of the Assembly language mnemonic BNE in Line 293 of the SKETCHER
program, that label would have to be MODREL.

If the mnemonic BNE is located at the machine language address
labeled MODREL, then what is at the machine-language address labeled
MODREL +1?

Well, in the source-code listing of the SKETCHER program,
MODREL+1 appears to be the address of an asterisk. This may look like a
strange way to write a line of code—and it is. Fortunately, in Commodore
Assembly language, an asterisk does have a meaning. It is a pseudo-op that is
often used to refer to the current content of an assembler’s program counter. So,
when the SKETCHER program is first assembled, Memory Registers
MODREL+ 1 and MODREL + 2 hold nothing but a 16-bit value pointing to their
own address.

When the SKETCHER program is executed, however, the contents of
MODREL + 1 and MODREL + 2 are automatically changed. Take a quick look at
Line 292, and you will see how. In that line, the contents of MODREL+ 1 are
changed to the value stored in the accumulator—which is, in turn, the value of a
specitic byte in the data table labeled RELADS. And, as we have seen, each
byte in that table is an 8-bit pointer that can be used to calculate the address of
a specific joystick-movement routine.

Relative address modification is quite a sophisticated concept, so do
not be surprised if it all seems a little foggy at first, but what it boils down to is
this. When the SKETCHER program reaches Line 292, a value pointing to the

216 Assembly Language Graphics and Sound

address of a joystick-movement routine is stuffed into an address designated as
MODREL+1. When that happens, the value of the asterisk in Line 293 is
replaced by a 16-bit value pointing to the address a specific byte in the RELADS
table in Lines 414 through 423. The byte thus obtained is then used to calculate
the final address of the desired joystick-movement routine.

If you do not quite understand all of that quite yet, please do not
worry. Just type, assemble, and run the SKETCHER program, and observe what
the address-modification routine actually does. Once you understand what it
does, understanding how it does it will be much less of a problem.

You have seen only two kinds of address-modification routines in this
chapter, but many other kinds of address-modification and data-modification
techniques are also used in Assembly language. Advanced Assembly language
programmers like them because they are compact and fast-running, and
because they do not require the use of Page Zero, where space is always at a
premium.

Customizing a
Character Set

Copying Characters
from ROM into RAM

Your Commodore has a terrific built-in character set. From the Commodore 64
keyboard, you can access 512 individual characters, including uppercase ASCII
characters, lowercase ASCII characters, reverse-video characters, a host of spe-
cial characters, and one of the finest sets of keyboard addressable graphics
characters in the microcomputer industry.

But sooner or later, if you are like most Commodore Assembly language
programmers, you will want to modify your computer’s built-in graphics set in one
way or another. You may want to add a few special characters that are not on
the C64 keyboard. You may want to create a new set of graphics characters for a
game you are designing. Or you may want to design a custom type font so you
can print fancy text on your computer screen or a dot-matrix printer.

Well, you can do all of these things—and many, many more—if you
know how to alter your Commodore’s built-in character set. And altering a
character set is no problem at all for a good Assembly language programmer.

“ROM-IMAGE"” CHARACTERS

As you may recall from Chapter 10, the VIC-II graphics chip in the Commodore
64 generates characters from 4K of character data stored in ROM Addresses
$D000 through $DFFF. But the VIC-II chip does not “see” your computer’s char-
acter data where it actually is. Instead, like a man looking at a mirage, the VIC
chip usually looks for—and finds—character data at one of two "ROM image”
locations. If the VIC chip has been instructed to get graphics data from Bank 0,
it will find @ ROM image of character data at Memory Registers $1000 through
$2000. If it is using Graphics Bank 2, it will see character data at Memory Regis-
ters $9000 through $A000.

As you also may remember from Chapter 10, however, the addresses
of these two memory blocks can be changed quite easily. By altering the lower
nibble of the VIC-II Memory Control Register, or VMCSB register, at Memory
Address $D018, you can tell your computer's VIC-II chip to look for character
data in any one of 21 different blocks of memory. All 21 of those memory blocks

220 Assembly Language Graphics and Sound

are listed in the table called "RAM Character Set Starting Addresses” in Chap-
ter 10.

Since you can tell the VIC-II chip exactly where to look for character
data, it is easy to alter the Commodore 64's built-in character set, and then use
it in its altered form. All you have to do is follow these three steps:

1. Copy your computer’s built-in character data from ROM into RAM.
2. Modity the character set that now resides in RAM in any way you wish.

3. Tell your computer's VIC-II chip where the modified set is, so that it
can retrieve character data from that character set instead of from the

"ROM-image" charcter sets at $1000 (in Bank 0) or $3000 (in Bank 2).

ONE SMALL PROBLEM

That is about all there is to customizing a character set—except for one small
hitch, which was mentioned in passing in Chapter 10. The hitch is that Memory
Addresses $D000 through $DFFF have two different functions in the Commodore
64. This block of ROM is shared by the C64's VIC-II graphics chip and the 170
drivers that are part of the computer’s operating system. During the VIC-II's
screen-refresh cycle, when the chip needs access to character data so that it
can create a screen display, Addresses $D000 through $DFFF are used to hold
the character-generator data needed by the VIC processor. But as soon as the
VIC-II has completed its screen-refreshing operation, the character data
required by the VIC-II chip is bank-switched out of this character block, and a
set of registers which the Commodore 64 needs for the operation of I/O devices
are switched in. The C64 operating system then takes care of certain I/O house-
keeping chores. When those are done, character data is switched back into the
$D000-$DFFF memory block. And so on.

Obviously, all of this switching in and out of character data could
cause serious problems during the process of copying a character set from ROM
to RAM. If the character data being copied were switched right out of your com-
puter's memory during the copying operation, the whole operation could be
ruined.

AN EASY SOLUTION

Fortunately, there is an easy way to prevent this kind of disaster from happen-
ing. As you may remember from Chapter 10, a special memory register in the
Commodore 64—Register $0001, often called the R6510 register—can be used to
determine whether character data or 1/0 data is switched into ROM at
Addresses $D000 through $DFFF. If Bit 2 of the R6510 register is set, then I/O
data will be stored in Registers $D000 through $DFFF. If Bit 2 of the R6510 regis-
ter is clear, then the $D000-$DFFF memory block will hold character-generator
data.

Customizing a Character Set 221

Another special memory register—the C2DDRA register, at Memory
Address $DD02—is often used in conjunction with the R6510 register. The
C2DDRA is a "data-direction”” register that is used to determine the direction of
data flow to and from 170 devices. If Bits 0 and 1 of the C2DDRA register are set,
then any data that appears on lines going to peripheral devices will be
regarded as output data, not input data, and that is the way things should be
during a character-copying operation. Otherwise, data generated by an 170
device might be accepted as input data, and might interfere with the RAM-
copying process.

As an additional safety measure, the keyboard of the Commodore 64
can be turned off while a character set is being copied into RAM. You can turn
off the C64 keyboard by storing the value $FE (binary 1111 1110) into Register
CIACRE (VIC-II Control Register A), at Memory Address $DCOE.

Now here is a short program that will copy all 512 characters of the
Commodore 64 character set from ROM into RAM. It does not alter any of the
characters; it just copies them, and tells the VIC-II chip where to find them.
Examine the program, and you will see that it does everything explained so far
in this chapter, and then some.

First, the program makes sure that all I/O lines are designated as out-
puts, and then it makes sure that the C64 will be left in its uppercase mode until
the copying operation is complete. Next, a sufficient amount of free RAM is set
aside to hold the copied character set (this step is needed only it the characters
that are being copied will be used by a BASIC program). The C64 keyboard is
then turned off, and character ROM is switched into Memory Addresses $D000
through $DFTFT.

After all of that is done, the C64 character set is copied into RAM using
a standard block-move algorithm. Then /0 is switched back in, the keyboard is
turned back on, and the VIC chip is told (via the VMCSB register) where its
character-generator data can now be found.

COPYING A CHARACTER SET FROM ROM TO RAM

*

* MOVECHRS
*

ORG $8000

*

R6510 EQU $0001

NEWADR EQU $3000
CHRBAS EQU $D000
CIACRE EQU $DCOE
10 C2DDRA EQU $DDO2
11 VMCSB EQU $D018

12 CHROUT EQU $FFD2
13 *

14 FRETOP EQU $0034
15 MEMSIZ EQU $0038
16 *

NV oO~NOUVN AW =

222

Assembly Language Graphics and Sound

17 TABLEN EQU $1000

18 MVSRCE EQU $FB

19 MVDEST EQU MVSRCE+2

20 *

21 LENPTR EQU $200

22 *

23 * SET CIA BITS TO OUTPUTS
24 *

25 LDA C2DDRA

26 ORA #3

27 STA C2DDRA

28 *

29 * USE UPPER-CASE CHARACTER SET
30 *

31 LDA #142

32 JSR CHROUT

33

34 * CLEAR RAM FOR CHR MEMORY
35 *

36 LDA #48

37 STA FRETOP

38 STA MEMSIZ

39

40 * TURN OFF KB INTERRUPT TIMER
41 *

42 LDA CIACRE

43 AND #SFE

44 STA CIACRE

45 *

46 * SWITCH I/0 OFF, CHAR ROM ON
47 *

48 LDA R6510

49 AND HS$FB

50 STA R6510

51 *

52 * COPY CHARACTERS INTO RAM
53 *

54 LDA H<CHRBAS

55 STA MVSRCE

56 LDA #>CHRBAS

57 STA MVSRCE+1

58 *

59 LDA #<NEWADR

60 STA MVDEST

61 LDA #>NEWADR

62 STA MVDEST+1

63 *

64 LDA H<TABLEN

Customizing a Character Set

223

65
66
67
68 *

STA
LDA
STA

LENPTR
#>TABLEN
LENPTR+1

69 * START MOVE

70 *
71
72
73

74 MVPAGE LDA (MVSRCE),Y

75
76
7
78
79
80
81

82 MVPART LDX LENPTR

83

84 MVLAST LDA (MVSRCE),Y

85
86
87
88

LDY
LDX
BEQ

STA
INY
BNE
INC
INC
DEX
BNE

BEQ

STA
INY
DEX
BNE

#0
LENPTR+1
MVPART
(MVDEST),Y
MVPAGE
MVSRCE+1
MVDEST+1
MVPAGE
MVEXIT

(MVDEST), Y

MVLAST

89 MVEXIT

90 *

91 * SWITCH I/0 BACK IN

92 *
93
94
95
96 *

97 * TURN KEYBOARD BACK ON

98 *
99
100
101
102 *

103 * SET VIC MEMORY CONTROL REGISTER

104 *
105
106
107
108
109
110 *
111
112 *

LDA
ORA
STA

LDA
ORA
STA

CcLC
LDA
AND
ADC
STA

RTS

R6510
#4
R6510

CIACRE
#1
CIACRE

VMCSB
#$FO0
#30C
VMCSB

224 Assembly Language Graphics and Sound

113 END
114 *

WHAT NEXT?

Once a character set has been copied from ROM to RAM, any character that it
contains can be modified in any way desired. Here is another program—actu-
ally an expanded version of the previous program—that demonstrates how a
character can be altered once it has been moved into RAM. It makes use of a
short and simple data-moving routine to turn the letter Z into a man waving his
arms. Type the program, assemble it, and run it—and then start typing on your
computer keyboard. If everything goes as it should, every Z that you type will
show up on your screen not as a Z, but as a little man.

MODIFYING A CHARACTER
1 %

* MYCHRS

*

ORG $8000

R6510 EQU $0001

NEWADR EQU $3000

CHRBAS EQU $D000

9 CIACRE EQU $DCOE

10 C2DDRA EQU $DDO2

11 VMCSB EQU $D018

12 *

13 FRETOP EQU $0034

14 MEMSIZ EQU $0038

15 *

16 TABLEN EQU $1000

17 MVSRCE EQU $FB

18 MVDEST EQU MVSRCE+2

19 CHRADR EQU MVDEST

20 *

21 LENPTR EQU $200

22 RAMCHR EQU LENPTR+2

23 *

24 JMP START

25 *

26 SHAPE HEX 18,DB,42,7E,18,7E,66,E7 ;A MAN
WAVING HIS ARMS

27 * SET CIA BITS TO OUTPUTS

28 *

29 START LDA C2DDRA

30 ORA #3

31 STA C2DDRA

2
3
4
5 %
6
7
8

Customizing a Character Set

225

32
33
34
35
36
37
38
39
40
41
42
43
b4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

*

* CLEAR RAM FOR CHR MEMORY
*

LDA #48

STA FRETOP

STA MEMSIZ
*

* TURN OFF KB INTERRUPT TIMER
*

LDA CIACRE

AND #SFE

STA CIACRE
*

* SWITCH I/0 OFF, CHAR ROM ON
*

LDA R6510

AND #$FB

STA R6510
*

* COPY CHARACTERS INTO RAM
*
LDA #<CHRBAS
STA MVSRCE
LDA #>CHRBAS
STA MVSRCE+1
*
LDA #<NEWADR
STA MVDEST
LDA #>NEWADR
STA MVDEST+1
*
LDA #<TABLEN
STA LENPTR
LDA #>TABLEN
STA LENPTR#1
*

* START MOVE
*
LDY #0
LDX LENPTR+1
BEQ MVPART
MVPAGE LDA (MVSRCE),Y
STA (MVDEST),Y
INY
BNE MVPAGE
INC MVSRCE+1
INC MVDEST+1
DEX

226

Assembly Language Graphics and Sound

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

MVPART LDX LENPTR

MVLAST LDA (MVSRCE),Y
STA (MVDEST),Y

BNE

BEQ

INY

DEX
BNE

MVPAGE

MVEXIT

MVLAST

MVEXIT

*

* SWITCH I/0 BACK IN

*

*

* TURN TIMER BACK ON

*

*

* SET VIC MEMORY CONTROL REGISTER

*

*

* NOW WE ALTER A CHARACTER (2Z)

*

*

* CALCULATE RAMCHR'S ADDRESS

*

LDA
ORA
STA

LDA
ORA
STA

CLC
LDA
AND
ADC
STA

LDA
STA

LDA
STA
LDA
CLC
ASL
ROL
ASL
ROL
ASL
ROL
STA

R6510
#4
R6510

CIACRE
#1
CIACRE

VMCSB
#$FO
#30C
VMCSB

#26 ;1
RAMCHR

#0
RAMCHR+1
RAMCHR

A
RAMCHR+1
A
RAMCHR+1
A
RAMCHR+1
RAMCHR

Customizing a Character Set 227

128 *

129 CLC

130 LDA RAMCHR
131 ADC #<NEWADR
132 STA CHRADR
133 LDA RAMCHR+1
134 ADC #>NEWADR
135 STA CHRADR+1

136 *

137 * NOW WE CHANGE THE CHARACTER
138 *

139 LDY #0

140 DOSHAPE LDA SHAPE,Y
141 STA (CHRADR),Y

142 INY

143 CPY #9

144 BCC DOSHAPE
145 *

146 RTS

147 *

148 END

149 *

MIXING TEXT AND HIGH-RESOLUTION
GRAPHICS

Once you have copied a character set into RAM, another interesting thing you
can do with it is use it to print text characters on a high-resolution, bit-mapped
screen. Here is a program that does just that; it copies a character set into RAM,
and then employs a bit-mapping routine to print a character from that set
(namely, an "A") on a high-resolution screen. One possible use of this program,
therefore, is to mix text and high-resolution graphics.

As you will quickly see, this program—which I call SHOWCHRS—con-
tains a number of new routines, along with a few other routines that we have
encountered in previous programs.

Here is how the SHOWCHRS program works. First it copies a charac-
ter set from ROM to RAM, and then it plots a character on a high-resolution
screen using the same kind of high-resolution plotting routine that you encoun-
tered in the BLACKBOARD and SKETCHER programs in Chapter 11. So, if you
have been typing and running the Assembly language programs in this book,
you can now save yourself some typing. Just use your assembler's MERGE or
APPEND utility (if it has one) to tack a few old, familiar programs together. Then
you can use your assembler’s editor to make whatever modifications may be
needed to fashion some of your old programs into this new one.

One of the program'’s new routines is the one in Lines 225 through 246.
This routine calculates the starting address of the data needed to form a char-
acter by going through a series of mathematical operations. The routine takes

228 Assembly Language Graphics and Sound

the character's ASCII code, multiplies it by eight (since it takes eight bytes to
draw a character), and then adds the result of this calculation to the starting
address of a character set that has been copied into ROM. The final result of
this process is the starting address of the RAM data needed to generate the
character.

Another new routine is the one that extends from Lines 367 to 440. This
routine uses a nested loop to define the shape of a character, employing the
same kind of plotting subroutine that was used in an earlier chapter to draw a
character on a bit-mapped screen.

One point worth noting in the program’s character-printing routine is
the series of stack-manipulation instructions in Lines 404 through 416. These
instructions are used to save the contents of the 6510 chip's X and Y registers on
the stack while dots are being plotted on the screen. The contents of the X and Y
registers have to be saved while the plotting subroutine is in use because both
the shape-defining and dot-plotting routines in the SHOWCHRS program make
use of these registers. So the contents of the registers have to be saved each
time a dot-plotting routine is called, then restored each time a dot-plotting rou-
tine is completed.

THE A's HAVE IT

*

* SHOWCHAR
*

ORG $8000

*

COLOR EQU $10
COLMAP EQU $8400
BASE EQU $A000
SCROLY EQU $D011
CI2PRA EQU $DDOO
C2DDRA EQU $DDO2
VMCSB EQU $D018
*

HMAX EQU 320
HMID EQU 160-4 =*
VMID EQU 100-4 *
*

SCRLEN EQU 8000
MAPLEN EQU 1000
*

TEMPA EQU $FB
TEMPB EQU TEMPA+2
*

TABPTR EQU TEMPA
TABSIZ EQU $02A7
*

HPSN EQU TABSIZ+2

-
OV ~NOUVMHA~WN =

NN NN NN = @ a @A @@
NOoOuUMMPpAF NN, OOVOONOVTESEWN -

Customizing a Character Set

229

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
b4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

VPSN EQU HPSN+2
CHAR EQU VPSN+1
ROW EQU CHAR+1
LINE EQU ROW+1
BYTE EQU LINE+1
BITT EQU BYTE+2
*

MPRL EQU BITT+1
MPRH EQU MPRL+1
MPDL EQU MPRH+1
MPDH EQU MPDL+1
PRODL EQU MPDH+1
PRODH EQU PRODL+1
*

FILVAL EQU PRODH+1
*

R6510 EQU $0001
NEWADR EQU $8800
CHRBAS EQU $D000
CIACRE EQU $DCOE
*

TABLEN EQU $800

*

MVSRCE EQU $61
MVDEST EQU MVSRCE+2
BYTPTR EQU MVDEST+2
*

LENPTR EQU $9000
CHCODE EQU LENPTR+2
HPTR EQU CHCODE+2
ONEBYT EQU HPTR+1
COUNT EQU ONEBYT+2
*

JMP START
*

* BLOCK FILL ROUTINE
*
BLKFIL LDA FILVAL
LDX TABSIZ+1

BEQ PARTPG

LDY #0

FULLPG STA (TABPTR),Y

INY

BNE FULLPG

INC TABPTR+1

DEX

BNE FULLPG
PARTPG LDX TABSIZ

230 Assembly Language Graphics and Sound

76 BEQ FINI

77 LDY #0

78 PARTLP STA (TABPTR),Y

79 INY

80 DEX

81 BNE PARTLP

82 FINI RTS

83 *

84 * 16-BIT MULTIPLICATION ROUTINE
85 *

86 MULT16 LDA #0

87 STA PRODL

88 STA PRODH

89 LDX #17

90 cCLC

91 MULT ROR PRODH

92 ROR PRODL

93 ROR MPRH

94 ROR MPRL

95 BCC CTDOWN

96 CLC

97 LDA MPDL

98 ADC PRODL

99 STA PRODL

100 LDA MPDH

101 ADC PRODH

102 STA PRODH

103 CTDOWN DEX

104 BNE MULT

105 RTS

106
107
108
109
110
111 PLOT LDA VPSN

112 LSR A

113 LSR A

114 LSR A

115 STA ROW

116 *

117 * CHAR=HPSN/8 (16-BIT DIVIDE)
118 *

119 LDA HPSN

120 STA TEMPA

121 LDA HPSN+1

122 STA TEMPA+1

123 LDX #3

PLOT ROUTINE

ROW=VPSN/8 (8-BIT DIVIDE)

* % % F *

Customizing a Character Set

231

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

DLOOP LSR TEMPA+1
ROR TEMPA
DEX
BNE
LDA
STA
*

* LINESVPSN AND 7
*

LDA VPSN

AND #7

STA LINE
*

* BITT=7-(HPSN AND 7)
*

LDA HPSN

AND #7

STA BITT

SEC

LDA #7

SBC BITT

STA BITT
*

* BYTE=BASE+ROW*HMAX+8*CHAR+LINE
*

* FIRST MULTIPLY ROW * HMAX
*
LDA ROW
STA MPRL
LDA #0
STA MPRH
LDA #<HMAX
STA MPDL
LDA #>HMAX
STA MPDH
JSR MULT16
LDA MPRL
STA TEMPA
LDA MPRL+1
STA TEMPA+1
*
* ADD PRODUCT TO BASE
*
cLC
LDA
ADC
STA
LDA

DLOOP
TEMPA
CHAR

#<BASE
TEMPA
TEMPA
#>BASE

232

Assembly Language Graphics and Sound

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

ADC TEMPA+1
STA TEMPA+1
*

* MULTIPLY 8 * CHAR
*
LDA #8
STA MPRL
LDA #0
STA MPRH
LDA CHAR
STA MPDL
LDA #0
STA MPDH
JSR MULT16
LDA MPRL
STA TEMPB
LDA MPRH
STA TEMPB+1
*

* ADD LINE
*
cLC
LDA TEMPB
ADC LINE
STA TEMPB
LDA TEMPB+1
ADC 0
STA TEMPB+1
*

* BYTE = TEMPA + TEMPB
*

cLc

LDA TEMPA

ADC TEMPB

STA TEMPB

LDA TEMPA+1

ADC TEMPB+1

STA TEMPB+1
*

* POKE BYTE,PEEK(BYTE)OR2'BIT
*

LDX BITT

INX

LDA #0

SEC

SQUARE ROL

DEX

BNE SQUARE

Customizing a Character Set

233

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

*

* CALCULATE CHCODE'S ADDRESS

*

LDY
ORA
STA
RTS

#0
(TEMPB), Y
(TEMPB), Y

GETADR LDA #0

*
*

* MAIN ROUTINE STARTS HERE

*

STA
LDA
CcLC
ASL
ROL
ASL
ROL
ASL
ROL
STA

CLC
LDA
ADC
STA
LDA
ADC
STA
RTS

CHCODE+1
CHCODE

A
CHCODE+1
A
CHCODE+1
A
CHCODE+1
CHCODE

CHCODE
#<NEWADR
BYTPTR
CHCODE+1
#>NEWADR
BYTPTR+1

START LDA VMCSB

*

*

ORA
STA

LDA
ORA
STA

#8
VMCSB

SCROLY
#32
SCROLY

* USE BANK 2

*

*

LDA
ORA
STA

LDA
AND
ORA

C2DDRA
#3
C2DDRA

CI2PRA
#252
#1 ;BANK 2

234

Assembly Language Graphics and Sound

268
269 *

STA

CI2PRA

270 * CLEAR BIT MAP

271 *
272
273
274
275
276
277
278
279
280
281
282
283 *

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR

#0
FILVAL
#<BASE
TABPTR
#>BASE
TABPTR+1
#<SCRLEN
TABSIZ
#>SCRLEN
TABSIZ+1
BLKFIL

284 * SET BKG AND

285 *
286
287
288
289
290
291
292
293
294
295
296
297 *

298 * TURN OFF KB INTERRUPT TIMER

299 *

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR

#COLOR
FILVAL
#<COLMAP
TABPTR
#>COLMAP
TABPTR+1
#<MAPLEN
TABSIZ
#>MAPLEN
TABSIZ+1
BLKFIL

LINE COLORS

300 MVCHRS LDA CIACRE

301
302
303 *

AND
STA

HSFE
CIACRE

304 * SWITCH BASIC OUT

305 *
306
307
308
309 *

310 * SWITCH I/0 OFF, CHAR ROM ON

311 *
312
313
314
315 *

LDA
AND
STA

LDA
AND
STA

R6510
HSFE
R6510

R6510
#SFB
R6510

Customizing a Character Set

235

316 * COPY CHARACTERS INTO RAM

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

*

*

*

*

LDA
STA
LDA
STA

LDA
STA
LDA
STA

LDA
STA
LDA
STA

#<CHRBAS
MVSRCE

#>CHRBAS
MVSRCE+1

#<NEWADR
MVDEST

#>NEWADR
MVDEST+1

#<TABLEN
LENPTR

#>TABLEN
LENPTR+1

* START MOVE

*

MVPAGE LDA (MVSRCE),Y

MVPART LDX LENPTR

MVLAST LDA (MVSRCE),Y

LDY
LDX
BEQ

STA
INY
BNE
INC
INC
DEX
BNE

BEQ

STA
INY
DEX
BNE

#0
LENPTR+1
MVPART
(MVDEST),Y
MVPAGE
MVSRCE+1
MVDEST+1
MVPAGE
MVEXIT

(MVDEST),Y

MVLAST

MVEXIT

*

* SWITCH I/0 BACK IN

*

*

* TURN TIMER BACK ON

*

LDA
ORA
STA

LDA

R6510
#b
R6510

CIACRE

236

Assembly Language Graphics and Sound

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

ORA #1
STA CIACRE
*

* DRAW A CHARACTER

*
LDA #<HMID
STA HPSN
STA HPTR
LDA #>HMID
STA HPSN+1
STA HPTR+1
LDA HVMID
STA VPSN

*
LDA #1 ;'A’
STA CHCODE
JSR GETADR

*

* A NESTED LOOP:
*

% (X IS THE OUTSIDE LOOP)
*

LDX #8

SETBIT LDY #0

LDA (BYTPTR),Y

STA ONEBYT

THE INSIDE LOOP:

(Y IS ZERO AT START)

* % ¥ * *

RSHIFT LDA ONEBYT
ASL A
STA ONEBYT

BCC NOSHOW

*

* DISPLAY BIT
*

* SAVE X AND Y REGISTERS
*

TXA

PHA

TYA

PHA
*

JSR PLOT
*

* RETRIEVE X AND Y REGISTERS

Customizing a Character Set 237

412 *
413 PLA
414 TAY
415 PLA
416 TAX
417 *

418 NOSHOW INC HPSN
419 BNE LEAP
420 INC HPSN+1
421 *

422 LEAP INY
423 CPY #8

424 BCC RSHIFT
425 *

426 INC VPSN
427 *

428 LDA HPTR
429 STA HPSN
430 LDA HPTR+1
431 STA HPSN+1
432 *

433 INC BYTPTR
434 BNE OKMSB
435 INC BYTPTR+1
436 OKMSB

437 *

438 DEX

439 BNE SETBIT
440 *

441 INF JMP INF
442 *

443 END

HEADLINE CHARACTERS—THE EASY WAY

If you like to write programs in high-resolution graphics, you can see how a
program like the one above might come in handy. Now that you have it on a
disk, you can use it at any time you like to print text anywhere on a high-resolu-
tion screen.

Now we are going to make the SHOWCHRS program even better. With
a few minor changes, you can make the program print headline-size charac-
ters—twice as wide and twice as high as ordinary text characters—on a high-
resolution screen. Best of all, you can do that using the Commodore 64’s stan-
dard built-in character set.

[call the expanded SHOWCHRS program BIGCHRS. With the
BIGCHRS program, you can print giant-size text in bit-mapped graphics—

238 Assembly Language Graphics and Sound

without going through the trouble of designing a single character of your
own.

The BIGCHRS program works just like SHOWCHRS, except that it
prints characters that are twice as wide and twice as high as normal text char-
acters. [t accomplishes this feat by expanding each dot in a standard text char-
acter to four dots—two going across the screen, and two going down—with some
tricky X and Y loops that I will let you figure out for yourself.

The BIGCRS program is based on the SHOWCHRS program. So you
can save yourself some typing by loading SHOWCHRS and then carefully edit-
ing it to look like BIGCHRS S, in Appendix B.

Once you have the BIGCHRS program typed, assembled, and exe-
cuted, you will be ready to expand it into a program that prints headlines in
large type on a computer screen. In the next chapter, you will learn how to do
just that—and you will also learn how to program sprite graphics in Assembly
language.

Programming Sprites
in Assembly
Language

Animating Sprites on the Screen

Once you know how to print large characters on a high-resolution screen, it is
not difficult to write programs that will print multi-character messages in large
type. The next (and last) program in this chapter will do just that, and it will do
it using principles that you are probably very familiar with by now. If you
assembled and ran the message-printing programs in earlier chapters of this
book—the programs called RESPONSE and THE NAME GAME-—then you
already know how to print messages on a computer screen. As the following
program will demonsirate, the same kinds of techniques that were used to print
the messages in those programs can also be used to print messages in big type.

But the program we will be looking at next is not just a patchwork of
old routines. It also contains something new: sprite graphics.

If you have ever worked with sprites in BASIC, you will probably be
pleased to learn that it is actually easier to program sprites using Assembly
language than it is to create and use them in BASIC. That is because sprites are
programmed using many kinds of bit and byte manipulations that are much
easier to manage using binary and hexadecimal numbers than they are using
decimal numbers. By the time you finish this chapter, you will see why.

Sprites, as you may know, are graphics characters that can be cre-
ated, colored, and animated quite easily, and can be moved around completely
independently of anything else on a computer screen. Using ordinary program-
ming techniques, up to eight sprites can be displayed on a screen at once.
These eight sprites are usually numbered 0 through 7.

Sprites are made of tiny dots, just like programmable text characters.
Like programmable characters, they can be created using standard bit-map-
ping techniques, but sprites are larger than text characters. A sprite can be up
to 24 horizontal screen dots wide and up to 21 vertical screen dots dots high.

A sprite can be displayed in any of the 16 colors that are available to
the VIC-II chip. It is also possible to create multicolored sprites. Instructions for
programming multicolored sprites will not be provided, but can be found in the
Commodore 64 Programmer’s Reference Guide and a number of other books
listed in the bibliography appendix in this book.

242 Assembly Language Graphics and Sound

Sprites can also be expanded to twice their normal width and twice
their normal height, or four times their standard size. The sprite used in this
chapter will be an expanded one.

HOW SPRITES ARE DRAWN

As previously pointed out, a sprite can measure up to 21 dots (or bytes) wide,
and up to 24 dots (or bits) high, or a total of 504 dots. Figure 14-1 shows a sprite
bit map.

A sprite bit can also be pictured as a byte map—a matrix that meas-
ures three bytes wide by 21 bytes high, for a total of 63 bytes. Actually, the bytes
that make up a sprite are in consecutive order in RAM, starting with the byte in
the upper left-hand corner and ending with the one in the lower right-hand

corner, the 63rd byte. But when a sprite appears on the screen, it looks more like
Figure 14-2.

Figure 14-1 Sprite Bit Map

Figure 14-2 Sprite Byte Map

Programming Sprites in Assembly Language 243

HOW SPRITES ARE PROGRAMMED

Although it takes only 63 bytes to form a sprite, each sprite consumes 64 bytes in
RAM. The 64th byte of each sprite map is used to mark the end of its location in
memory.

Sprites can be placed anywhere in free RAM, and a special pointer is
provided to mark the location for each sprite. Each sprite pointer is one byte
long, so it takes eight bytes of RAM to hold the eight pointers that are needed to
address the Commodore 64's eight sprites. These eight pointers are always the
last eight bytes of whatever block of RAM has been designated as screen mem-
ory. When the location of screen memory is moved, the addresses of the Cb4's
eight sprite pointers also change. But it is always easy to find them, since they
always take up the last eight bytes of whatever block of RAM is being used as
screen memory.

A one-byte value is all that is ever needed to define the starting
address of a sprite map, since sprites always fall into whatever 16K bank of
memory is currently accessible to the VIC-II chip. That means that a sprite
pointer is actually an offset that must be added to the starting address of the
graphics bank currently in use to determine the starting address of the bit map
that is to be used to form the sprite.

When the Commodore 64 is first turned on, its VIC-II chip is set to
retrieve graphics information from Bank 0, and to get its screen map from Mem-
ory Registers $0400 through $0800 (1024 through 2048 in decimal notation). At
power-up time, theretore, the default address of the first sprite pointer, or Sprite
Pointer 0, is $07FB (1020 in decimal notation), and the next eight bytes in RAM
are the pointers for Sprites | through 7. So the detault addresses of the pointers
for the Cb4's eight sprite pointers are Memory Addresses $07FB through $07FF—
the last eight bytes in the block of RAM designated as screen memory.

To tind the data that it needs to display a sprite, all the Commodore 64
has to do is look at the 8-bit value stored in the appropriate sprite pointer. When
that value is added to the address of the graphics bank currently in use, the
result will be the address of the bit map that must be used to define the sprite.

TURNING SPRITES ON AND OFF

Before a sprite can be displayed, it must be turned on. Sprites are turned on and
oft with a sprite enable register (abbreviated SPENA) situated at Memory
Address $D015. Each bit of the SPENA register is associated with one sprite; Bit
0 is used to turn Sprite 0 on and off, Bit 1 is used to control Sprite 1, and so on. If
the bit associated with a sprite is set, then the sprite is enabled. If the bit is not
set, then the sprite is not enabled and cannot be used.

POSITIONING SPRITES

Each of the C64's eight sprites has two position registers: an X position register
that is used to determine its horizontal placement on the screen, and a Y posi-
tion register that is used to determine its vertical position. These registers are

abbreviated SPOX through SP7X and SPOY through SP7Y. In addition, there is a

244 Assembly Language Graphics and Sound

special most significant X position register (abbreviated MSIGX) that is used to
designate the horizontal positions of all eight sprites. This register is needed
because a sprite can be placed in 512 possible horizontal screen positions—too
many positions for an eight-bit register to keep track of. It a sprite is to be placed
in a position that can be stored as a value in an 8-bit register—that is, in a
position with a value of less than 255—then the MSIGX register is not used, but if
the horizontal position of a sprite has a value of more than 255, a bit in the
MSIGX register is set. Each bit of the MSIGX register equates to the number of a
Sprite; Bit 0 is used for Sprite 0, Bit 1 is used for Sprite 1, and so on.

There is no MSIGY register because there is no need for one. A sprite
can be placed in only 256 vertical positions, so only one 8-bit register per sprite
is needed to handle the vertical positioning of sprites on the C64's screen.

When you store values in a horizontal or vertical position sprite regis-
ter, that value is used to determine the position of the upper left-hand corner of
the sprite, but storing a value in a horizontal or vertical position register does
not ensure that a sprite will be displayed on the screen. Of the 512 possible
horizontal positions of a sprite, only Positions 24 through 343 are visible on the
screen. Of the 255 vertical positions that are available, only Positions 50 through
249 are actually visible on the screen. It is therefore quite easy to make a sprite
disappear; all you have to do is store the value of an offscreen position in its
horizontal or vertical position register.

Table 14-1 lists the locations of all of the sprite position registers used
by the Commodore 64.

Table 14-1 SPRITE POSITION REGISTERS

HEXADECIMAL POSITION HEXADECIMAL POSITION
ADDRESS REGISTER ADDRESS REGISTER
D000 SPOX D008 SP4X
D001 SPOY D009 SP4Y
D002 SPIX DO0A SPSX
D003 SP1Y D0O0B SPSY
D004 SP2X DooC SP6X
D005 SP2Y DO0D SP6Y
D006 SP3X DOCE SP7X
D007 SP3Y DOOF SP7Y

DO010—MSIGX (Most Significant X Position Register)

SELECTING COLORS FOR SPRITES

In addition to its two position registers, each sprite also has a color register. The
color register for Sprite 0 is at Memory Address $D027, and the addresses of the

Programming Sprites in Assembly Language 245

color registers for the other seven sprites follow in consecutive order. The color
address for Sprite 7 is therefore at Memory Address $D02E.

To select the color of a sprite, all you have to do is store the standard
value of one of the Commodore 64's 16 colors in that sprite’s color register. Every
bit that is set on the sprite’s bit map will then be displayed in the selected color.
Every dot that has a value of 0 will be transparent, and will not cover up any-
thing that is beneath it on the screen.

EXPANDING SPRITES

As previously mentioned, a sprite normally measures 24 horizontal screen dots
wide by 21 vertical screen dots high, but by using two special registers called
XXPAND and YXPAND, a sprite can be expanded to twice its normal width,
twice its normal height, or both. The XXPAND register is at Memory Address
$D01D, and the YXPAND register is at $D017. Each bit in each register corre-
sponds to a sprite number, with Bit 0 controlling the size of Sprite 0, Bit 1 control-
ling the size of Sprite 1, and so on.

ON WITH THE PROGRAM

Now we are ready to take a look at an Assembly language program that makes
use of high-resolution graphics, an alternate character set, a large-type printing
routine, and an animated, expanded sprite routine. The program copies a char-
acter set from ROM into RAM and then prints a message on the screen in large
type. It then clears a bit map for Sprite 0, copies some data into the bit map from
the character set in RAM, and places an expanded sprite in an area out of view-
ing range at the top of the screen. Next, the sprite descends into viewing range,
and maintains a slow descent until it reaches a predetermined position. Then it
stops, and becomes part of the message displayed on the screen.
Here is the program:

DESCENT OF A SPRITE

1 *

2 * SPRITE

3 %

4 ORG $9000 =*

5 %

6 COLOR EQU $EO
7 *

8 TABLEN EQU $800
9 MAPLEN EQU 1000

10 SCRLEN EQU 8000
11 SPOADR EQU $8000
12 COLMAP EQU $8400
13 NEWADR EQU $8800
14 *

246

Assembly Language Graphics and Sound

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

SPRPTR EQU $87F8
SPENA EQU $DO015
SPOCOL EQU $D027
SPOX EQU $D000
SPOY EQU $D001
MSIGX EQU $D010
YXPAND EQU $D017
XXPAND EQU $D01D
*

HMAX EQU 320

VMID EQU 100-8

*

R6510 EQU $0001
BASE EQU $A000
CHRBAS EQU $D000
SCROLY EQU $D011
VMCSB EQU $D018
BORDER EQU $D020
CIACRE EQU $DCOE
CI2PRA EQU $DDOO
C2DDRA EQU $DDO2
*

TEMPA EQU $FB
TEMPB EQU TEMPA+2
TABPTR EQU TEMPA
*

MVSRCE EQU $61
MVDEST EQU MVSRCE+2
BYTPTR EQU MVDEST+2
*

TABSIZ EQU $02A7
*

HPSN EQU TABSIZ+2
VPSN EQU HPSN+2
CHAR EQU VPSN+1
ROW EQU CHAR+1
LINE EQU ROW+1
BYTE EQU LINE+1
BITT EQU BYTE+2

*

MPRL EQU BITT+1
MPRH EQU MPRL+1
MPDL EQU MPRH+1
MPDH EQU MPDL+1
PRODL EQU MPDH+1
PRODH EQU PRODL+1
FILVAL EQU PRODH+1
LENPTR EQU FILVAL+1

Programming Sprites in Assembly Language 247

63 CHCODE EQU LENPTR+2
64 HPTR EQU CHCODE+2

65 VPTR EQU HPTR+2

66 ONEBYT EQU VPTR+1

67 COUNT EQU ONEBYT+2

68 LTTR EQU COUNT+1

69 *

70 JMP START

71 %

72 TEXT DFB 9,32,32,32,13,25,32,3
73 DFB 15,13,13,15,4,15,18,5
74 DFB 32,54,52,0

75 *

76 * BLOCK FILL ROUTINE
77 *

78 BLKFIL LDA FILVAL

79 LDX TABSIZ+1

80 BEQ PARTPG

81 LDY #0

82 FULLPG STA (TABPTR),Y
83 INY

84 BNE FULLPG

85 INC TABPTR+1

86 DEX

87 BNE FULLPG

88 PARTPG LDX TABSIZ

89 BEQ FINI

90 LDY #0

91 PARTLP STA (TABPTR),Y
92 INY

93 DEX

94 BNE PARTLP

95 FINI RTS

96 *

97 * 16-BIT MULTIPLICATION ROUTINE
98 *

99 MULT16 LDA #0

100 STA PRODL

101 STA PRODH

102 LDX #17

103 cLC

104 MULT ROR PRODH

105 ROR PRODL

106 ROR MPRH

107 ROR MPRL

108 BCC CTDOWN

109 CLC

110 LDA MPDL

248

Assembly Language Graphics and Sound

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

ADC
STA
LDA
ADC
STA

PRODL
PRODL
MPDH

PRODH
PRODH

CTDOWN DEX

BNE
RTS

* PLOT ROUTINE

* ROW=VPSN/8 (8-BIT DIVIDE)

PLOT
LSR
LSR
LSR

STA
*

* CHAR=HPSN/8 (16-BIT DIVIDE)

*
LDA
STA
LDA
STA
LDX

DLOOP LSR TEMPA+1

ROR
DEX
BNE
LDA

STA
*

* LINE=VPSN AND 7

*
LDA
AND

STA
*

* BITT=7-(HPSN AND 7)

*

LDA
AND
STA
SEC
LDA
SBC
STA

MULT

LDA VPSN
A

A

A

ROW

HPSN
TEMPA
HPSN+1
TEMPA+1
#3

TEMPA

DLOOP
TEMPA
CHAR

VPSN
#7
LINE

HPSN
#e
BITT

#1
BITT
BITT

Programming Sprites in Assembly Language 249

159 *

160 * BYTE=BASE+ROW*HMAX+8*CHAR+LINE
161 *

162 * FIRST MULTIPLY ROW * HMAX
163 *

164 LDA ROW

165 STA MPRL
166 LDA #0

167 STA MPRH
168 LDA #<HMAX
169 STA MPDL
170 LDA #>HMAX
171 STA MPDH
172 JSR MULT16
173 LDA MPRL
174 STA TEMPA
175 LDA MPRL+1
176 STA TEMPA+1
177 *

178 * ADD PRODUCT TO BASE
179 *

180 CLC

181 LDA #<BASE
182 ADC TEMPA
183 STA TEMPA
184 LDA #>BASE
185 ADC TEMPA+1
186 STA TEMPA+1
187 *

188 * MULTIPLY 8 * CHAR
189 *

190 LDA #8

191 STA MPRL
192 LDA #0

193 STA MPRH
194 LDA CHAR
195 STA MPDL
196 LDA #0

197 STA MPDH
198 JSR MULT16
199 LDA MPRL
200 STA TEMPB
2017 LDA MPRH
202 STA TEMPB+1
203 *

204 * ADD LINE
205 *

206 cCLC

250

Assembly Language Graphics and Sound

207
208
209
210
211
212
213

LDA
ADC
STA
LDA
ADC

STA
*

TEMPB
LINE
TEMPB
TEMPB+1
0
TEMPB+1

214 * BYTE = TEMPA + TEMPB

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

*

CcLC
LDA
ADC
STA
LDA
ADC

STA
*

* POKE BYTE,PEEK(BYTE)OR2/BIT

*
LDX
INX
LDA
SEC

TEMPA
TEMPB
TEMPB
TEMPA+1
TEMPB+1
TEMPB+1

BITT

#0

230 SQUARE ROL

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253

254

DEX
BNE
LDY
ORA
STA

RTS
*

* CALCULATE CHCODE'S ADDRESS

*

SQUARE

#0
(TEMPB), Y
(TEMPB), Y

GETADR LDA #0

STA
LDA
CLC
ASL
ROL
ASL
ROL
ASL
ROL
STA
*
CLC
LDA
ADC

CHCODE+1
CHCODE

A
CHCODE+1
A
CHCODE+1
A
CHCODE+1
CHCODE

CHCODE
#<NEWADR

Programming Sprites in Assembly Language 251

255 STA BYTPTR

256 LDA CHCODE+1

257 ADC H#>NEWADR

258 STA BYTPTR+1

259 RTS

260 *

261 * DRAW A CHARACTER
262 *

263 DRAWCH LDA LTTR
264 STA CHCODE

265 JSR GETADR

266 *

267 * A NESTED LOOP:
268 *

269 * (X IS THE OUTSIDE LOOP)
270 *

271 LDX #8

272 *

273 * SET UP COUNTER FOR 2 VERT LINES
274 *

275 SETLIN LDA #2

276 STA COUNT

277 *

278 DRAWLN LDY #0

279 LDA (BYTPTR),Y
280 STA ONEBYT

281 *

282 * THE INSIDE LOOP:

283 *

284 * (Y IS ZERO AT START)
285 *

286 RSHIFT LDA ONEBYT

287 ASL A

288 STA ONEBYT

289 BCS SHOW

290 *

291 INC HPSN

292 BNE ITSOK

293 INC HPSN+1

294 ITSOK JMP NOSHOW
295 *

296 * DISPLAY BIT
297 *

298 * SAVE X AND Y REGISTERS
299 *

300 SHOW TXA

301 PHA

302 TYA

252

Assembly Language Graphics and Sound

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

PHA
*

JSR PLOT
*

* NOW DO IT AGAIN
*

INC HPSN

BNE NOINC

INC HPSN+1
*

NOINC JSR PLOT
*

* RETRIEVE X AND Y REGISTERS
*
PLA
TAY
PLA
TAX
*
NOSHOW INC HPSN
BNE LEAP
INC HPSN+1
*
LEAP INY
CPY #8
BCC RSHIFT

*

INC VPSN
*

LDA HPTR

STA HPSN

LDA HPTR+1

STA HPSN+1
*

* 2 VERT LINES DONE YET?
*
DEC COUNT
BNE DRAWLN
*
INC BYTPTR
BNE OKMSB
INC BYTPTR+1
OKMSB DEX
BNE SETLIN
RTS
*

* MAIN ROUTINE STARTS HERE
*

Programming Sprites in Assembly Language 253

351 START LDA VMCSB
352 ORA #8

353 STA VMCSB

354 *

355 LDA SCROLY

356 ORA #32

357 STA SCROLY

358 *

359 * USE BANK 2
360 *

361 LDA C2DDRA

362 ORA #3

363 STA C2DDRA

364 *

365 LDA CI2PRA

366 AND #252

367 ORA #1 ;BANK 2
368 STA CI2PRA

369 *

370 * CLEAR BIT MAP
371 *

372 LDA #O

373 STA FILVAL

374 LDA H<BASE

375 STA TABPTR

376 LDA #>BASE

377 STA TABPTR+1
378 LDA H<SCRLEN
379 STA TABSIZ

380 LDA #>SCRLEN
381 STA TABSIZ+1
382 JSR BLKFIL

383 *

384 * SET LINE, BKG AND BORDER COLORS
385 *

386 LDA #COLOR

387 STA FILVAL

388 LDA #<COLMAP
389 STA TABPTR

390 LDA #>COLMAP
391 STA TABPTR+1
392 LDA #<MAPLEN
393 STA TABSIZ

394 LDA #>MAPLEN
395 STA TABSIZ+1
396 JSR BLKFIL

397 LDA #13 ;GREEN
398 STA BORDER

254

Assembly Language Graphics and Sound

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

MOVE CHARACTER SET INTO RAM

THIS ROUTINE TURNS BASIC OFF

* % % * %

LDA R6510
AND H#S$FE
STA R6510

*

* TURN OFF KB INTERRUPT TIMER
*

LDA CIACRE

AND HS$FE

STA CIACRE
*

* SWITCH I/0 OUT, CHAR ROM IN
*

LDA R6510

AND #$FB

STA R6510
*

* COPY CHARACTERS INTO RAM
*
LDA #<CHRBAS
STA MVSRCE
LDA #>CHRBAS
STA MVSRCE+1
*
LDA #<NEWADR
STA MVDEST
LDA #>NEWADR
STA MVDEST+1
*
LDA #<TABLEN
STA LENPTR
LDA #>TABLEN
STA LENPTR#1
*

* START MOVE
*

LDY #O

LDX LENPTR+1

BEQ MVPART
MVPAGE LDA (MVSRCE),Y
STA (MVDEST),Y

INY

BNE MVPAGE

INC MVSRCE+1

Programming Sprites in Assembly Language 255

447 INC MVDEST+1

448 DEX

449 BNE MVPAGE

450 MVPART LDX LENPTR
451 BEQ MVEXIT

452 MVLAST LDA (MVSRCE),Y
453 STA (MVDEST),Y

454 INY

455 DEX

456 BNE MVLAST

457 MVEXIT

458 *

459 * SWITCH I/0 BACK IN
460 *

461 LDA R6510

462 ORA #4

463 STA R6510

464 *

465 * TURN TIMER BACK ON
466 *

467 LDA CIACRE

468 ORA #1

469 STA CIACRE

470 *

471 * POSITION MESSAGE ON SCREEN
472 *

473 LDA #8 *

474 STA HPSN

475 STA HPTR

476 LDA #0 =*

477 STA HPSN+1

478 STA HPTR+1

479 LDA HVMID

480 STA VPSN

481 STA VPTR

482 *

483 * PRINT LINE OF LARGE TYPE
484 *

485 LDX #0O

486 DISP LDA TEXT,X

487 CMP #0 ;EOF

488 BEQ DONE

489 STA LTTR

490 TXA

491 PHA

492 JSR DRAWCH

493 PLA

494 TAX

256

Assembly Language Graphics and Sound

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

*

* ADVANCE CURSOR

*

*

* PRINT NEXT LETTER

*

*

D
*

*
*

*
*
*
*

*

* (COPY HEART FROM C64 CHR SET)

*

*

CLC
LDA
ADC
STA
STA
LDA
ADC
STA
STA
LDA
STA

INX
JMP

ONE

DISPLAY SPRITE #0

HPTR
#16
HPTR
HPSN
HPTR+1
#0
HPTR+1
HPSN+1
VPTR
VPSN

DISP

DEFINE SPRITE

CLEAR SPRITE MAP

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR

LDA
STA
LDA
STA
JSR

#0
FILVAL
#<SPOADR
TABPTR
#>SPOADR
TABPTR+1
#64
TABSIZ
#0
TABSIZ+1
BLKFIL

SPOADR
TEMPA
#83 ;HEART
CHCODE
GETADR

Programming Sprites in Assembly Language 257

543 LDY #0

544 LDX #8

545

546 DEFSPO LDA (BYTPTR),Y

547 STA (TEMPA),Y

548 *

549 INC BYTPTR

550 INC TEMPA

551 INC TEMPA

552 INC TEMPA

553 *

554 DEX

555 BNE DEFSPO

556 *

557 * STORE SPRITE'S ADDRESS IN PTR
558 * (ADDRESS IS $8000 -- NO OFFSET)
559 *

560 LDA #0

561 STA SPRPTR

562 *

563 * EXPAND SPRITE (VERT & HORZ)
564 *

565 LDA #1

566 STA XXPAND

567 STA YXPAND

568 *

569 * TURN ON SPRITE #0

570 *

571 LDA #1

572 STA SPENA

573 *

574 * MAKE SPRITE RED

575 *

576 LDA #10 ;RED

577 STA SPOCOL

578 *

579 * POSITION SPRITE ON SCREEN
580 *

581 LDA #62

582 STA SPOX

583 LDA #0

584 STA MSIGX

585 LDA #34

586 STA SPOY

587 *

588 * MOVE SPRITE DOWN SCREEN
589 *

590 DROP INC SPOY

258

Assembly Language Graphics and Sound

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

*

* DELAY LOOP

*

XLOOP LDY #$10

LDX

HSFF

YLOOP DEY

*

*

INF JMP INF

*

BNE
DEX
BNE

LDA

CmpP
BNE

END

YLOOP
XLOOP
SPOY

#142
DROP

Commodore 64/128
Music and Sound

An Introduction to
Interrupt Operations

One of the best features of your Commodore computer is its incredible ability to
synthesize music and sounds. Despite their low prices, the Commodore 64 and
the Commodore 128 have sound and music generating capabilities that rival
those of music synthesizers used by professional musicians. In this chapter, you
will learn how to turn your Commodore's keyboard into a small music-synthe-
sizer keyboard that can produce an almost limitless variety of sounds.

You can use either BASIC or Assembly language to program sound on
your Commodore. But Assembly language is much better than BASIC for writing
music and sound routines. Here are some of the reasons why:

e Sound is programmed on the Commodore 64 by manipulating specitic
bits in specific memory registers—a job that is slow and clumsy in
BASIC, but fast and easy in Assembly language.

e Timing is often critical in sound and music programming, so the speed
of Assembly language is especially important in programs that deal
with music and sound.

e The length of a note cannot be determined very precisely in BASIC,
but musical timing can be controlled with pinpoint precision in Assem-
bly language. In fact, by using a programming tool called an inter-
rupt, you can make the lengths of musical notes, rests, and phrases
completely independent of everything else in an Assembly language
program. By using interrupts, you can add music and sound to an
Assembly language program with perfect synchronization—and you
can be certain that your soundtrack will always run at the same
speed, no matter how many other features are then added to the
program.

To understand how the Commodore 64/128 music synthesizer works, it
is necessary to know a few fundamental principles of sound reproduction. I will
outline some of those principles now. Then we will be ready to put your Commo-
dore through its paces as a music synthesizer.

262 Assembly Language Graphics and Sound

THE FOUR CHARACTERISTICS
OF SOUND

When you hear a sound being played on a musical instrument, there are really
four characteristics which are combined to create the sound that you perceive.
These four characteristics are:

1. Volume, or loudness.
Frequency, or pitch.

Timbre, or sound quality.

W N

Dynamic range, or the difference in level between the loudest sound
that can be heard and the softest sound that can be heard during a
given period of time. This period of time can range between the time it
takes to play a single note and the length of a much longer listening
experience, such as a musical performance or a complete musical
recording.

In the Commodore 64/128, there is a special microprocessor that can be
programmed to control the volume, frequency, timbre, and dynamic range of
sounds. It is this processor—called the 6581 SID (Sound Interface Device)—which
gives the Commodore 64/128 its incredible sound-synthesizing capabilities.

SID’S THREE VOICES

The SID chip that is built into your Commodore has three separate voices, and
each of these voices can be independently programmed. This means that your
Commodore can play music in three-part harmony—or, if you prefer, you can
use one voice for melody, one for percussion, and one for bass. If you like, you
can use the SID chip to generate noises instead of music—and, if you wish, you
can program each of SID's three voices to produce a different sound. You can
even program SID to synthesize sounds that are recognizable as speech—it you
are a good enough programmer.

In a moment, we will take a look at how the SID chip can be used to
program three voices: that is, how it can control the volume, frequency, and
timbre of three independent sources of sound. But first let's see where the SID
chip is situated in your computer’'s memory, and how it is designed to be
programmed.

WHERE TO FIND IT

In the Commodore 64, Memory Registers $D400 through $D7FF (54272 to 55295
in decimal notation) are used to address the SID chip. These 1,024 memory reg-
isters can be divided as shown in Table 15-1.

Commodore 64/128 Music and Sound 263

Table 15-1 MEMORY BLOCKS USED BY THE 6581 SID CHIP

$D400 through $D406—Registers for Voice 1

$D407 through $D40D—Registers for Voice 2

$D40E through $D414—Registers for Voice 3

$D415 through $D418—Sound filter and volume controls

$D419 through $D41A—Game paddle registers (not used for sound)

$D41B through §D41C—Read-only sound registers (Used in advanced
synthesis operations)

$D41D through $D41F—Not connected

$D420 through $D7FF—Images of other registers; not used

ANOTHER USEFUL TABLE

Table 15-2 is a memory map of the SID chip’s sound-related registers. The func-
tions of most of the registers listed in this table will be explained later in this
chapter. The functions of those registers not covered in this chapter can be
found in the Commodore 64 Programmer’s Reference Guide, and in most books
devoted specifically to Commodore 64 music and sound.

As you can see from these tables, Registers $D400 through $D418 are
the only SID registers that are ordinarily used in basic-level to intermediate-
level SID programming. And the largest block of memory in the table—the sec-
tion that extends from $D400 through $D414—can be broken down further into
three subsections: one for Voice 1, one for Voice 2, and one for Voice 3. Later in
this chapter, the functions of all of the registers in the block that extends from
$D400 to $D414 will be covered in more detail. Meanwhile, let's take an overall
look at how the SID chip’s registers are used to program the volume, frequency,
timbre, and dynamic range of the three voices of the Commodore 64.

VOLUME

For some reason, the designers of the Commodore 64 made it impossible to con-
trol the volume of the SID chip's three voices individually. Instead, the loudness
of the overall sound produced by the SID register is determined by the value
that is placed in the lower three bits (Bits 0 through 3) of Memory Register
$D418. This register is sometimes known as the SIGVOL register.

To control the volume of all sounds produced by the SID chip, all you
have to do is place a number ranging from $0 to $F in the lower nibble of the
SIGVOL register. The larger the value of this nibble, the louder the sound which
the SID chip produces. If the value of the nibble is $0, no sound will be gener-
ated. In most applications, the volume nibble of the SIGVOL register is kept at
$F, its maximum setting.

Bits 4 through 6 of the SIGVOL register are used to control three sound
filters that are built into the SID chip: a low-pass filter, a bandpass filter, and a
high-pass filter. The uses of these filters will be explained later in this chapter.

Bit 7 of the SIGVOL register can be used to disconnect the output of
Voice 3 of the SID chip. Voice 3 is disconnected by setting this bit to 1. When

264 Assembly Language Graphics and Sound

Table 15-2 MEMORY MAP OF THE 6581 SID CHIP REGISTERS

ADDRESS LABEL FUNCTION

$D400 FRELOI1 Voice 1 Frequency Control (low byte)

$D401 FREHII Voice 1 Frequency Control (high byte)
$D402 PWLOI Voice 1 Pulse Waveform Width (low byte)
$D403 PWHII Voice 1 Pulse Waveform Width (high nibble)
$D404 VCREGI Voice 1 Control Register

$D405 ATDCY]1 Voice 1 Attack/Decay Register

$D406 SURELLI Voice 1 Sustain/Release Control Register
$D407 FRELO2 Voice 2 Frequency Control (low byte)

$D408 FREHI2 Voice 2 Frequency Control (high byte)
$D409 PWLO2 Voice 2 Pulse Waveform Width (low byte)
$D40A PWHI2 Voice 2 Pulse Waveform Width (high nibble)
$D40B VCREG2 Voice 2 Control Register

$D40C ATDCY?2 Voice 2 Attack/Decay Register
$D40D SUREL2 Voice 2 Sustain/Release Control Register

$D40E FRELO3 Voice 3 Frequency Control (low byte)
$D40F FREHI3 Voice 3 Frequency Control (high byte)
$D410 PWLO3 Voice 3 Pulse Waveform Width (low byte)
$D411 PWHI3 Voice 3 Pulse Waveform Width (high nibble)
$D412 VCREG3 Voice 3 Control Register

$D413 ATDCY3 Voice 3 Attack/Decay Register

$D414 SURELS Voice 3 Sustain/Release Control Register
$D415 CUTLO Filter Cutoff Frequency (low nibble)
$D416 CUTHI Filter Cutotf Frequency (high byte)

$D417 RESON Filter Resonance Control Register

$D418 SIGVOL Volume and Filter Select Register

voice 3 is disconnected, an oscillator with which Voice 3 is equipped can be
used for modulating the sound of the other two voices. Or the Voice 3 oscillator
can be used for other purposes, such as generating random numbers, without
atfecting the output of sound.

When the filters controlled by Register $D418 are not being used, and
when there is no need to disconnect Voice 3, then the SID chip's volume can be
controlled by simply storing a value ranging from $0 to $F (or from 1 to 15 in
decimal notation) in the SIGVOL register. But when Bits 5 through 7 of the
SIGVOL register are in use, then masking operations must be used in order to
implement a desired volume setting without affecting the register’s other func-
tions. Here is a routine that could be used to implement a volume setting of 15
(JF in hexadecimal notation) without disturbing the high-order nibble of the
SIGVOL register:

Commodore 64/128 Music and Sound 265

LDA SIGVOL
AND $#FO
ORA #3$0F
STA SIGVOL

HAUWUN -

FREQUENCY

The pitch of a musical note is determined by its frequency. Frequency is usually
measured in Hertz (Hz), or cycles per second. The frequencies that can be pro-
duced by the Commodore 64's SID chip range from 0 Hz (very low) to 4,000 Hz
(quite high).

The SID chip synthesizes the frequencies of sounds by carrying out a
rather complex mathematical operation. First, it reads a pair of 8-bit values (one
"low" value and one "high" value) that have been placed in a specific pair of
frequency control registers. (The SID chip has six such registers—two for each
voice—and the addresses of all of them are listed in Table 15-2.)

When a pair of frequency-control registers has been loaded with two
8-bit values, it combines them into a 16-bit value. It then divides that 16-bit value
by a number that is derived from a certain frequency: specifically, the frequency
of a system clock built into the Commodore 64. Finally, when all of these opera-
tions have been carried out, the SID chip is able to generate a note of the
desired frequency.

That is quite an involved series of operations, but you do not really
have to worry about how they all work in order to produce a note of a given
frequency on the Commodore 64. All you have to do is place the proper values
in the proper memory registers, and then set a certain bit in another register. All
of the values you need to play eight octaves of notes on the Commodore 64 are
listed in a table on pages 384 through 386 of the Commodore 64 Programmer’s
Reference Guide. In that table, you find two values (a “low" value and a "high”
value) that must be placed in the SID chip's frequency control registers in order
to produce each note that the Commodore 64 is capable of generating. But
please remember that the values listed in this table are not actual frequencies;
they are numbers that the SID chip uses to calculate frequencies that are to be
generated.

TIMBRE

Timbre, or note quality, can be illustrated with the help of a structure called a
wavetorm. The SID chip can generate four kinds of waves: a triangle wave, a
sawtooth wave, a pulse wave, and a noise wave.

To understand the concept of waveforms, it is necessary to have a fun-
damental understanding of musical harmonics. So here is a brief crash course
in music theory.

With the help of an electronic instrument, it is possible to generate a
tone that has just one pure frequency. But when a note is played on a musical
instrument, more than one frequency is usually produced. In addition to a pri-
mary frequency, or a fundamental, there is usually a set of secondary frequen-

266 Assembly Language Graphics and Sound

cies called harmonics. It is this total harmonic structure which determines the
timbre of a sound.

When a tone containing only a fundamental frequency is viewed on
an oscilloscope, the pattern that is produced on the screen is that of a pure sine
wave. (When a flute is played, the waveform that it produces is very close to
that of a pure sine wave.) The waveform of a sine wave is shown in Figure 15-1.

N

Figure 15-1 Sine Waveform

When harmonics are added to a tone, the result is a richer sound that
produces what is sometimes called a triangle wave (see Figure 15-2). Triangle
waveforms, or waves that are close to triangle waveforms, are produced by
instruments including xylophones, organs, and accordians.

SN N

Figure 15-2 Triangle Waveform

When still more harmonics are added to a note, other kinds of waves
are formed. Harpsichords and trumpets, for example, produce a type of wave
that is sometimes called a sawtooth wave (see Figure 15-3). And a piano gener-

ates a squarish kind of wave called a square wave or a pulse wave (see Figure
15-4).

Figure 15-3 Sawtooth Waveform

Commodore 64/128 Music and Sound 267

Figure 15-4 Pulse Wavetorm

PULSE WAVEFORM WIDTH CONTROLS

When the SID chip is called on to generate a pulse wave, it is necessary to use
an additional control called a pulse waveform width control. As you can see in
Figure 15-4, the pulses in a pulse waveform have a certain width, and are sepa-
rated by gaps that may have a different width. The SID chip has six registers—
two for each voice—that can be used to control the widths of pulse waveforms. A
pulse wave generated by the SID chip has a 12-bit resolution, so only 12 bits in
each pair of width-control registers are used: all eight bytes of each low-order
register, plus the lower nibble of each high-order register.

The setting of each width-control register determines how long a pulse
wave will stay at the high part of its cycle. The possible range of 12-bit values,
ranging from 0 to 4,095, makes it possible for a square wave to stay in the high
part of its cycle from 0% to 100% of the time, in 4,096 steps.

NOISE WAVEFORMS

Another kind of waveform that the SID chip can produce is a noise waveform. A
noise waveform creates a random sound output that varies with a frequency propor-
tionate to that of an oscillator built into Voice 1. Noise waveforms are often used to
imitcrte the sounds of drums and even explosions and other nonmusical noises.

HOW TO SELECT A WAVEFORM

The SID chip has three registers—one for each voice—that can be used to deter-
mine the waveforms of sounds. These three registers, called control registers,
are $D404 (for Voice 1), $D40B (for Voice 2), and $D412 (for Voice 3).

These three registers are multipurpose registers; only their high-order
nibbles (Bits 4 through 7) are used for determining waveforms. The uses of the
remaining bits will be discussed later in this chapter. Meanwhile, these are the
bits that must be set to choose wavetorms:

Bit 4: Triangle waveform

Bit 5: Sawtooth waveform

Bit 6: Pulse waveform

Bit 7: Random noise waveform

OTHER KINDS OF WAVES

Many other kinds of waves can be produced with the help of special filters.
Three such filters—a low-pass filter, a high-pass filter and a band-pass filter—

268 Assembly Language Graphics and Sound

are built into the Commodore 64. A low-pass filter masks out frequencies above
a certain cut-off frequency, and attenuates the low frequencies that pass
through. A high-pass filter masks out frequencies below a certain cut-off fre-
quency, and attenuates the high frequencies that pass through. A band-pass
filter cuts off frequencies that are outside a band near the center of the fre-
quency spectrum, and attenuates the midrange frequencies that pass through.

As explained earlier in this chapter, under the section dealing with
volume, SID Register $D418—the register that is used to control volume—is also
used to control the SID chip's three sound filters.

For the sake of simplicity, the filters that are built into the SID chip will
not be used in the program presented in this chapter. But you are encouraged
to experiment with the filters when you run the program, since you may want to
use them in programs which you design.

DYNAMIC RANGE

The dynamic range of a note—the difference in volume between its loudest
sound level and its softest sound level—can be illustrated in many ways. To
llustrate and control the dynamics of notes produced by the SID chip, engi-
neers who designed your Commodore use a device called an ADSR envelope,
or attack/decay/sustain/release envelope. An ADSR envelope illustrates four
distinct stages in the life of a note: four phases which every note undergoes
between the time it starts and the time it fades away. These four phases—called
attack, decay, sustain, and release—are shown in the ADSR envelope illustrated
in Figure 15-5.

The addresses of the SID registers that are used to create ADSR enve-
lopes are listed in Table 15-2. As you can see by looking at this table, the SID
chip has six registers—two for each voice—that are used to control the attack,
decay, sustain, and release characteristics of notes. Each voice has one register
that controls the attack and decay phases of notes, and another register that
controls the sustain and release phases of notes.

Following are brief descriptions of the four note cycles illustrated in
Figure 15-5.

PHASES 1 AND 2: ATTACK AND DECAY

Every note starts with an attack. The attack phase of a note is the length of time
that it takes for the volume of the note to rise from a level of zero to the note's
peak volume.

As soon as a note reaches its peak volume, it begins to decay. The
decay phase of a note is the length of time that it takes for the note to decay
from its peak volume to a predefined sustain volume.

As mentioned earlier, each of the SID chip's three voices has one reg-
ister that controls both the attack and decay characteristics of notes which the

Commodore 64/128 Music and Sound 269

| | ! |
: [} [
: A:D{ S [R
| T E u ;B
| T, C S Lo
| A|A| T lEl
| | N |E|
| | | [
l I S		
!		
!		
®		

Figure 15-5 An ADSR Envelope

chip produces. The three SID registers that control attacks and decays are
$D405 (for Voice 1), $D40C (for Voice 2), and $D413 (for Voice 3).

The high nibble of each of these registers (Bits 4 through 7) is used to
set the duration of a note's attack cycle, and the low nibble of each register (Bits
0 through 3) is used to set the duration of a note’s decay cycle. Each nibble can
be set to a value ranging from $0 (for a duration of 2 milliseconds) to $F (for a
duration of 8 seconds).

PHASES 3 AND 4: SUSTAIN AND DECAY

When the decay phase of a note ends, the note is usually sustained for a certain
period of time at a certain volume. Then a release phase begins. During this
final phase, the volume of the note drops from its sustain level back down to
zero.

Each of the SID chip's three voices has one register that controls both
the sustain and release characteristics of notes which the chip produces. The
three SID registers that control the sustain and release phases of notes are
$D406 (for Voice 1), $D40D (for Voice 2), and $D414 (for Voice 3).

The low nibble of each of these registers (Bits 0 through 3) is used to
set the duration of a note’s release cycle. Each of these "release” nibbles can
be set to a value ranging from 0 (for 6 milliseconds) to 15 (for 24 seconds).

The high nibble (Bits 4 through 7) of each sustain/release register is
used to control the sustain cycle of notes. But this nibble is not used to control
the duration of the sustain cycle. Instead, it is used to control the volume that is
to be maintained throughout the sustain cycle. The duration of a note's sustain
cycle must be controlled with either a timing loop or some other kind of timer.

270 Assembly Language Graphics and Sound

The value of the sustain nibble of a sustain/release register can range
from 0 (for no volume) to 15 (equal to the note’s peak volume).

THE SID CHIP'S CONTROL REGISTERS

Once you have determined a note's volume, frequency, waveform, and ADSR
envelope, it is easy to instruct the SID chip to play the note. All you have to do is
set one bit in one register: specifically, the gate bit in the control register for the
SID voice that you are using.

The SID chip has three control registers: one for each voice. Their
addresses are $D404 (for Voice 1), $D40B (for Voice 2), and $D412 (for Voice 3).
These three registers were mentioned earlier in this chapter, since their high-
order nibbles are used to select the waveforms that the SID chip generates. Now
we are ready to talk about their low-order nibbles (Bits 0 through 3). The uses of
these bits will now be described in reverse order, beginning with Bit 3.

Bit 3, the test bit of each SID control register, is used to disable the
oscillator that is built into the voice that the register controls. When this oscilla-
tor is disabled, complex waveforms—even waveforms that synthesize speech—
can be generated under software control.

Bit 2 of each SID control register is called a ring modulation bit. When
this bit is set to 1, the triangle waveform of the voice controlled by the register is
replaced with a ring-modulated combination of two oscillators, and can thus be
used to simulate the sound of a bell or a gong.

Bit I, a synchronization bit, can be used to synchronize the fundamen-
tal frequency of Oscillator 1 with the fundamental frequency of Oscillator 3,
enabling the advanced programmer to create a wide range of complex har-
monic structures using Voice 1.

Bit 0is the main bit, or gate bit, of each SID control register. When you
have selected a note's volume, frequency, waveform, and ADSR envelope, and
have given the SID chip all the information it needs to play it, you can start the
note by setting the gate bit of the proper SID control register. To stop the note—
whether or not it has finished playing—all you have to do is clear the gate bit of
the appropriate SID control register. Once you have cleared the gate bit, you
can change the settings of any SID registers you wish. Then you can play
another note—or create another sound—by setting the gate bit again. Or, if you
prefer, you can play the same note or create the same sound over and over
again, by repeatedly setting and clearing the gate bit while all other SID regis-
ters remain the same.

USING INTERRUPT ROUTINES

Shortly, you will have an opportunity to type, assemble and execute an Assem-
bly language program that illustrates some of the music-synthesizing capabili-
ties of the SID chip built into your Commodore. First, though, it might be helpful
to discuss the concept of the interrupt, a very powerful programming technique
that is often used in music and sound routines (as well as in many other kinds of
high-performance programs).

Commodore 64/128 Music and Sound 271

An interrupt, often cryptically referred to as an IRQ, is a high-priority
routine that interrupts other routines so that it can do its work. No matter what is
happening when an interrupt is called, a computer will stop everything else it is
doing in order to process the interrupt. An interrupt, in a manner of speaking,
always goes to the head of the line and keeps other routines waiting while it
does its job.

Assembly language programmers often use interrupts when they want
to write time-critical routines. For example, one very important interrupt routine
is built into the operating system of the Commodore 64. This routine, called a
hardware interrupt routine, takes place 60 times a second, with quartz clock-
work precision. During this interrupt, many vital and time-critical operations
take place. For example, the computer’s software clock is updated, the key-
board is read, and a cursor-blinking operation is performed. Every 1/60th of a
second, when it is time for a hardware interrupt, the interrupt takes place and
all other processing is temporarily halted. And not until the interrupt is com-
pleted does normal processing resume.

The hardware interrupt routine is very important to the Commodore
Assembly language programmer because it can be customized with the help of
a vector called the hardware interrupt vector. This vector is situated at Memory
Addresses $0314 and $0315. It is often labeled the CINV vector in Commodore 64
programs.

Since the CINV vector is in a documented position in RAM, you can
“steal” it at any time you like. That means you can make it point to any user-
written routine instead of to the hardware interrupt vector that is built into your
computer’s operating system. Then, 60 times every second, with precise regular-
ity, your own routine will be processed as an interrupt routine.

If you steal the CINV vector in this fashion, however, there are two
potential problems that you will have to solve. Here is one of them. If you want
your computer’s operating system to continue to work normally, even though its
CINV vector has been stolen, you will have to make sure that all of the opera-
tions that are normally carried out by the hardware interrupt vector still take
place.

Fortunately, this is not a difficult task to manage. If you want to make
sure that your own interrupt and the normal CINV interrupt both take place
every one sixtieth of a second, all you have to do is take two simple steps:

1. Change the CINV vector to point to your own interrupt.

2. Then end your own interrupt with a jump to the address the CINV vec-
tor originally pointed to.

As mentioned above, there is one problem that must be faced each time the
CINV vector is changed. Fortunately, this problem is also quite easy to solve.
Here is the problem. The CINV vector consists of two 8-bit memory reg-
isters which, in combination, always hold a 16-bit address. When the CINV vec-
tor is to be altered, therefore, it must be changed in two steps. First, the low byte

272 Assembly Language Graphics and Sound

of the address which the vector points to must be changed. Then the high byte
must be changed.

Normally, this sort of operation is no problem to the Assembly lan-
guage program. But the CINV vector is a very special sort of vector; its job is to
direct your computer to an operation that is carried out 60 times every second.
There is always a chance, therefore, that the CINV vector will become active
after one of its bytes has been changed but before the other byte has been
changed. If that happens, the CINV vector may point to an incorrect address
when it is called, resulting in a program crash or a system failure.

THE SEI AND CLI INSTRUCTIONS

To prevent this kind of catastrophe from taking place, the 6502/6510 chip has
two special instructions for dealing with interrupts. One of these instructions is
SEI, which stands for “set interrupt disable.” The other is CLI, which means
“clear interrupt disable.” When an SEI instruction is invoked during the pro-
cessing of an Assembly language program, the interrupt disable flag of the
processor status register is set, and no maskable interrupts (which is what the
CINV interrupt is) can take place. When a CLI instruction is used during an
Assembly language program, it has just the opposite effect: the interrupt disable
flag of the P register is cleared, and maskable interrupts are enabled.

Since the instructions SEI and CLI can enable and disable interrupts
so easily, they can be used to change the C64's CINV vector with complete
safety. To make sure that a program does not crash during the altering of the
CINV vector, all you have to do is use the instruction SEI before the vector is
changed, and then use the instruction CLI after it is changed. When you take
that simple precaution, you can be sure that no interrupts take place while the
vector is being altered, and that the vector is cleanly and safely changed.

In the program which is the topic of this chapter—a program which I
have named MUSIC.S—the CINV vector is altered to include a note-timing loop.
That ensures that the musical notes produced by the program will always be
precisely timed.

This is the section of the program in which the address pointed to by
the CINV vector is changed. First, the OS address ordinarily pointed to by the
CINV vector is stored in a pair of memory registers called USERADD and
USERADD+1.

Next, in Line 60, the instruction SEI is used to disable maskable inter-
rupts. When that has been done, the address of a user-written routine (a note-
timing loop) is stored in the address of the CINV vector. Then interrupts are re-
enabled with a CLI instruction.

53 %

54 * SET UP INTERRUPT
55 *

56 LDA CINV

57 STA USERADD

58 LDA CINV+1

59 STA USERADD+1

Commodore 64/128 Music and Sound

273

60
61
62
63
64
65

66 *

SEI
LDA
STA
LDA
STA
CLI

H<WAIT
CINV
HOWAIT
CINV+1

Now here is the note-timing routine that is added to the CINV vector by the
above sequence of instructions:

111 *
112 WAIT

113
114
115
116
117

118 RETURN

119

LDX
DEX
BNE
LDA
STA
LDX
STX
JMP

TIMER

RETURN

#64
WF
#0

TIMER
(USERADD)

We will discuss how this timing routine works later on in this chapter. For now, it
is sufficient to remember that the routine ends with the statement JMP (USER-
ADD). That statement links the user-written timing loop in the MUSIC.S program
with a jump to the address originally pointed to by the CINV vector.

ONE FINAL PROGRAM

Now we are ready to examine MUSIC.S, the last program in this book. Here it is.
Type it, assemble it into object code (as MUSIC.O), and run it, and it will turn
your Commodore into an electronic piano. When the MUSIC.O program has
been loaded into your computer and executéd, you will be able to use the keys
on the A-row as white piano keys, and the keys on the Q-row as black keys, as
shown in Figure 15-6.

COMPUTER KEY
MUSICAL NOTE

COMPUTER KEY
MUSICAL NOTE

Q
G

A
A

w

A#
S
B

D
C

RET
C#D#

F
D

G
E

) | @O
F# G/ A

H| J K
F| G| A

L

B: | i€

@)
c#

D#

m ||

Figure 15-6 Keyboard Arrangement for the MUSIC.S Program

274 Assembly Language Graphics and Sound

Now here is a listing of the MUSIC.S program:

MUSIC.S: A PIANO KEYBOARD PROGRAM
FOR THE COMMODORE 64

1 *

2 * MUSIC.S

3 %

4 ORG $8000

5 %

6 SFDX EQU $CB

7 *

8 CINV EQU $314

9 USERADD EQU $311

10 *

11 GETIN EQU $FFE4

12 *

13 SIGVOL EQU $D418

14 ATDCY1 EQU $D405

15 PWHI1 EQU $D403
16 PWLO1 EQU $0402

17 SUREL1 EQU $D406

18 FREHI1 EQU $D401

19 FRELO1 EQU $0400

20 VCREG1 EQU $D404

21 *
22 TIMER EQU $FB

23 CHAR EQU TIMER+1
24 *
25 JMP INIT
26 *
27 KEYS DFB 62,10,9,13,18,17,21,22
28 DFB 26,29,30,34,33,37,38,42
29 DFB 45,46 ,50,49,53
30 *
31 HIFREQ DFB 13,14,14,15,16,17,18,19
32 DFB 21,22,23,25,26,28,29,31
33 DFB 33,35,37,39,42
34 *
35 LOFREQ DFB 78,24,239,210,195,195,209,239
36 DFB 31,96,181,30,156,49,223,165
37 DFB 135,134,162 ,233,62
38 *

39 *

40 * CLEAR SOUND REGISTERS

41 *

42 *

43 INIT LDA #0

Commodore 64/128 Music and Sound

275

b4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

CLoOP

LDX
STA
DEX
BNE

* SET UP TIMER

* SET UP INTERRUPT

*

* SET REGISTERS

*

*
GETKEY

SKIP
CHECK

LDA
STA

LDA
STA
LDA
STA
SEI
LDA
STA
LDA
STA
CLI

LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA

LDA
CMP
BNE
LDA
STA
JMP

LDX
CMP
BEQ
DEX

#3$18
#$D400,X

cLoopP

#60
TIMER

CINV
USERADD
CINV+1
USERADD+1

H<WAIT
CINV

H>WAIT
CINV+1

#15
SIGVOL
#9
ATDCY1
#0
SUREL1
PWHI1
#255
PWLO1
#64
VCREG1

SFDX
#64
SKIP
#0
CHAR
GETKEY

#20
KEYS, X
PLAY

276 Assembly Language Graphics and Sound

92 BPL CHECK

93 JMP GETKEY
94 *

95 PLAY CMP CHAR

96 BNE CONT

97 JMP GETKEY
98 *

99 CONT STA CHAR

100 LDA #60

101 STA TIMER
102 LDA #64

103 STA VCREG1
104 LDA HIFREQ, X
105 STA FREHI1
106 LDA LOFREQ, X
107 STA FRELO1
108 LDA #65

109 STA VCREG1
110 JMP GETKEY
111 *

112 WAIT LDX TIMER
113 DEX

114 BNE RETURN
115 LDA #64

116 STA VCREG1
117 LDX #0

118 RETURN STX TIMER
119 JMP (USERADD)

HOW THE MUSIC.S PROGRAM WORKS

The MUSIC.S program is fairly easy to follow. In Lines 43 through 47, it clears
SID registers $D400 through $D418 with the help of a simple X loop. Next, a note
timer is set and a note-timing routine is added to the Commodore hardware
interrupt (CINV) vector. Then, in Lines 69 through 79, the major SID registers
that control Voice 1 are loaded with values that will emulate the sound of a
piano (these settings, plus settings that reproduce the sounds of several other
instruments, are listed on page 164 of the Commodore 64 User's Guide).

The heart of the MUSIC.S program is a loop labeled GETKEY that
occurs in Lines 81 through 86. This loop scans the Commodore keyboard repeat-
edly to see whether a key is pressed. If no key is pressed, the loop repeats until
a keypress is detected. Once a key has been pressed, the program jumps to
Line 88, where a routine labeled SKIP begins.

We will move on to the routine labeled SKIP in a moment. First,
though, let's pause to take a closer look at how the GETKEY loop works.

In Line 81, the line in which the GETKEY loop starts, the accumulator is
loaded with the value of @ memory register labeled SFDX. This register, situated

Commodore 64/128 Music and Sound

at Memory Address $CB, is used by an operating system routine called a key-
scan interrupt routine. Sixty times every second, during the Commodore 64's
hardware interrupt vector, this memory address is loaded with a special code
number which the computer uses to determine whether a key is being pressed—
and, if so, what key is being held down.

The code numbers that are used by the Commodore keyscan interrupt
routine are neither ASCII code numbers nor Commodore screen code numbers.

They are special key-code numbers that are listed in Table 15-3.

Table 15-3 KEY-CODE NUMBERS

KEY KEY
CODE KEY CODE KEY
0 Insert/Delete Key 33 [
1 Return Key 34]
2 Cursor Right Key 35 0 (Zero)
3 Function Key {7 36 M
4 Function Key {1 37 K
S Function Key {3 38 O (Letter)
6 Function Key {5 39 N
7 Cursor Down Key 40 +
8 3 41 P
9 W 42 L
10 A 43 =
11 4 44
12 Z 45 ;
13 S 46 @
14 E 47 ,
15 Not Used 48 Lira (British Pound Sign)
16 o 49 *
17 R 50 ;
18 D ol Clear/Home
19 6 52 Not Used
20 G 53 =
21 F 54 Up Arrow (Exponential Sign)
22 T 55 /
23 X o6 1
24 7 57 Leit Arrow
25 Y 58 Not Used
26 G 59 2
27 8 60 Space Bar
28 B 61 Not Used
29 H 62 Q
30 U 63 Run/Stop
31 W 64 No Key Pressed
32 9

278 Assembly Language Graphics and Sound

WHY KEY CODES ARE USED

The MUSIC.S program makes use of key codes because key-code values, not
ASCII-code values, are the kinds of values that are returned each time the Com-
modore 64 scans its keyboard to check for pressed keys. Each time a key is
pressed, the Commodore operating system converts the key-code value of the
depressed key into an ASCII-code value. Then that ASCII-code value is placed
in a special "type-ahead” buffer so that it can be kept in memory long enough
to be displayed on a screen.

That is a good system for printing text on a screen, but it is not an ideal
system for a musical-keyboard program such as MUSIC.S. A type-ahead buffer
is neither necessary nor desirable in a musical-keyboard program. And the
Commodore 64's “debounce” feature, which causes a letter to be printed
repeatedly on the screen after it has been held down for a short period of time,
creates more problems than it solves when it is used in musical-keyboard
programs.

Examine Lines 27 through 29 of the MUSIC.S program, and you will
see a data table—labeled KEYS—of the key codes for all 21 keys that are used in
the program. Immediately following this table, there are similar data tables
showing the high-frequency and low-frequency code numbers of each note in
the KEYS table. In each of these tables, the offset used for each note is identical.
With the help of indirect addressing, therefore, the three tables can be used
together to locate any valid note in the MUSIC.S program and to determine its
proper frequency settings.

Now let's return to the GETKEY loop in the MUSIC.S program, the loop
that begins at Line 81. Notice that the loop keeps recycling as long as the SFDX
register has a value of 64. Refer to the key-code table that was presented previ-
ously, and you will see that a key-code value of 64 means that no key is being
pressed. So, as long the SFDX register holds a value of 64, a value of 0 will be
loaded over and over again into a special memory register that has been
labeled CHAR, and the GETKEY loop in the MUSIC.S program will keep on
repeating. (We will see in a few moments how the 0 that is stored in the CHAR
register during this operation is used.)

As soon as a key is pressed, the value of SFDX will change from 64 to
some other value, and the program will jump to the routine called SKIP that
starts at Line 88. This routine uses an X loop to count down through the 21 key-
code values that are valid in the MUSIC.S program. If a valid key is pressed, the
program will jump to a PLAY routine which starts at Line 95. Otherwise, the
program will keep looping back until a valid note is typed in.

When the PLAY routine begins, the first thing the program does is
check the status of a variable labeled CHAR. This variable is used to determine
whether a key has just been pressed or whether it is merely being held down. If
a key has just been pressed, the CHAR register will hold a different value from

Commodore 64/128 Music and Sound 279

the value of the key being pressed. If this is the case, the program will jump to a
routine labeled CONT (for “continue”’) and a new note will be played. But if a
key that has already initiated a note is still being pressed, the CHAR register
will hold the same value as the value of the key being pressed, and a new note
will not begin.

Because of a tricky feature of the GETKEY routine, the process [have
just described will always work, even when the same key is pressed over and
over again. In the GETKEY routine, in Lines 84 and 85, the value of CHAR is
reset to zero every time a finger is lifted from a key. Because of this feature, a
key that is pressed and held down will cause a note to sound only once. But it
the key is released and then pressed down again, the note will play again.

The CONT routine, which extends from Line 99 through Line 110, is the
routine during which notes are actually played. During this routine, the value 65
is stored in the Voice 1 Control Register, clearing that register's gate bit and
turning off any note that may be playing. Then an interrupt-controlled note
timer (labeled TIMER) is set to a value of 60, which corresponds to a playing
time of one second. When this has been done, the high and low frequency
codes that correspond to whatever note has been selected are stored in the
appropriate SID registers. Then the value 65 is stored in the Voice 1 Control
Register, setting that register’s gate bit and starting a new note. Then an uncon-
ditional jump is made back to the GETKEY routine, so that a new note can be
played. Meanwhile, the routine labeled WAIT—now a part of your computer'’s
hardware interrupt vector—keeps ticking away, making sure that the ADSDR
envelope of every note you play is correctly timed.

Once you have typed, assembled, and executed the MUSIC.S pro-
gram, you may decide you would like to make it more complicated. As written,
the program uses only one of the SID chip's voices—but it could easily be
expanded into a program that uses all three. Then, to accompany your melody
line, you could add harmony, a bass line, or even the sound of drums.

Since you have also learned how to write graphics programs in
Assembly language, you could also improve the MUSIC.S program by adding
some color graphics, creating something interesting to look at while the music
plays. If you want to tackle a really challenging programming job, you may be
able to expand the MUSIC.S program into one that can store and play back
melodies that you have typed in on the keyboard. Then, by mixing Assembly
language and BASIC, you may even be able to figure out how to store selec-
tions that you have played and recorded on a disk, so that you can reload them
at any time you like, and can incorporate them into other programs.

Appendix A
The 6510 Instruction
Set

This appendix is a complete listing of the 6510 microprocessor instruction set—
all of the instruction mnemonics used in Commodore 64 Assembly language
programming. It does not include pseudo-operations (also known as pseudo-
ops, or directives), which vary from assembler to assembler.

Here are the meanings of the abbreviations used in this appendix:

PROCESSOR STATUS (P) REGISTER FLAGS

N-Negative (sign) flag

V-Overtlow flag
B-Break flag

D-Decimal flag
[-Interrupt flag
Z-Zero flag

C-Carry flag

6510 MEMORY REGISTERS

A-Accumulator
X-X register

Y-Y register
M-Memory register

282 Assembly Language Graphics and Sound

ADDRESSING MODES

A—Absolute addressing
AC-Accumulator addressing
Z—Zero-page addressing
IMM-Immediate addressing
IND-Indirect addressing
IMP-Implied addressing
AX-Absolute X (X-indexed) addressing
AY-Absolute,Y (Y-indexed) addressing
[X-Indexed indirect (Indirect,X) addressing
[Y-Indirect indexed (Indirect,Y) addressing
R-Relative addressing
ZX~Zero-page X-indexed (Zero-page,X) addressing
ZY-Zero-page Y-indexed (Zero-page,Y) addressing

THE 6510 INSTRUCTION SET
(6510 MNEMONICS)

ADC (Add with carry): Adds the contents of the accumulator to the contents of «
specified memory location or literal value. If the P register's carry flag is set, a
carry is also added. The result of the operation is then stored in the
accumulator.

Flags affected: N, V, Z, C
Registers affected: A
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX

AND (Logical AND): Performs a binary logical AND operation on the contents of
the accumulator and the contents of a specified memory location or an immedi-
ate value. The result of the operation is stored in the accumulator.

Flags affected: N, Z

Registers affected: A

Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX
ASL (Arithmetic shift left): Moves each bit in the accumulator or a specified
memory location one position to the left. A zero is deposited into the Bit 0 posi-

tion, and Bit 7 is forced into the carry bit of the P register. The result of the
operation is left in the accumulator or the affected memory register.

Flags atfected: N, Z, C
Registers affected: A, M

The 6510 Instruction Set 283

Addressing modes: AC, A, Z, AX, ZX

BCC (Branch if carry clear): Executes a branch if the carry flag is clear, results
in no operation if the carry flag is set. Destination of branch must be within a
range of —126 to + 129 memory addresses of the first instruction following the
BCC instruction.

Flags affected: None
Registers atfected: None

Addressing modes: R

BCS (Branch if carry set): Executes a branch if the carry flag is set, results in no
operation if the carry flag is clear. Destination of branch must be within a range
of =126 to + 129 memory addresses of the first instruction following the BCS
instruction.

Flags affected: None
Registers aftected: None

Addressing modes: R

BEQ (Branch if equal): Executes a branch if the zero flag is set, results in no
operation if the zero flag is clear. Can be used to jump to cause a branch it the
result of a calculation is zero, or if two numbers are equal. Destination of branch
must be within a range of 126 to + 129 memory addresses of the first instruction
following the BEQ instruction.

Flags atfected: None
Registers atfected: None

Addressing modes: R

BIT (Compare bits in accumulator with bits in a specified memory register): Per-
forms a binary logical AND operation on the contents of the accumulator and
the contents of a specified memory location. The contents of the accumulator
are not affected, but three flags in the P register are.

If any bits in the accumulator and the value being tested match, the Z
flag is cleared. If no match is found, the Z flag is set. Therefore, a BIT instruction
followed by a BNE instruction can be used to detect a match, and a BIT instruc-
tion followed by a BEQ instruction can be used to detect a no-match condition.

In addition, Bits 6 and 7 of the value in memory being tested are trans-
ferred directly into the V and N bits of the status register. This feature of the BIT
instruction is often used in signed binary arithmetic. If a BIT operation results in
the setting of the N flag, then the value being tested is negative. If the operation
results in the setting of the V flag, that indicates a carry in signed-number math.

Flags affected: N, V, Z

284 Assembly Language Graphics and Sound

Registers affected: None

Addressing modes: A, 7
BMI (Branch on minus): Executes a branch if the N flag is set, results in no
operation if the N flag is clear. Destination of branch must be within a range of

-126 to +129 memory addresses of the first instruction following the BMI
Instruction.

Flags affected: None
Registers affected: None

Addressing modes: R

BNE (Branch if not equal): Executes a branch if the zero flag is clear (that is, if
the result of an operation is non-zero). Results in no operation if the zero flag is
set. Can be used to jump to cause a branch if the result of a calculation is not
zero, or if two numbers are not equal. Destination of branch must be within o
range of ~126 to +129 memory addresses of the first instruction following the
BNE instruction.

Flags affected: None
Registers affected: None

Addressing modes: R

BPL (Branch on plus): Executes a branch if the N flag is clear (that is, if the
result of a calculation is positive). Results in no operation if the N flag is set.
Destination of branch must be within a range of —-126 to + 129 memory
addresses of the first instruction following from the BPL instruction.

Flags attected: None
Registers affected: None

Addressing modes: R
BRK (Break): Halts the execution of a program, much like an interrupt would,
and also stores the value of the program counter, plus two, on the hardware
stack, along with the contents of the P register (which now has the B flag set).
BRK is often used in debugging, and affects various debuggers in various ways.
For more details, see your assembler and debugger's instruction manual.
Flags affected: B

Registers affected: None

Addressing modes: IMP

The 6510 Instruction Set 285

BVC (Branch if overflow clear): Executes a branch if the P register’s overtlow (V)
flag is clear. Results in no operation if the overflow flag is set. This instruction is
used primarily in operations involving signed numbers. Destination of branch
must be within a range of =126 to + 129 memory addresses of the first instruction
following from the BVC instruction.

Flags affected: None

Registers affected: None

Addressing modes: R
BVS (Branch if overflow set): Executes a branch if the P register’s overflow (V)
flag is set. Results in no operation if the overflow flag is clear. This instruction is
used primarily in operations involving signed numbers. Destination of branch
must be within a range of =126 to + 129 memory addresses of the first instruction
following from the BVS instruction.

Flags affected: None

Registers atfected: None

Addressing modes: R
CLC (Clear carry): Clears the carry bit of the processor status register.

Flags affected: C

Registers atfected: None
Addressing modes: IMP

CLD (Clear decimal mode): Puts the computer into binary mode (its default) so
that binary operations (the kind most often used) can be carried out properly.

Flags affected: D
Registers atfected: None
Addressing modes: IMP

CLI (Clear interrupt mask): Enables interrupts. Used in advanced Assembly lan-
guage programming. For more details, see advanced Commodore Assembly
languages texts and manuals.

Flags affected: |

Registers atffected: None

Addressing modes: IMP

CLV (Clear overflow flag): Clears the P register's overtlow flag by setting it to
zero. This instruction is used primarily in operations involving signed numbers.

286 Assembly Language Graphics and Sound

Flags atfected: V

Registers affected: None
Addressing modes: IMP

CMP (Compare with accumulator): Compares « specified literal number, or the
contents of a specified memory location, with the contents of the accumulator.
The N, Z, and C flags of the status register are affected by this operation, and a
branch instruction usually follows. The result of the operation thus depends
upon what branch instruction is used, and whether the value in the accumulator
is less than, equal to, or more than the value being tested.

Flags affected: N, Z, C
Registers affected: None
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX

CPX (Compare with X register): Compares a specified literal number, or the
contents of a specified memory location, with the contents of the X register. The
N, Z, and C flags of the status register are affected by this operation, and a
branch instruction usually follows. The result of the operation thus depends
upon what branch instruction is used, and whether the value in the X register is
less than, equal to, or more than the value being tested.

Flags affected: N, Z, C

Registers affected: None

Addressing modes: A, IMM, Z
CPY (Compare with Y register): Compares a specified literal number, or the
contents of a specitied memory location, with the contents of the Y register. The
N, Z, and C flags of the status register are affected by this operation, and a
branch instruction usually follows. The result of the operation thus depends

upon what branch instruction is used, and whether the value in the Y register is
less than, equal to, or more than the value being tested.

Flags affected: N, Z, C
Registers affected: None
Addressing modes: A, IMM, Z

DEC (Decrement a memory location): Decrements the contents of a specified
memory location by one. If the value in the location is $00, the result of a DEC
operation will be $FF, since there is no carry.

Flags affected: N, Z
Registers affected: M

The 6510 Instruction Set 287

Addressing modes: A, Z, AX, ZX

DEX (Decrement X register): Decrements the X register by one. If the value in
the location is $00, the result of the DEX operation will be $FF, since there is no
carry.

Flags affected: N, Z
Registers atffected: X
Addressing modes: IMP
DEY (Decrement Y register): Decrements the Y register by one. If the value in

the location is $00, the result of the DEY operation will be $FF, since there is no
carry.

Flags affected: N, Z

Registers atfected: Y

Addressing modes: IMP
EOR (Exclusive-OR with accumulator): Performs an Exclusive-OR operation on
the contents of the accumulator and a specified literal value or memory loca-

tion. The N and Z flags are conditioned in accordance with the result of the
operation, and the result is stored in the accumulator.

Flags atfected: N, Z
Registers atffected: A
Addressing modes: A, Z, [, AX, AY, IX, IY, ZX

INC (Increment memory): The contents of a specified memory location are incre-
mented by one. If the value in the location is $FF, the result of the INC operation
will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: M
Addressing modes: A, Z, AX, ZX
INX (Increment X register): The contents of the X register are incremented by

one. If the value of the X register is $FF, the result of the INX operation will be
$00, since there is no carry.

Flags affected: N, Z
Registers atfected: X
Addressing modes: IMP

288 Assembly Language Graphics and Sound

INY (Increment Y register): The contents of the Y register are incremented by
one. If the value of the Y register is §FF, the result of the INY operation will be
$00, since there is no carry.

Flags affected: N, Z

Registers affected: X

Addressing modes: IMP
JMP (Jump to address): Causes program execution to jump to the address speci-
fied. The JMP instruction can be used with absolute addressing, and it is the

only 6510 instruction that can be used with unindexed indirect addressing. A
JMP instruction that uses indirect addressing is written in the format:

JMP ($0600)

If this statement were used in a program, the JMP instruction would cause pro-
gram execution to jump to the address stored in Memory Addresses $0600 and

$0601.

Flags affected: None

Registers affected: None

Addressing modes: A, IND
JSR (Jump to subroutine): Causes program execution to jump to the address that
follows the instruction. That address should be the starting address of a subrou-
tine that ends with the instruction RTS. When the program reaches that RTS
instruction, execution of the program returns to the next instruction after the JSR
instruction that caused the jump to the subroutine.

Flags atfected: None

Registers atfected: None

Addressing modes: A
LDA (Load the accumulator): Loads the accumulator with either a specified
value or the contents of a specified memory location. The N flag is conditioned if

a value with the high bit set is loaded into the accumulator, and the Z flag is set
if the value loaded into the accumulator is zero.

Flags affected: N, Z
Registers affected: A
Addressing modes: A, Z, IMM, AX, AY, IX, 1Y, ZX

LDX (Load the X register): Loads the X register with either a specified value or
the contents of a specified memory location. The N flag is conditioned if a value

The 6510 Instruction Set 289

with the high bit set is loaded into the X register, and the Z flag is set if the value
loaded into the X register is zero.

Flags affected: N, Z

Registers affected: X

Addressing modes: A, Z, IMM, AY, ZY
LDY (Load the Y register): Loads the Y register with either a specified value or
the contents of a specitied memory location. The N flag is conditioned if a value

with the high bit set is loaded into the Y register, and the Z flag is set if the value
loaded into the Y register is zero.

Flags atfected: N, Z

Registers atfected: Y

Addressing modes: A, Z, IMM, AX, ZX
LSR (Logical shift right): Each bit in the accumulator is moved one position to
the right. A zero is deposited into the Bit 7 position, and Bit 0 is deposited into
the carry. The result is left in the accumulator or in the affected memory register.

Flags affected: N, Z, C

Registers atftected: A, M

Addressing modes: AC, A, Z, AX, ZX
NOP (No operation): Causes the computer to do nothing for one or more cycles.
Used in delay loops and to synchronize the timing of computer operations.

Flags affected: None

Registers atfected: None
Addressing modes: IMP

ORA (Inclusive-OR with the accumulator): Performs a binary inclusive-OR oper-
ation on the value in the accumulator and a literal value or the contents of a
specified memory location. The N and Z flags are conditioned in accordance
with the result of the operation, and the result of the operation is deposited in
the accumulator.

Flags affected: N, Z
Registers atffected: A, M
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX

PHA (Push accumulator): The contents of the accumulator are pushed on the
stack. The accumulator and the P register are not affected.

290 Assembly Language Graphics and Sound

Flags atfected: None
Registers attected: None
Addressing modes: IMP

PHP (Push processor status). The contents of the P register are pushed on the
stack. The P register itself is left unchanged, and no other registers are affected.

Flags attected: None
Registers affected: None
Addressing modes: IMP

PLA (Pull accumulator): One byte is removed from the stack and deposited in
the accumulator. The N and Z flags are conditioned, just as if an LDA operation
had been carried out.

Flags attected: N, Z
Registers atfected: A
Addressing modes: IMP

PLP (Pull processor status): One byte is removed from the stack and deposited
in the P register. This instruction is used to retrieve the status of the P register
after it has been saved by pushing it onto the stack. All of the flags are thus
conditioned to reflect the original status of the P register.

Flags affected: N, V, B, D, I, Z, C
Registers affected: None
Addressing modes: IMP

ROL (Rotate lett): Each bit in the accumulator or a specitied memory location is
moved one position to the left. The carry bit is deposited into the Bit 0 location,
and is replaced by Bit 7 of the accumulator or the atfected memory register. The
N and Z flags are conditioned in accordance with the result of the rotation
operation.

Flags atfected: N, Z, C

Registers atfected: A, M

Addressing modes: AC, A, Z, AX, ZX
ROR (Rotate right): Each bit in the accumulator or a specitied memory location
is moved one position to the right. The carry bit is deposited into the Bit 7 loca-
tion, and is replaced by Bit 0 of the accumulator or the affected memory register.

The N and Z flags are conditioned in accordance with the result of the rotation
operation.

The 6510 Instruction Set 291

Flags affected: N, Z, C
Registers affected: A, M
Addressing modes: AC, A, Z, AX, ZX

RTI (Return from interrupt): The status of both the program counter and the P
register are restored in preparation for resuming the routine that was in prog-
ress when an interrupt occurred. All flags of the P register are restored to their
original values. Interrupts are used in advanced Assembly language program-
ming, and detailed information on interrupts is available in advanced Assembly
language texts and Commodore reference manuals.

Flags affected: N, V, B, D, I, Z, C

Registers atfected: None

Addressing modes: IMP
RTS (Return from subroutine): At the end of a subroutine, returns execution of a
program to the next address after the JSR (jump to subroutine) instruction that
caused the program to jump to the subroutine. At the end of an Assembly lan-
guage program, the RTS instruction returns control of a Commodore computer to
the device that was in control before the program began—usually the screen editor.

Flags atfected: None

Registers atfected: None

Address modes: IMP
SBC (Subtract with carry): Subtracts a literal value or the contents of a specified
memory location from the contents of the accumulator. The opposite of the carry
is also subtracted—in other words, there is a borrow. The N, V, Z, and C flags

are all conditioned by this operation, and the result of the operation is depos-
ited in the accumulator.

Flags affected: N, V, Z, C
Registers atfected: A
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX
SEC (Set carry): The carry flag is set. This instruction usually precedes an SBC

instruction. Its primary purpose is to set the carry flag so that there can be «a
borrow.

Flags atfected: C
Registers atffected: None
Addressing modes: IMP

292 Assembly Language Graphics and Sound

SED (Set decimal mode): Prepares the computer for operations using BCD
(binary coded decimal) numbers. BCD arithmetic is more accurate than binary
arithmetic—the usual type of 6510 arithmetic—but is slower and more difficult to
use, and consumes more memory. BCD arithmetic is usually used in accounting
and bookkeeping programs, and in floating-point arithmetic.

Flags affected: D

Registers atfected: None

Addressing modes: IMP
SEI (Set interrupt disable): Disables the interrupt response to an IRQ (maskable
interrupt). Does not disable the response to an NMI (nonmaskable interrupt). Inter-
rupts are used in advanced Assembly language programming, and are described
in advanced Assembly language texts and Commodore reference manuals.

Flags affected: |

Registers atfected: None

Addressing modes: IMP
STA (Store accumulator): Stores the contents of the accumulator in a specified
memory location. The contents of the accumulator are not affected.

Flags affected: None

Registers atfected: M

Addressing modes: A, Z, AX, AY, IX, 1Y, ZX
STX (Store X register): Stores the contents of the X register in a specitied mem-
ory location. The contents of the X register are not atfected.

Flags atfected: None

Registers attected: M

Addressing modes: A, Z, ZY
STY (Store Y register): Stores the contents of the Y register in a specitied mem-
ory location. The contents of theY register are not atfected.

Flags affected: None

Registers affected: M

Addressing modes: A, Z, ZX
TAX (Transter accumulator to X register): The value in the accumulator is depos-

ited in the X register. The N and Z flags are conditioned in accordance with the
result of this operation. The contents of the accumulator are not changed.

The 6510 Instruction Set 293

Flags attected: N, Z
Registers affected: X
Addressing modes: IMP

TAY (Transter accumulator to Y register): The value in the accumulator is depos-
ited in the Y register. The N and Z flags are conditioned in accordance with the
result of this operation. The contents of the accumulator are not changed.

Flags atfected: N, Z
Registers atfected: X
Addressing modes: IMP

TSX (Transter stack to X register): The value in the stack pointer is deposited in
the X register. The N and C flags are conditioned in accordance with the result
of this operation. The value of the stack pointer is not changed.

Flags atffected: N, C
Registers atfected: X
Addressing modes: IMP

TXA (Transfer X register to accumulator): The value in the X register is depos-
ited in the accumulator. The N and Z flags are conditioned in accordance with
the result of this operation. The value of the X register is not changed.

Flags attected: N, Z
Registers affected: A
Addressing modes: IMP

TXS (Transfer X register to stack): The value in the X register is deposited in the
stack pointer. No flags are conditioned by this operation. The value of the X
register is not changed.

Flags atfected: None
Registers affected: None
Addressing modes: IMP

TYA (Transfer Y register to accumulator): The value in the Y register is depos-
ited in the accumulator. The N and Z flags are conditioned by this operation.
The value of the Y register is not changed.

Flags affected: N, Z
Registers affected: A
Addressing modes: IMP

Appendix B
Additional Programs

ADDSBIT was written using the Merlin 64 assembler. See pages 96-97 for an
explanation of this program.

ADD8BIT.S
*

1
2 *ADD8BIT

3 %

4 ORG $8000
5 %

6 ADD8BIT LDA #0

7 STA $02AA
8 *

9 CLD

10 CcLC

11 *

12 LDA $02A7
13 ADC $02A8
14 BCS ERROR
15 STA $02A9
16 RTS

17 ERROR LDA #1

18 STA $02AA
19 RTS

The tollowing program, DATMOV, was written using the Merlin 64. See page 98
for a description.

296

Assembly Language Graphics and Sound

DATMOV.S

1

2 * DATMOV

3
4

10
11
12
13
14
15
16
17
18
19
20
21
22
23

*

*

TXTBUF
EOL

*

DATMOV
LOOP

FINI

EQU
EQU

ORG

JMP

HEX
HEX
HEX

LDX
LDA
STA
CMP
BEQ
INX
JMP
RTS
END

$02A7
$0D

$8000
DATMOV

54,41,4B,45,20,4D,45,20
54,4F ,20,59,4F ,55,52,20
4C,45,41,44,45,52,21,0D

#0
TEXT,X
TXTBUF X
#HEOL
FINI

LOOP

Following is a version of THE QUEST program, listed on page 110, that is written

for the Merlin 64 assembler:

QUEST.

—_—
ovoo~NOOUVAHAEWN =

[T G G G (I G Y
NV oO~NONUN RN =

S
*
* THE QUEST
*
ORG
*
BUFLEN EQU
CHROUT EQU
*
JMP
*
TEXT DFB
DFB
DFB
*
BEGIN LDX
*
LOOP LDA
JSR
INX

$8000

23
$FFD2

BEGIN
87,72,69,82,69,32,73,83
32,84,72,69,32,67,79,77
vr,79,68,79,82,69,63

#0

TEXT,X
CHROUT

Additional Programs

297

20
21
22

CPX
BNE
RTS

#BUFLEN
LOOP

The RESPONSE program is described on pages 119-122. This is the Merlin 64

version:

$8000
13

24
$20
$FFD2

START

'YOU CAN FIND HIM IN 64K’
13

BUFFER

HFILLCH
#BUFLEN

TXTBUF, X
STUFF

* STORE MESSAGE IN BUFFER

#0
TEXT, X
TXTBUF, X
HEOL
PRINT

#BUFLEN
LOOP1

#0
TXTBUF, X

CHROUT

RESPONSE.S
1 *
2 * RESPONSE
3 *x
4 ORG
5 EOL EQU
6 BUFLEN EQU
7 FILLCH EQU
8 CHROUT EQU
9 *
10 JMP
11 *
12 TEXT ASC
13 DFB
14 *
15 * CLEAR TEXT
16 *
17 START LDA
18 LDX
19 STUFF DEX
20 STA
21 BNE
22 *
23
24 *
25 LDX
26 LOOP1 LDA
27 STA
28 CMP
29 BEQ
30 INX
31 CPX
32 BCC
33 *
34 * PRINT MESSAGE
35 x
36 PRINT LDX
37 LOOP2 LDA
38 PHA
39 JSR
40 PLA

298

Assembly Language Graphics and Sound

41
42
43
44
45
46
47
48
49
50
51
52

NEXT

*

FINI
*

TXTBUF
*

CMP
BNE
JMP
INX
CPX
BCC

RTS

DS

END

#EOL
NEXT
FINI

#BUFLEN
LOOP2

BUFLEN

Following is a version of the ODDTEST program, described on page 132, for the
Merlin 64 assembler:

ODDTEST.S

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21

*

* ODDTEST
*

VALUE1
VALUE?2

FLGADR
*

FLAG

EQU
EQU
EQU

LDA
STA
LDA
STA

LDA
LSR
STA

BCS
RTS

ROL
RTS

$FB
$FC
$FD

#10
VALUE1
#0
FLGADR

VALUE1
A
VALUEZ2

FLAG

FLGADR

This is the Merlin 64 version of the PACKDATA program, which is listed on

pages 137-138:

PACKDATA

1

*

2 * PACKDATA

3
4
5

*

*

ORG

$8000

Additional Programs

299

6 NYB1
7 NYB2
8 PKDBYT
9 *
10

11

12

13

14 *

15

16

17

18

19

20

21

22

23

EQU
EQU
EQU

LDA
STA
LDA
STA

CLC
LDA
ASL
ASL
ASL
ASL
ORA
STA
RTS

$FB
$FC
$FD

#304
NYB1
#306
NYB2

NYB2
PKDBYT

Following is the Merlin 64 version of the UNPACKIT program, listed on page

139:

UNPACKIT.S
1 *

2 * UNPACKIT

3 *
4 PKDBYT
5 LOWBYT
6 HIBYT
7 *
8
9 %
10
11
12
13
14
15 *
16
17
18
19
20
21
22
23
24
25

EQU
EQU
EQU

ORG

LDA
STA
LDA
STA
STA

LDA
AND
STA
LDA
LSR
LSR
LSR
LSR
STA
RTS

$FB
$FC
$FD

$8000

#255
PKDBYT
#0
LOWBYT
HIBYT

PKDBYT
#3$0F

LOWBYT
PKDBYT

300

Assembly Language Graphics and Sound

This is the Merlin 64 version of the ADDNCARRY program listed on page 144:

ADDNCARRY
1 * ADDNCARRY

coO~NOUV A~ WN

ORG
CLD
CLC
LDA
ADC
STA
RTS

$8000

#$8D
HSFF
$FB

Following is the ADDI16 program, written for the Merlin 64 assembler. See page

146 for a description of this program.

ADD16.

S
*

* ADD16
*

ORG

CLD
CLC
LDA
ADC
STA
LDA
ADC
STA
RTS

$8000

$FB
$FD
$02A7
$FC
$FE
$02A8

The SUBI16 program, written on the Merlin 64, follows. See page 147 for a

description of this program.

w
c
@
— —-—
OCVXNOUVHWN= O

-
SAUN =

-S

*

* SUB16
*

ORG

CLD
SEC
LDA
SBC
STA
LDA
SBC
STA
RTS

$8000

$FD
$FB
$02A7
$FE
$FC
$02A8

Additional Programs 301

The following program, MULT16, was written using the Merlin 64 assembler.
Pages 148-149 contain a fully-commented version for the Commodore 64

assembler.
MULT16.S

1 *

2 * MULT16

3 %

4 MPR EQU $FD

5 MPD1 EQU $FE

6 MPD2 EQU $02A7
7 PRODL EQU $02A8
8 PRODH EQU $02A9
9 *

10 ORG $8000
11 *

12 * THE NUMBERS WE'LL MULTIPLY
13 *

14 LDA $250
15 STA MPR
16 LDA #2

17 STA MPD1
18 *

19 MULT CLD

20 CcLC

21 LDA #0

22 STA MPD2
23 STA PRODH
24 STA PRODL
25 LDX #8

26 LOOP LSR MPR
27 BCC NOADD
28 LDA PRODH
29 CLC

30 ADC MPD1
31 STA PRODH
32 LDA PRODL
33 ADC MPD2
34 STA PRODL
35 NOADD ASL MPD1
36 ROL MPD2
37 DEX

38 BNE LOOP
39 RTS

40 END

The next program, MULTI16B, is described on pages 150-151. This version is for
the Merlin 64.

302

Assembly Language Graphics and Sound

MULT16B.S

*

* MULT16B
*

PRODL
PRODH

MPR

MPD
*

*
VALUES

LOOP

NOADD

EQU
EQU
EQU
EQU

ORG

LDA
STA
LDA
STA

LDA
STA
LDX
LSR
BCC
CLC
ADC
ROR
ROR
DEX
BNE
STA
RTS

$FD
$FE
$02A7
$02A8

$8000

#10
MPR
#10
MPD

#0
PRODH
#8
MPR
NOADD

MPD
A
PRODH

LOOP
PRODL

The DIV8/16 program is described on pages 151-153. This version was written
using the Merlin 64.

DIV8/16.S

-
oOVvVoO~NOUVMPAS~EWN =

11
12
13
14

*
* DIV8/16

*

DVDH
DVDL
QuoT
DIVS
RMDR

ORG

EQU
EQU
EQU
EQU
EQU

LDA
STA
LDA

$8000

$FD
$FE
$02A7
$02A8
$02A9

#3$1C
DVDL
#302

Additional Programs

303

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

DLOOP

ADDIT
NEXT

FINI

STA
LDA
STA

LDA
LDX
SEC
SBC
PHP
ROL
ASL
ROL
PLP
BCC
SBC
JMP
ADC
DEX
BNE
BCS
ADC
CLC
ROL
STA
RTS

DVDH
#$05
DIVS

DVDH
#08

DIVS

QuUOT
DVDL
A

ADDIT
DIVS
NEXT
DIVS

DLOOP
FINI
DIVS

QuoT
RMDR

The following program, BIGCHRS, is based on the SHOWCHRS program listed
on pages 228-237. Instead of typing the entire BIGCHRS program, load

SHOWCHRS and edit it to look like the tollowing:

BIGCHRS.S

N OO~V B~ WN =

10
11
12
13
14
15
16
17

*

* BIGCHRS
*

*

COLOR
COLMAP
BASE
VICTRL
CI2PRA
CIADIR
VICMEM
*

HMAX
HMID

VMID
*

ORG

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

$8000

$10

$8400
$A000
$0011
$DD0O0
$DD02
$0018

320
160-4
100-4

304

Assembly Language Graphics and Sound

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

SCRLEN
MAPLEN
*
TEMPA
TEMPB
*
TABPTR
TABSIZ
*

HPSN
VPSN
CHAR
ROW
LINE
BYTE
BITT

*

MPRL
MPRH
MPDL
MPDH
PRODL
PRODH
*
FILVAL
*
R6510
NEWADR
CHRBAS
CIACRE
*

TABLEN
*
MVSRCE
MVDEST
BYTPTR
*
LENPTR
CHCODE
HPTR
ONEBYT

COUNT
*

*

EQU
EQU

EQU
EQU

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU
EQU

EQU

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

JMP

8000
1000

$FB
TEMPA+2

TEMPA
$02A7

TABSIZ+2
HPSN+2
VPSN+1
CHAR+1
ROW+1
LINE+1
BYTE+2

BITT+1
MPRL+1
MPRH+1
MPDL+1
MPDH+1
PRODL+1

PRODH+1

$0001
$8800
$D000
$DCOE

$800

$61
MVSRCE+2
MVDEST+2

$9000
LENPTR+2
CHCODE+2
HPTR+1
ONEBYT+2

START

* CALCULATE CHCODE'S ADDRESS

*
GETADR

LDA

#0

Additional Programs

305

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113

*

STA
LDA
CLC
ASL
ROL
ASL
ROL
ASL
ROL
STA

cLC
LDA
ADC
STA
LDA
ADC
STA
RTS

* BLOCK FILL

*
BLKFIL

FULLPG

PARTPG

PARTLP

FINI
*

* 16-BIT MULTIPLICATION ROUTINE

*
MULT16

SHIFT

LDA
LDX
BEQ
LDY
STA
INY
BNE
INC
DEX
BNE
LDX
BEQ
LDY
STA
INY
DEX
BNE
RTS

LDA
STA
STA
LDX
ASL

CHCODE+1
CHCODE

A
CHCODE+1
A
CHCODE+1
A
CHCODE+1
CHCODE

CHCODE
#<NEWADR
BYTPTR
CHCODE+1
#>NEWADR
BYTPTR+1

ROUTINE

FILVAL
TABSIZ+1
PARTPG

#0
(TABPTR),Y

FULLPG
TABPTR+1

FULLPG
TABSIZ
FINI

#0
(TABPTR) ,Y

PARTLP

#0
PRODL
PRODH
#16
PRODL

306

Assembly Language Graphics and Sound

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

ROL
ASL
ROL
BCC
cLc
LDA
ADC
STA
LDA
ADC
STA

NOADD DEX

* * F F *

BNE
RTS

PLOT ROUTINE

ROW=VPSN/8 (8-BIT DIVIDE)

PLOT LDA

*

* CHAR=HPSN/8 (16-BIT DIVIDE)

*

LSR
LSR
LSR
STA

LDA
STA
LDA
STA
LDX

DLOOP LSR

*

*

ROR
DEX
BNE
LDA
STA

PRODH
MPRL
MPRH
NOADD

MPDL
PRODL
PRODL
MPDH
PRODH
PRODH

SHIFT

VPSN
A

A

A
ROW

HPSN
TEMPA
HPSN+1
TEMPA+1
#3
TEMPA+1
TEMPA

DLOOP
TEMPA
CHAR

LINE=VPSN AND 7

LDA

AND

STA
BITT=7-(HPSN

LDA

VPSN
#7
LINE
AND 7)

HPSN

Additional Programs

307

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

AND
STA
SEC
LDA
SBC
STA

* * % * *

LDA
STA
LDA
STA
LDA
STA
LDA
STA

JSR
*

#r
TEMPA

#7
TEMPA
BITT

BYTE=BASE+ROW*HMAX+8*CHAR+LINE

FIRST MULTIPLY ROW * HMAX

ROW
MPRL
#0
MPRH
#<HMAX
MPDL
#>HMAX
MPDH
MULT16

* ADD PRODUCT TO BASE

*
CLC
LDA
ADC
STA
LDA
ADC
STA

*

MULTIPLY 8

CLC
LDA
STA
LDX
LDA
MULT8 ASL
ROL
DEX
BNE
*

* ADD LINE

*
CLC
ADC
STA

#<BASE
PRODL
TEMPA
#>BASE
PRODH
TEMPA+1

CHAR

#0
TEMPB+1
#3

CHAR

A
TEMPB+1

MULT8

LINE
TEMPB

308

Assembly Language Graphics and Sound

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

*

*

LDA
ADC
STA

TEMPA + TEMPB

CLC
LDA
ADC
STA
LDA
ADC
STA

TEMPB+1
LINE+1
TEMPB+1

= BYTE

TEMPA
TEMPB
TEMPB
TEMPA+1
TEMPB+1
TEMPB+1

POKE BYTE,PEEK(BYTE)OR21BIT

LDX
INX
LDA
SEC

SQUARE ROL

*

* MAIN ROUTINE

*

DEX
BNE
LDY
ORA
STA
RTS

START LDA

*

ORA
STA

LDA
ORA
STA

USE BANK 2

LDA
ORA
STA

LDA
AND
ORA
STA

BITT

#0

SQUARE

#0
(TEMPB),Y
(TEMPB), Y

STARTS HERE

VICMEM
#8
VICMEM

VICTRL
#32
VICTRL

CIADIR
#3
CIADIR

CIZ2PRA
#2572
#1
CI2PRA

;BANK 2

Additional Programs

309

258

*

259 * CLEAR BIT MAP

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

*

*

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR

#0
FILVAL
#<BASE
TABPTR
#>BASE
TABPTR+1
#<SCRLEN
TABSIZ
#>SCRLEN
TABSIZ+1
BLKFIL

* SET BKG AND LINE COLORS

*

*

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR

#COLOR
FILVAL
#<COLMAP
TABPTR
#>COLMAP
TABPTR+1
#<MAPLEN
TABSIZ
#>MAPLEN
TABSIZ+1
BLKFIL

* TURN OFF KB INTERRUPT TIMER

*

MVCHRS

*

*

*

SWITCH

SWITCH

LDA CIACRE
AND HSFE
STA CIACRE
BASIC OUT
LDA R6510
AND HSFE
STA R6510
I1/0 OFF, CHAR ROM ON
LDA R6510
AND H$FB
STA R6510

* COPY CHARACTERS INTO RAM

310

Assembly Language Graphics and Sound

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
532
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

*
*
*

LDA
STA
LDA
STA

LDA
STA
LDA
STA

LDA
STA
LDA
STA

START MOVE
LDY

LDX
BEQ

MVPAGE LDA

STA
INY
BNE
INC
INC
DEX
BNE

MVPART LDX

BEQ

MVLAST LDA

STA
INY
DEX
BNE

MVEXIT

*
*
*

*
*

SWITCH I/0
LDA
ORA
STA
TURN TIMER

LDA
ORA

#<CHRBAS
MVSRCE

#>CHRBAS
MVSRCE+1

#<NEWADR
MVDEST

#>NEWADR
MVDEST+1

H#<TABLEN
LENPTR

#>TABLEN
LENPTR+1

#0
LENPTR+1
MVPART
(MVSRCE),Y
(MVDEST),Y

MVPAGE
MVSRCE+1
MVDEST+1

MVPAGE
LENPTR
MVEXIT
(MVSRCE),Y
(MVDEST),Y

MVLAST

BACK IN
R6510
#4
R6510

BACK ON

CIACRE
#1

Additional Programs

311

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

STA

*

DRAW A CHAR

LDA
STA
STA
LDA
STA
STA
LDA
STA

LDA
STA
JSR

A NESTED LO

LDX

* SET UP COUNTER FOR 2 VERT LINES

SETLIN LDA
STA

*

DRAWLN LDY
LDA
STA

*

* THE INSIDE
*

* (Y IS ZERO

*

RSHIFT LDA
ASL
STA
BCS

INC

BNE

INC
ITSOK JMP
*

* DISPLAY BIT
*

CIACRE

ACTER

#<HMID
HPSN
HPTR
#>HMID
HPSN+1
HPTR+1
#VMID
VPSN

#1
CHCODE
GETADR

OP:

(X IS THE OUTSIDE LOOP)

#8

#2
COUNT

#0
(BYTPTR),Y
ONEBYT

LOOP:
AT START)

ONEBYT
A
ONEBYT
SHOW

HPSN
ITSOK
HPSN+1
NOSHOW

312

Assembly Language Graphics and Sound

402 * SAVE X AND Y REGISTERS

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

*
SHOW

*

* NOW DO
*

*

NOINC
*

TXA

PHA

TYA

PHA

JSR PLOT
IT AGAIN

INC HPSN
BNE NOINC
INC HPSN+1
JSR PLOT

* RETRIEVE X AND Y REGISTERS

*

*
NOSHOW

LEAP

*

2 VERT

OKMSB

PLA
TAY
PLA
TAX

INC HPSN
BNE LEAP
INC HPSN+1

INY
CPY #8
BCC RSHIFT

INC VPSN
LDA HPTR
STA HPSN
LDA HPTR+1
STA HPSN+1

LINES DONE YET?

DEC COUNT
BNE DRAWLN

INC BYTPTR
BNE OKMSB
INC BYTPTR+1
DEX

Additional Programs

313

450 BNE
451 *
452 INF JMP
453 *
454 END

455 *

SETLIN

INF

Bibliography

It you would like to learn more about 6502, 6510 and 8502 Assembly-language
programming—or more about your Commodore computer—the following books
might be helpful:

Andrews, Mark. Atari Roots: A Guide to Atari Assembly Lan-
guage. Chatsworth CA: Datamost, 1984.

Camp, Robert. Creating Arcade Games on the Commodore 64.
Greensboro NC: COMPUTE! Books, 1984.

Commodore Business Machines, Inc. Commodore 64 Program-
mer'’s Reference Guide. Wayne PA: Commodore, 1982. Distributed by
Howard W. Sams & Co., Inc., Indianapolis.

Commodore Business Machines, Inc. Commodore 64 User's
Guide. Wayne PA: Commodore, 1982.

COMPUTE! Books. COMPUTE!’s First Book of Commodore 64
Sound and Graphics. Greensboro NC: COMPUTE! Publications, 1983.

Findley, Robert. 6502 Software Gourmet Guide & Cookbook.
Rochelle Park NJ: Hayden, 1979.

Hyde, Randy. Using 6502 Assembly Language. Chatsworth CA:
Datamost, 1982.

Leemon. Mapping the Commodore 64. Greensboro NC: COM-
PUTE! Books, 1984.

Leventhal, L. 6502 Assembly Language Programming. Berkeley
CA: Osborne/McGraw-Hill, 1979.

, and Seville. 6502 Assembly Language Subroutines.
Berkeley CA: Osborne/McGraw-Hill, 1982.

Maurer, W. Douglas. Apple Assembly Language. Rockville MD:
Computer Science Press, 1984.

Onosko, Tim. Commodore 64: Getting the Most from It. Bowie MD:
Robert J. Brady/Prentice-Hall, 1983.

Platt, Charles. Graphics Guide to the Commodore 64. Berkeley
CA: Sybex, 1984,

Saunders, William B. The Elementary Commodore 64. Chats-
worth CA: Datamost, 1983.

Wagner, Roger. Assembly Lines: The Book. North Hollywood CA:
Softalk Publishing, 1982.

Zaks, Rodney. Programming the 6502. Fourth Edition. Berkeley
CA: Sybex, 1983.
. Advanced 6502 Programming. Berkeley CA: Sybex, 1982.

Index

#,8,37, 54,93, 94

$. 8,19, 47, 48, 70. See also
Hexadecimal numbers;
Merlin assembler/editor

#3, 37

$q, 71

$r, 71

%, 19, 47. See also Binary
numbers; Merlin

assembler/editor
* 47-49, 61, 215
*=,59

. (period), 73, 75
., 47,48, 55,70, 71
;. 99, 61

=,79

<>,127

@, 60

], 66, 67

A

A (Append), 47-48

A (Accumulator) register, 9, 36,

87
Absolute addressing, 95, 140
Absolute indexed addressing,
97-98
Accumulator addressing, 94-95

Accumulator (A) register, 9-10,
36-37, 87

ADC instruction, 37, 54, 101, 282
8 addressing modes, 92
Addition
and carry flag, 38-40, 54,
143-146
4-bit, 143
8-bit, 144
program for. See ADDNRS
program; ADDNCARRY
program
program with conditional
branching, 96-97
16-bit program, 146-147
ADDNCARRY program, 145
ADDNRS program
and addressing modes, 92-93
using Commodore 64
assembler, 57-65, 71-75
using Merlin 64 assembler,
47-56, 70-71
Address bus, 35
Address modification routines,
213-214. See also Relative
address moditication
Addressing modes, 91-106, 282
13 modes for 6510/8502, 92
ADRAY1, ADRAY?2 vectors,
83-89
ADSR envelope, 268-270
ALU (Arithmetic logic unit),
35-37

316

Assembly Language Graphics and Sound

AND operator, 134-135, 139,
140, 282
Animation, with joysticks,
189-193. See also Sprites
Arithmetic, 143-158
Arithmetic logic unit, 35-37
Artifical intelligence, 126
ASCII code, 56, 67, 71, 78,
97-98, 111, 219
ASL instruction, 130-131, 139,
282
ASM command, 55, 67, 70
ASSEMBLER64, 56-65
Assemblers, viii, 5, 45. See also
Commodore 64 Macro;
Merlin 64; Panther C64
choosing, ix-x
functions of, 10-11
Assembly language, 3-17, 153.
See also Mnemonics
capabilities, 3-4
tields. See Fields
programming with, 11, 45-
67
relationship to machine
language, 7-8
running programs in, 69-89
sharing memory with
machine-language
programs, 181-183
AUTO command, 58

B

BALLBOUNCE program, 186
Bank-switching, 171, 172, 220
BASIC, 4-5, 171
graphics programming,
186-192
high resolution graphics,
193-194
line numbers in, 50-51, 58-59
number conversion, 29-31
running machine-language
from, 16-17, 69, 80-89
sharing memory with
machine-language,
179-181

USR(X). See USR(X) function
BCC instruction, 113, 283
BCD (binary-coded decimal)
mode arithmetic, 40-41,
156-157
BCS instruction, 113, 283
BEQ instruction, 113, 283
BIGCHRS program, 237-238,
Appendix B
Binary-coded decimal (BCD)
mode arithmetic, 40-41,
156-157
Binary numbers, 5-6, 19-22. See
also %; 4-Bit; 8-Bit
numbers; Signed numbers
compared to decimal and
hexadecimal, 23-25
converting to/from decimal,
24-28
converting to/from
hexadecimal, 24-25, 28-29
Bit-mapped graphics display,
195-198, 227
Bit masking, 135, 136
BIT operator, 134, 140-141, 283
Bit shifting operations, 129-134
and division, 151
and multiplication, 148-151
Bit testing, 137, 138-139
Bits, 20, 129-141. See also 4-Bit,
8-Bit Numbers
map, and sprites, 242
BLACKBOARD program
Assembly, 201-207
BASIC, 193-194
BMI instruction, 113, 141, 284
BNE instruction, 113, 119, 284
Boolean logic, 134-135
BOOT ALL program, 57, 60
BPL instruction, 113, 141, 284
Branching. See Conditional
branching
BRANCHIT program, 115-118
Break flag, 39, 41
BRK instruction, 74, 284
BVC instruction, 113, 140, 285
BVS instruction, 114, 140, 285
BYTE directive, 111

Bytes, 20, 23
high, low order, 208
map of, and sprites, 242,
243

C

C2DDRA register, 221
Call address, 78
Carriage return, testing for, 98,
121
Carry bit. See Carry flag
Carry flag (C), 38-40, 112,
129-130, 133, 143-146
Central processing unit (CPU),
9,12, 35
Character generator ROM, 171,
172, 194-195
Characters, 78, 168
copying from ROM to RAM,
221-224
customizing, 219-238
headline-size, 237-238
modification, 224-227
moving, and starting
addresses, 177-178
CHAREN bit, 171, 172
CHRIN routine, 126-127
CHROUT routine, 78-79,
111-112, 126
CIACRE register, 221
CINV vector, 271-272
CLC instruction, 40, 53, 285
CLD instruction, 41, 53, 285
CLI instruction, 40, 272, 285
CLV instruction, 42, 285
CMP instruction, 96, 112, 134,
286
COBOL, 4, 5
Color
codes, 188
high resolution, 197-198
for sprites, 244-245
Color memory, 167, 168, 173,
187-189
map of, 188
Comments field, Assembly
programs, 52, 59-60

Index

317

Commodore 64 Macro
Assembler Development
System, viii, ix, x-xi. See

ASSEMBLERG64; EDITOR64;

HILOADERS®4;
HILOADERS®4;
LOLOADERG64
memory map, of, 182
monitors. See Monitors
programming with, 56-65
running Assembly programs
with, 71-75
Commodore 64 computer, vii,
12-13
Commodore 64 Programmer's
Reference Guide, viii, ix,
78, 81, 126, 164, 166, 169,
177,187, 191, 241, 265, 276
Commodore 64 User's Guide,
177, 187
Commodore 128 computer, vii
Comparison instructions, 96,
112-113
Compilers, 4-5, 11
Complements, number, 154-156
Condition flags, 39
Break flag, 39, 41
Decimal mode flag (D), 40-
41
Interrupt disable flag (1), 40
Conditional branching, 95-97,
112-119. See also Jump
instructions
how instructions are used,
118-119
length limitations, 117
mnemonic instructions, 113
Conversion of numbers, 23,
25-31
Counters, 38
Program Counter (PC), 38,
52
CPU (Central processing unit),
9,12, 35
CPX instruction, 96, 112, 119,
134, 286
CPY instruction, 96, 112, 134,
286

D

(Delete), 48
D6510, 169, 170
Data bus, 35
Data direction register, 169, 170
Debugging programs
END and, 54-55
monitor program and, 57, 69
using BRK, 74
DEC instruction, 286
Decimal mode flag (D), 40-41
Decimal numbers, 19. See also
BCD mode arithmetic
compared to binary and
hexadecimal, 23-25
conversion to/from binary,
24-28
conversion to/from
hexadecimal, 23, 29-31
DEX instruction, 38, 287
DEY instruction, 38, 287
DFB directive, 111
DFC directive, 111
Disk drives, ix, xi
Division, using bit-shifting,
131-132, 134, 151-153
DOS (disk operating system),
13, 164, 166. See also
Kernal
running Assembly programs
from, 76, 79-80
and the stack, 105
DOS wedge, x, xii, 57, 60
Dynamic range in sounds, 268

EDITOR®64, 56, 60, 61
8-Bit
addition program. See
ADDNRS
binary numbers, 21-22, 129,
144
memory and 16-bit numbers,
32

number, values of bits in, 26
8502 microprocessor, viii, 12-14,
35-42
END/.END, 51, 54-55, 59
EOR operator, 134, 136-137, 287
EQU, 78-79, 208
Errors, 65, 213. See also
Debugging programs

Fields in Assembly programs,
50-52. See also Label field;
Line-number tield;
Op-code field; Operand
field; Remarks field

Filters, and waveforms, 267-268

Flags. See Condition flags,
Status flags

FLGADR (flag address), 132

Floating-point math, 82-84,
157-158. See also ADRAY],
ADRAY?2 vectors

4-bit binary numbers, 21, 143

Frequency, and sound, 265

G

Game controller. See Joystick
GETKEY loop, 276, 279
GOSUB, 9, 51
GOTO instruction, 51, 144
Graphics. See also Character
sets; High resolution
graphics
four types of data, 172-173
and memory, 171-179

H

h command, 70, 71, 144

Hardware interrupt routines,
271

Hardware stack. See Stack

Harmonics, 265-266

Hex offset, 72

318

Assembly Language Graphics and Sound

Hexadecimal numbers, 6, 8,
19-20, 22-23. See also $
compared to binary and
decimal, 23-25
converting to/from binary,
28-29
and decimal conversion,
23-24
HI.TEST hex program, 6
literal 37. See #§
High-level languages, 4-5
High resolution graphics, 137,
175, 185-198
BASIC BLACKBOARD
program, 193-194
color, 197-198
mixing with text, 227-237
HILOADER®64, 56-57, 61, 71
HIRAM bit, 171
HI.TEST program
assembly, 8
assembly and machine
compared, 7
BASIC, 16-17
binary code, 6
hex code, 6
origin directive, 15

[

I (Insert) 48
Immediate addressing, 93
Implicit (implied) addressing,
93
INC instruction, 287
Index register, X register as, 38
Indexed addressing, 97-98
Indexed indirect addressing,
99-100
Indirect addressing, 99-101
Indirect indexed addressing,
100-101
Input/output (I70), 220
devices, 12, 35, 36
memory addresses, 168, 169,
170. See also R6510
Internal registers, 9, 35-42. See
also Accumulator register;

Processor status register;
Program counter; Stack
pointer; X register; Y
register
Interpreters, 4-5, 10, 164
Interrupt disable flag (I), 40
Interrupt routines, 40, 261,
270-273
INX instruction, 38, 112, 287
INY instruction, 38, 288
[RQ. See also Interrupt routines

J

JMP, 51, 84, 101, 114, 288
Joystick, 212, 215
controlling animation with,
189-193
values of, 192
JOYSTICK program, 190
JSR instruction, 9, 51, 79, 86-87,
114, 288
Jump instructions, 86, 114-115.
See also Conditional
branching
Jump table, 77-78

K

Kernal, 77-79

memory addresses, 169
Key codes, 277-279
Keyboard, 12, 35, 221

for music program, 273

Keyscan interrupt routine,
277-279

L

| command, 71
L (List), 48-49
ot ADDNRS program, 50,
62-63
Labels in Assembly programs
in Commodore 64 assembler,
59
in Merlin 64 assembler, 51, 53

Languages, computer. See
Assembly language;
BASIC; COBOL; High-

level languages; LOGO;
Machine language;
Pascal; PILOT

LDA instruction, 9, 37, 54, 99,
288

LDX instruction, 99, 288

LDY instruction, 289

Line numbers, 47, 49, 51

Commodore 64 assembler,
58-59

Merlin 64 assembler, 47, 49,
51

LOAD, 69

Loader programs, 56-57, 71 See
also HILOADER64,
LOLADER64

Logical operators, 133, 134

AND, 134-135, 139, 140, 282
BIT, 134, 140-141, 283
EOR, 134, 135-137, 287
ORA, 134, 135-136, 289

LOGO, 5

LOLOADER®b4, 56-57, 60, 71, 72

Loops, 80-81, 111-112, 119-121,
228

LORAM bit, 171

Low resolution screen, 191

LSR (logical shift right)
instruction, 131-133, 139,
289

M

m command, 76, 144
Machine language, x, 4, 5-7
assembler, xi
compared to Assembly
language, 7-8
loader, xi
running from BASIC, 7, 16-17,
69, 76, 80-81
running programs in, 15-17
sharing memory with

Assembly programs,
181-183

Index

319

sharing memory with BASIC
programs, 179-181
Macros, x, xi
Maskable/nonmaskable
interrupts, 40
Memory, 12, 35, 53, 129,
163-183. See also
Addressing modes; Color
memory; Memory addresses;
RAM; ROM; Screen
memory; Stack
blocks used by SID
microprocessor, 263
and graphics, 171-179
map of, 165, 174
Memory addresses, 8, 14. See
also Addressing modes;
Kernal, Memory registers
$0000 through $0tff, 164-166
$0000, 163-164, 169. See also
D6510
$0001, 163-164, 169. See also
R6510
$0003-30006. See ADRAY1
and ADRAY?2
$0100 through $01FF, 166
$0200 through $03FF, 166-167
$0314,50315. See CINV vector
$0400 through $07FF, 167
$0800 through $9FFF, 167
$A000 through $BFFF, 168
$C000 through $CFFF, 168
$CB. See SFDX register
$D000 through $D800, 168
$D011. See SCROLY register
$D015. See SPENA register
$D018. See VMCSB register
$D418. See SIGVOL
$D800 through $DBFF, 168
$DBFF through $FFF, 169
$DCOE. See CIACRE register
$DD00, and graphics data,
176
$DD02. See C2DDRA register
Memory banks, 174-177
Memory page, 208
Memory registers, 9, 14, 35, 281.
See also D6510; FRETOP;

Memory addresses;
MEMSIZ; R6510; USERADD
map of SID, 264
SID control, 270
sprite position, 244
storing 16-bit numbers in
8-bit, 31-32
Merlin 64 assembler/editor, viii,
1X, Xi-Xlil.
Editor mode, 47-49. See also:
Executive mode, 46-47. See
also %
memory map of, 181-182
menu, 46-47
monitor. See Monitors
programming with, 45-46
running Assembly programs
with, 70-71
Microprocessor unit (MPU), 12,
35
Mnemonics, 7, 8-10, 282-293
operation code, 51-52, 59
for the stack, 106
Monitors
Commodore 64, 57, 71-75
debugging with, 57, 69
machine-language, 57
Merlin 64, 47, 70-71
Panther C64, 75-76
to run machine-language,
69-76
MOS Technology, Inc., 12
MOVECHRS program, 221-224
MPU. See Microprocessor unit
Multiplication, 208
and bit-shifting, 130-131, 134,
148-151
Music, 272-279
MUSIC program, 273-276
MYCHRS program, 224-227

NAME GAME program, 122-127
Negative flag, 42, 140
Nibble, 20

NOP instruction, 289
Numbers, 19-32. See also BCD
mode arithmetic; Binary
numbers; Decimal
Numbers; Hexadecimal
numbers; Signed numbers
even and odd, 132-133
literal, 8, 37, 93. See also #

O

O (save object code), 56
Object code, 7, 10-11, 55-56, 64,
67
Offset values, 116-117
ON. .. .GOTO, 213, 214
One's complement, 154
Op-code. See Operation code
Operands, 52, 59, 114
and addressing modes, 92,
93, 94
Operating system. See DOS
Operation code mnemonics, 51,
59, 91
Operators, logical, 133, 134
AND, 134-135, 139, 140, 282
BIT, 134, 140-141, 283
ECR, 134, 136-137, 287
ORA, 134, 135-136, 289
ORA operator, 134, 135-136, 289
ORG, 91, 53, 76
Origin
directive, 14-15, 51, 53, 67, 76
line, 52, 59
Overflow flag (V), 42, 140
and signed numbers, 156

P Register. See Processor status
register

Packing/unpacking data, 131,
133, 137-140

Page Zero, 94, 98-99, 164-166.
See also Zero page
addressing

320

Assembly Language Graphics and Sound

Panther C64 assembler, viii, ix,
xii, 65-67. See also
Monitors

memory map of, 182

Panther Computer
Corporation, viii

Pascal, 4, 5

Penguin math, 20-22

PHA instruction, 106, 289

PHP instruction, 106, 290

PILOT (language), 5

Pixel, 187

PLA instruction, 106, 290

PLP instruction, 106, 290

POKE statements, 16-17, 32

Positive/negative numbers. See
Signed numbers

Printing

ADDNRS program, 55-56, 62
characters on a screen, 78,
111

PRINTIT program, 76-80

PRTR, 55

Processor status (P) register,
38-42, 281. See also Break
flag; Carry flag; Decimal
mode flag; Interrupt
disable flag; Negative flag;
Overflow flag; Zero flag

bits correlated to flags, 39
and the stack, 106-107

Program Counter (PC), 38, 52

Programmer calculator, 25

Programs. See also Appendix
B

ADDNCARRY, 145
ADDNRS, 47-67, 92-93
ALLBOUNCE, 186
BIGCHRS, 237-238
BLACKBOARD
Assembly, 201-207
BASIC, 193-194
BRANCHIT, 115-118
divison, 152-153
HITEST
assembly, 7-8
BASIC, 16-17
binary, 6

hexadecimal, 6
machine, 7, 16-17
origin directive, 15
JOYSTIX, 190
MOVECHRS, 221-224
multiplication, 148-151
MUSIC, 274-276
MYCHRS, 224-227
NAME GAME, 122-127
number conversion, 27-28,
30-31
PRINTIT, 76-80
QUEST, 110-111, 119-122
RESPONSE, 119-121
16-bit addition, 146
16-bit subtraction, 147
showing conditional
branching, 96-97
SHOWSHRS, 228-237
SKETCHER, 209-212
SPRITE, 245-258
USRX.BAS, 84, 88-89
USRX'S, 84-87
Pseudo-operation codes, 51, 54,
59, 111
Pulse waveform, 266-267

Q

Q (Quit), 55
QUEST program, 110-111,
119-122

R

R (Replace), 49
R6510, 169, 170, 171
Bit 2 and character
generation, 220
RAM (random-access memory),
12, 13-14. See also Kernal
color memory, 173
for user programs, 166, 167,
168, 169
moving characters from ROM
to, 221-224
storing 16-bit numbers in
8-bit, 31-32

Registers. See Memory
registers

Relative address modification,
213, 214-216

Relative addressing, 95-96, 97.
See also Conditional
branching

RESPONSE program, 119-121

Roger Wagner Publishing, Inc.,
viii

ROL instruction, 132, 133-134,
145, 290

ROM (read-only memory), 12,
13

character generator, 172
moving characters to RAM

from, 221-224

ROM image characters,
173-175, 219-220

ROR instruction, 133-134, 290

RTI instruction, 291

RTS instruction, 9, 51, 54, 86,
114, 291

S

Saving ADDNRS program,
57-58, 62-63, 67, 74
Sawtooth waveform, 266
SBC instruction, 291
Screen coordinates, 191, 195
Screen memory mapping, 167,
172-173, 187, 194
moving, and starting
addresses, 178-179
Scrolling, 197
SCROLY register, 197
SEC instruction, 40, 291
Secondary routine, 51
SED instruction, 41, 292
SEI 40, 272, 292
Set bits, 140
SFDX register, 276-278
SHOWCHRS program, 228-237
SID microprocessor, 262-270
control registers, 270
memory blocks used by, 263
Signed numbers, 153-156

Index

321

SIGVOL register, 263-265
Sine waveform, 266
16-bit numbers, 22-23. See also
Hexadecimal numbers
addition program, 146-147
division, 151-153
multiplication, 150-151, 208
in PEEK, POKE commands,
31
retrieving, storing in RAM, 32
subtraction, 147
6502 Assembly Language
Subroutines, 153
6502 microprocesssor, viii, 12
6510 microprocessor, viii, 12-13,
35-42
diagram, 36
instruction set. See
Mnemonics
6581 SID (Sound Interface
Device). See SID
microprocessor
SKETCHER program, 209-212
Sound, characteristics of, 262
Frequency, 265
Timbre, 265-266
Volume, 263-265
Waveforms, 266-268
Sound generation, 261-279
Source code, 7, 11, 55-56, 63, 64
Sourceror, xi
Spacing when typing in
programs, 51, 61-62, 75
SPENA register, 243
SPRITE program, 245-258
Sprites, 173, 241-258
position registers, 244
STA instruction, 37, 54, 145, 292
Stack, 9, 86, 101-106, 228
incrementing, decrementing,
102-103
memory addresses, 166
program to increment,
decrement, 105-106
Stack pointer, 38, 102-103
Status tlags, 38-42
Carry flag (C), 38-40, 112,
129-130, 133, 143-146

Negative flag, 42, 140
Overflow flag (V), 42, 140.
See also Overflow flag
Zero flag (Z), 40, 112, 140
Status register. See also
Processor status register
STX instruction, 99, 292
STY instruction, 292
Subroutine, 51, 114
Subtraction, 112
and carry flag, 38-40
16-bit, 147
SYS command, 16, 80, 81

T

TAX instruction, 87, 292
TAY instruction, 293
Texas Instruments Incorporated
25
Text buffer, 97-98, 121-122
Text
mixing with high-resolution
graphics, 227-237
screen, 175, 194-195
Timbre, 265-266
Time critical routines, 271, 272,
276
Triangle waveform, 266
Truth tables, 135, 136
TSX instruction, 293
Two's complements, 155-156
TXA instruction, 293
TXS instruction, 293
TNA instruction, 293

U

Unindexed indirect addressing,
101
USERADD registers, 81-82, 89
USR(X) tunction, 81-83, 158
program illustrating, 85-89

\

V flag. See Overflow flag

Vector, 77-78. See also
ADRAY1, ADRAY?2 vectors;
CINV vector

VIC-II (video interface chip),
171-179, 220

memory control register. See
VMCSB
Video
memory RAM, 167
monitor, 12, 35
refresh cycle, 171, 220

VLSI (very large scale
integrated circuit), 12, 35

VMCSB register, 177-179, 197,
219

Volume, 263-265

W

W (write text file), 56

Wavetforms, 266-268
filters and, 267-268
pulse, 266-267
sawtooth, 266
sine, 266
triangle, 266

Word (16 bits), 20, 23

X

X register, 38, 87-88, 97, 99-101
incrementing, decrementing,
111-112, 119, 151

¥

Y register, 38, 87, 97, 100-101
incrementing, decrementing,
112

Z

Zero flag (Z), 40, 112, 140

Zero page addressing, 94, 140.
See also Page Zero

Zero page, X addressing, 98

Zero page,Y addressing, 99

(J COMMODORE 64 PROGRAMMER'’S
REFERENCE GUIDE

A Top 10 best-seller since its introduction, this
programmer’s working tool and reference source is
packed with professional tips and information on
exploring your C-64. Includes a complete, detailed
dictionary of all Commodore BASIC commands,
statements, and functions. BASIC program
samples then show you how each item works. Mix
machine language with BASIC and use hi-res
effectively with this easy-to-use guide. Commodore
Computer.

ISBN 0-672-22056-3.ccvinn.. $19.95

(J THE PERFECT GUIDE TO PERFECT
WRITER ™

Explains items left unclear in the manufacturer's
Perfect Writer manual. Strips away confusion and
shows you clearly how to use this powerful word
processing program. Logical organization,
excellent illustrations, and other organizational aids
bring the best out of beginners and advanced users
alike. Dona Z. Meilach.

ISBN 0-672-22186-1. $17.95

J CP/M® PRIMER (2nd Edition)

This tutorial companion to the CP/M Bible is highly
acclaimed and widely used by novices and
advanced programmers alike. Includes the details
of CP/M terminology, operation, capabilities,
internal structure, plus a convenient tear-out
reference card with CP/M commands. This revised
edition allows you to begin using new or old CP/M
versions immediately in any application. Waite and
Murtha.

ISBN 0-672-22170-5. $16.95

J SOUL OF CP/M: HOW TO USE THE
HIDDEN POWER OF YOUR CP/M
SYSTEM

Recommended for those who have read the CP/M
Primer or who are otherwise familiar with CP/M’s
outer layer utilities. This companion volume
teaches you how to use and modify CP/M’s internal
features, including how to modify BIOS and use
CP/M system calls in your own programs. Waite
and Lafore.

ISBN 0-672-22030-Xoiviiiinnnn.. $19.95

J CP/M BIBLE: THE AUTHORITATIVE
REFERENCE GUIDE TO CP/M

*Already a classic, this highly detailed reference

manual puts CP/M’s commands and syntax at your
fingertips. Instant one-stop access to all CP/M
keywords, commands, utilities, and conventions are
found in this easy-to-use format. If you use CP/M,
you need this book. Waite and Angermeyer.

ISBN 0-672-22015-6. $19.95

(J INSIDE THE AMIGA™

Discover the powerful programming features
available on Commodore’s new 68000-based
computer in this excellent guide for the proficient
computer user. While Intuition, the Macintosh-like
user interface, is explained in detail from a
programming perspective, the advanced
programming examples in this sophisticated
volume are written in C, the primary development
language for the Amiga. For those unfamiliar with
C, a tutorial is included. The concise structure and
the speed of C make it most attractive to
programmers, who will relish the book’s wealth of
applications for the state-of-the-art graphics,
animation, and sound features of this powerful new
personal computer. John Berry.
ISBN:0-672-22468-2 $19.95

(J THE OFFICIAL BOOK FOR THE
COMMODORE 128 PERSONAL
COMPUTER

Discover Commodore’s most exciting computer and
its three different operating modes — 64, 128, and
CPIM. Learn to create exciting, detailed graphics
and animation, to use the 64 mode to run
thousands of existing Commodore 64 programs,
how to program in three-voice sound, and how to
use spreadsheets, word processing, database, and
much more. Waite, Lafore, and Volpe.
ISBN0-672-22456-9. $12.95

COMPAQ is a registered trademark of COMPAQ Computer Corporation ® IBM is a registered trademark of International Business Machines, Inc. ¢
KnowledgeMan is a trademark of Micro Data Systems, Inc. * MemoMaker is a registered trademark of Hewlett-Packard ¢ MS DOS is a trademark of
Microsoft Corporation ¢ Panasonic is a registered trademark of Pansonic Industrial Company * PC DOS is a trademark of International Business
Machines. Inc. ® Sr. Partner is a trademark of Panasonic Industrial Company

[J COMMODORE 64® GRAPHICS AND
SOUNDS

Learn to exploit the powerful graphic and sound
capabilities of the Commodore 64. Create your own
spectacular routines utilizing graphics and sounds
instantly. Loaded with sample programs, detailed
illustrations, and thorough explanations covering
bit-mapped graphics, three-voice music, sprites,
sound effects, and multiple graphics combinations.
Timothy Orr Knight.

ISBN:0-672:22278-7 . .. vuisssimescmsineionamss $8.95

J COMMODORE 64°
TROUBLESHOOTING & REPAIR GUIDE

Repair your Commodore 64 yourself, simply and
inexpensively. Troubleshooting flowcharts let you
diagnose and remedy the probable cause of failure.
A chapter on advanced troubleshooting shows the
more adventuresome how to perform complex
repairs. Some knowledge of electronics is required.
Robert C. Brenner.

ISBN:0-672-22363-5, $19.95

(J COMMODORE 64® STARTER BOOK

An ideal desktop companion intended to get every
Commodore 64 owner and user up and running with
a minimum of fuss. Each chapter is packed with
experiments which you can perform immediately.
Sample programs which load and run are perfect
tools to help the first-time user get acquainted with
the Commodore 64. Titus and Titus.
ISBN:0-672-22293-0, $17.95

[(J EXPERIMENTS IN ARTIFICIAL
INTELLIGENCE FOR SMALL
COMPUTERS

Can a computer really think? Decide for yourself as
you conduct interesting and exciting experiments in
artificial intelligence. Duplicate such human
functions as reasoning, creativity, problem solving,
verbal communication, and game planning. Sample
programs furnished. John Krutch.
ISBN0-672-21785-6.o iovieeieeaan $9.95

[0 COMPUTER GRAPHICS USER’S
GUIDE

This is your idea book for using computer-
generated high-res imagery for fun and profit.
Subjects include basic geometery, fundamental
computing, turning your ideas into pictures, and
ways to transfer these pictures from the computer
to video tape or film. Contains beautiful, full-color
photographs. Andrew S. Glassner.

ISBN 0-672-22064-4.coviinnnn $19.95

(J INTRODUCTION TO ELECTRONIC
SPEECH SYNTHESIS

Why do computers talk funny? This book helps you
understand how a human "voice” is electronically
created, explains three digital synthesis
technologies, and relates speech quality, data rate,
and memory devices. Neil Sclater.
ISBN0-672-21896-8.ccoiviiinnnn.. $9.95

[0 ELECTRONICALLY HEARING:
COMPUTER SPEECH RECOGNITION

The human ability to interpret and understand voice
communication is not easily duplicated in
computers. This book brings you up-to-date on the
latest developments in the field and covers the
practical aspects of computer speech analysis and
recognition. Necessary math and speech concepts
are included where appropriate. John P. Cater.
ISBN 0-672-22173-X ciiiiiiiiiiiinen $13.95

[J ELECTRONICALLY SPEAKING:
COMPUTER SPEECH GENERATION

Interest in digitized speech is rapidly expanding.
Learn the basics of generating synthetic speech
with an Apple Il, TRS-80, or other popular
microcomputer. Also includes a history of
synthetic speech research since the 1800’s. John
P. Cater.

ISBNO0-672-21947-6.civvninnn.n. $14.95

[J THE LOCAL AREA NETWORK BOOK

Defines and discusses localized computer networks
as a versatile means of communication. You'll

learn how networks developed and what local
networks can do; what’s necessary in components,
techniques, standards, and protocols; how some
LAN products work and how real LANs operate; and
how to plan a network from scratch. E. G. Brooner.
ISBN 0-672-22254-Xot $7.95

0 COMMODORE 1541 TROUBLE-
SHOOTING AND REPAIR GUIDE

If you own a Commodore 64® or VIC 20™ with a
1540, 1541, or 1542 disk drive, this guide is for you.
And you don’t need to be an electronic expert or
hardware hack to make use of this excellent book.
Although it is comprehensive and detailed, its step-
by-step instructions are easy to follow. The guide
presents the theory and general operation of the
disk drive and points out some of the common
problems that you might encounter with your disk
drive. Profusely illustrated with block and
schematic diagrams, the guide enables you to
narrow down and then isolate your disk drive
problem yourself. Mike Peltier.

ISBN:0-672-22470-4c.oivvniinennnn $19.95

COMPAQ is a registered trademark of COMPAQ Computer Corporation ¢ IBM is a registered trademark of International Business Machines, Inc. ¢
KnowledgeMan is a trademark of Micro Data Systems, Inc. ® MemoMaker is a registered trademark of Hewlett-Packard « MS DOS is a trademark of
Microsoft Corporation * Panasonic is a registered trademark of Pansonic Industrial Company ¢ PC DOS is a trademark of International Business
Machines, Inc. ® Sr. Partner is a trademark of Panasonic Industrial Company.

0 MODEM CONNECTIONS BIBLE

Describes modems, how they work, and how to
hook 10 well-known modems to 9 name-brand
microcomputers. A handy Jump Table shows
where to find the connection diagram you need and
applies the illustrations to 11 more computers and
7 additional modems. Also features an overview of
communications software, a glossary of
communications terms, an explanation of the
RS-232C interface, and a section on
troubleshooting. An invaluable guide for any
microcomputer user. Curtis and Majhor.
ISBN:0-672-22446-Xccovuinnn.. $16.95

0 PRINTER CONNECTIONS BIBLE

At last, a book that brings order to the chaos of
printer/computer connections. Includes extensive
diagrams specifying exact wiring, DIP-switches
settings, and external printer details; a Jump Table
of assorted printer/computer combinations;
instructions on how to make your own cables; and
reviews of various printers and how they function.
Saves time, money, and confusion. House and
Marble.

ISBN:0-672-22406-2co... $16.95

(J LEARN BASIC PROGRAMMING IN 14
DAYS ON YOUR COMMODORE 64

A chapter a day, and you’re on your way! Fourteen
clearly written and illustrated chapters will show
you how to program your C-64. Each lesson
contains sample programs to build your
programming skills and knowledge. Designed for
those who want to learn to program painlessly and
quickly! Gil Schechter

ISBN0-672-22279-5.t $12.95

[J BASIC PROGRAMMING PRIMER
(2nd Edition)

A cornerstone of the Sams/Waite Primer series.
This classic text contains a complete explanation

of the fundamentals of the language, program
control, and organization. Appendices provide
information on numbering systems, comparison of
different BASIC programs and the ASCII character
code set. Waite and Pardee.

ISBN 0-672-22014-8., $17.95

(J COMMODORE 64® FOR KIDS
FROM 8 TO 80

A large format, varied activities, a conversational
approach, and extensive graphics all combine to
create an excellent vehicle for introducing your
children to microcomputers. Special computer-
camp principles help to learn fast. No background
in microcomputers is required. Zabinski and Horan.
ISBN:0-672-22340-6 $12.95

Look for these Sams Books at your local bookstore.

To order direct, call 800-428-SAMS or fill out the form below.

Please send me the books whose titles and numbers | have listed below.

Name (please print)
Address
City

Enclosed is a check or money order for $
(plus $2.50 postage and handling).

Charge my: [VISA [J MasterCard
Account No. Expiration Date

CITT T T et

State/Zip

Signature

(required for credit card purchases)

Mail to: Howard W. Sams & Co,, Inc.
Dept. DM
4300 West 62nd Street
Indianapolis, IN 46268

DCo010

SAMS

Commodore 64/128
Assembly Language
Programming

Here it is! The first complete book about Assembly language for both the Commodore
64 and 128 computers. You'll use this extensive collection of Assembly programs again
and again. You’ll also learn how to:

Design your own character set

Write joystick-controlled action games
Draw on-screen, high-resolution graphics
Create animated sprite graphics

Convert numbers from one base to another
Mix BASIC and machine languages
Program music and sound

This book is more than just a reference book. More than a 6502 Assembly manual. It's
a hands-on, step-by-step guide to programming with three of today’s popular
assemblers: the Commodore 64, Merlin 64™, and Panther C64™. So whether you own a
Commodore 64 or 128, all you need is your computer and this book. And you can
quickly master the intricacies of Assembly language programming. Sams makes it easy!

Mark Andrews started his writing career as audio/video columnist for the New York Daily News. For three
years, he had a nationally-syndicated weekly newspaper column about personal computers and other con-
sumer electronics products. Now his articles appear in hundreds of magazines, newspapers, and books. Mr.
Andrews has written seven books about computers.

A Division of Macmillan, Inc.

Howard W. Sams & Co.
4300 West 62nd Street, Indianapolis, IN 46268 USA
0 ""81

262"22444
$15.95/22444 ISBN: 0-672-22444-5

C64/128 Assembly Language Programming Andrews SAMS .

L
)
&

Book Marlojrez soog

SWV/S

Sams books cover a wide range of technical topics.

We are

always interested in hearing from our readers regarding their in-

formational needs.

Please complete this questionnaire and

return it to us with your suggestions. We appreciate your com-

ments.

1. Which brand and model
of computer do you use?
ClApple
[JCommodore
(JIBM
[10ther (please specify)

2. Where do you use your
computer?

[J Home [IWork

3. Are you planning to buy
a new complter?
[IYes INo
If yes. what brand are you planning
to buy?

4. Please specify the brand/
type of software, operating

systems or languages you use.

[IWord Processing
[ISpreadsheets

[]Data Base Management
[lIntegrated Software
[10perating Systems
[JComputer Languages

5. Are you interested in any
of the following electronics or
technical topics?

[JAmateur radio
[JAntennas and propagation
[JArtificial intelligence/

expert systems
[JAudio
["IData communications/

telecommunications
[Electronic projects
[Clinstrumentation and measurements
[JLasers
[1Power engineering
[JRobotics
[JSatellite receivers

Comments

6. Are you interested in ser-
vicing and repair of any of
the following (please
specify)?

[JVCRs
[JCompact disc players
[Microwave ovens
[[ITelevision
[JComputers
[JAutomotive electronics
[IMobile telephones
[JOther

7. How many computer or
electronics books did you buy
in the last year?

[JOne or two [OThree or four
[JFive or six [JMore than six

8. What is the average price
you paid per book?

[ILess than $10 [1$10-$15
(1$16-820 [$21-825 [1$26+

9. What is your occupation?
[JManager
[JEngineer
[CTechnician
[JProgrammer/analyst
[JStudent
[J0ther

10. Please specify your
educational level.
[THigh school

[ITechnical school
[ICollege graduate

[Postgraduate

11. Are there specific books
you would like to see us
publish?

Name

Address

City
State/Zip

22444

€ DOOK h<_m~H—Av~.HN

SA

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1076 INDIANAPOLIS, IND.

POSTAGE WILL BE PAID BY ADDRESSEE

HOWARD W. SAMS & CO., INC.
ATTN: Public Relations Department
P.O. BOX 7092

Indianapolis, IN 46206

1004

SWv

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

A SPECIAL OFFER

FOR NEW OWNERS!

Get the most out of

your Commodore computer.

. . . With Commodore magazines.
And save 20% off the regular newsstand price.

Subscribe to Commodore Power/Play and Commodore Microcomputers magazines and

you're on your way to realizing the full power and potential of your new Commodore computer.

Each issue brings you new ways to us¢ and enjoy your computer. The first word on new software
and hardware. Programming techniques for both beginners and advanced users. In-depth product
reviews of the best software and hardware. The latest games or education and applications
programs. Visits with other users who have discovered new and interesting ways to use their
Commodore computers.

You'll find practical articles on linking up with user groups in your area. Telecommunications and
using on-line services such as CompuServe. Computer music and art, and much, much more.

In addition, every issue contains programs you can type in yourself and use right away. There’s
entertainment and games or practical household and business applications programs in cach issue!

Together, they're the perfect combination of pure fun and productivity!

And if you take advantage of this special offer—only for new computer OWnNers—you can save as
much as 20% off the regular newsstand price!

Subscribe now and get the most out of your Commodore
computer. And save as much as 20%!

Please sign me up for

[year(s) of Power/Play and Microcomputers (12 issues total per year) at $24/year (a savings
of 20% off the regular newsstand price).

[] year(s) of Power/Play only (entertainment and games—o0 issues per year) at $15/year.

[] year(s) of Microcomputers only (more in-depth information about practical ways to use
your computer— 6 issues per year) at $15/year.

ALL PRICES IN US CURRENCY. Canadian add $5.00 to cach subscription to cover postage. Overseas: $25.00/6 issucs
(includes postage)

Name Phone

Address

City State Zip

Signature

METHOD OF PAYMENT

(] Enclosed is my check or money orderfor 8____ (Make check or money
order payable to COMMODORE PUBLICATIONS)
(] Bill me SAM1

[] Charge my VISA or MasterCard (circle one) Card number

ll“llIIllllll]lj_lExpirationDatc——

or call 800-345-8112 to order (in Penna. 800-662-2444)

BUSINESS REPLY LABEL

FIRST CLASS PERMIT NO. 251 HOLMES, PA

POSTAGE WILL BE PAID BY ADDRESSEE

Commodore Publications
Magazine Subscription Department

Box 651

Holmes, PA 19043

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

