
Beginning
Programming Using
Retro Computing

Learn BASIC with a Commodore Emulator
—
Gerald Friedland

T E C H N O L O G Y I N A C T I O N ™

Beginning Programming
Using Retro Computing

Learn BASIC with a
Commodore Emulator

Gerald Friedland

Beginning Programming Using Retro Computing: Learn BASIC with a
Commodore Emulator

ISBN-13 (pbk): 978-1-4842-4145-5			 ISBN-13 (electronic): 978-1-4842-4146-2
https://doi.org/10.1007/978-1-4842-4146-2

Library of Congress Control Number: 2018965497

Copyright © 2019 by Gerald Friedland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4145-5. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Gerald Friedland
Berkeley, CA, USA

https://doi.org/10.1007/978-1-4842-4146-2

iii

Table of Contents

Chapter 1: �The Start Screen��� 1

Summary��� 2

Chapter 2: �Simple Drawing�� 3

Knowing Your Keyboard��� 3

A Snake�� 6

A Playing Card�� 7

An Island�� 8

Summary��� 8

Chapter 3: �Math��� 9

Summary��� 11

Chapter 4: �Sound��� 13

Summary��� 18

Chapter 5: �Colors��� 19

Summary��� 23

Chapter 6: �Graphics��� 25

Summary��� 31

Chapter 7: �Errors��� 33

Summary��� 36

About the Author��� v

About the Technical Reviewer��� vii

Acknowledgments�� ix

Preface��� xi

iv

Chapter 8: �Variables�� 37

Summary��� 41

Chapter 9: �Math and Variables�� 43

Summary��� 48

Chapter 10: �A Program�� 49

Summary��� 56

Chapter 11: �Questions��� 57

Summary��� 61

Chapter 12: �Counting��� 63

Summary��� 67

Chapter 13: �What If?�� 69

Summary��� 71

Chapter 14: �More Programs�� 73

Animated Hello��� 74

Ball Animation�� 75

Playing with Pitch�� 76

Pitch Ladder��� 77

A Song�� 78

Piano�� 79

Boxes��� 80

Circles�� 81

Blinking Graphics��� 82

A Guessing Game��� 83

Summary��� 83

�Appendix A: Saving and Loading��� 85

�Summary��� 87

�Index�� 89

Table of Contents

v

About the Author

Gerald Friedland started programming with the

Commodore 16 at the age of 7. Ever since then his life has

been dominated by bits and teaching how to juggle them

to others. Today, Gerald has a PhD in computer science

and teaches introductory programming and data science

classes as adjunct professor at the University of California,

Berkeley. Apart from a research career as a computer and

data scientist, with two books and a list of publications in

multimedia and machine learning conferences and journals,

he is also an active contributor in the maker community. His company, Audeme,

produces an offline speech recognition shield for Arduino boards.

vii

About the Technical Reviewer

Massimo Nardone has a master of science degree in

computing science from the University of Salerno, Italy, and

has more than 24 years of experience in the areas of security,

web/mobile development, cloud, and IT architecture. His IT

passions are security and Android. 

Specifically, he has worked as a project manager,

software engineer, research engineer, chief security architect,

information security manager, PCI/SCADA auditor, and

senior lead IT security/cloud/SCADA architect.

He has also worked as a visiting lecturer and supervisor

for exercises at the Networking Laboratory of the Helsinki University of Technology

(Aalto University), and he holds four international patents (in the PKI, SIP, SAML, and

proxy areas).

He currently works as the chief information security officer (CISO) for Cargotec Oyj

and is a member of the ISACA Finland Chapter board.

Massimo has reviewed more than 45 IT books for different publishing companies

and is the coauthor of Pro JPA 2 in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8

(Apress, 2018), and Pro Android Games (Apress, 2015).

ix

Acknowledgments

I would like to say a big thank-you to the people in the various Commodore Facebook

groups who encouraged me with in-depth comments on the first draft of this book.

Without their help and encouragement, this book would not be publicly available. If

you like what you see in this book, please make a point of joining one or more of the

following groups: Commodore 16/Plus/4, Commodore 64/128, and Commodore PET,

VIC-20,16, Plus/4,64,128. Interact with super-nice people like Petri Stenberg, Trevor,

Mattias Olli, Patrick Bakker, Anders Persson, Chris Snowden, and others. A special

thanks goes to Marti Hoogterp for doing an amazing early review of the book.

I would also like to thank the staff at Apress, most notably Aaron Black, Jessica Vakili,

and James Markham.

I also need to thank my daughter, Mona, for using the book and giving me

suggestions. Finally, this book would not have been possible without my mother buying

a Commodore 16 from Aldi in Germany in 1986. Thank you, mum!

xi

Preface

I created this book as a birthday present to my 7-year-old daughter. It introduced

programming to her using an emulation of the Commodore 16/Plus 4 system. The

system’s BASIC 3.5 is an effective programming system that was used to teach hundreds

of thousands of children in the 1980s, the so-called 8-bit generation. The educational

principle of these computers and this book is that children at that age are fascinated to

see that words they write have the power to do things like play sounds, draw graphics,

or do their math homework. BASIC 3.5 is a simple programming system that minimizes

distraction, and therefore the parental interaction needed, while maximizing feedback

and therefore the learning progress for the child.

I taught myself programming with a Commodore 16 computer at very young age.

When my daughter finally turned 7, about the age when I started, I wanted her to start to

learn programming as well. I researched the market for elementary school programming

tools and could not find anything that I liked. None of the modern tools I found were

“turn on and program” like the 8-bit Commodore computers. Furthermore, many

teaching portals are online, and having to expose my elementary school child to the

Internet caused me anxiety. In contrast, once the emulator is in full-screen mode, the

learner is immersed in this environment without distraction.

Following this concept, this book was written to be understandable with the

reading and math skills of a child in second grade. The only exceptions are this preface

containing setup instructions and the appendix.

Chapter 1 and the following chapters assume that a Commodore 16/116, Plus 4,

or 128 is ready to go. The appendix describes several ways of setting up such a system

in today’s technical infrastructure and also how to load and save programs. The latter

was left out of the main part of the book because of its complexity and the potential for

damage (e.g., overwriting of files).

Whether you want your kid to follow the same path as my daughter or you’d love to

catch up on what you missed in the 1980s or you are interested in learning fundamental

programming concepts with a system that has passed the test of time, this book intends

xii

to make the basics of programming so easy that an elementary school child can self-

study with it. From there, the transition to a modern, more complex programming

language, like Python, is much easier.

Enjoy!

�Setting Up
This book contains examples that can be run with Commodore BASIC 3.5. This version

of BASIC was originally available on the Commodore 16, Plus 4, and 116. The examples

in this book will also work on the Commodore 128, which came with BASIC 7.0. The

popular Commodore 64 came with BASIC 2.0, which lacks most of the graphic and

sound functionality and cannot be used with this book. The appendix contains more

details on how to set up your Commodore BASIC 3.5 experience. There are essentially

two ways to time warp back into the 1980s: using an emulator or re-activating the

original hardware. This appendix will outline both of them.

�Using an Emulator
Whatever emulation option you choose, you will most likely want the original

Commodore keyboard. The easiest way to get a Commodore keyboard feeling is to

use a modern keyboard with stickers. They are, among other locations, available here:

http://www.4keyboard.com.

While there are small differences between Commodore keyboards, the Commodore

64 version of the stickers will work. The following image shows the arrangement of the

Commodore stickers on a modern keyboard that was used for this book:

Preface

http://www.4keyboard.com

xiii

At the time of writing this book, several emulators are usable without any software

installation. For example, a browser-based Commodore 128 emulator is available at

https://vice.janicek.co/c128/.

The aforementioned online emulator is based on VICE, which is the most popular

Commodore emulator. VICE is developed as open source and is available at http://

vice-emu.sourceforge.net/.

VICE can be used offline on any PC or Mac and even on your Android cell phone.

The part of the emulator used to write this book is called xplus4.

To get close to the full experience, I recommend you install VICE on a dedicated

computer, for example, on a Raspberry PI. The following images show a Raspberry Pi

with a casing and a controller, available at various locations:

More information on how to build a Raspberry PI dedicated to Commodore

emulation can be found at the home page of the Retro Pie project: https://retropie.

org.uk/.

While Retro Pie installs VICE, by default the GUI makes only the Commodore 64

emulator visible. To enable BASIC 3.5, the Commodore Plus 4 emulation needs to be

used. There are two ways of doing that.

•	 Start the Plus 4 emulation directly from a command line using this

command:

/opt/retropie/emulators/vice/bin/xplus4

•	 Start the emulator from a GUI, after enabling the Plus 4 emulation

in the file es_systems.cfg. The file is an XML configuration file and

how to edit it is described here:

https://github.com/RetroPie/RetroPie-Setup/wiki/

EmulationStation

Preface

https://vice.janicek.co/c128/
http://vice-emu.sourceforge.net/
http://vice-emu.sourceforge.net/
https://retropie.org.uk/
https://retropie.org.uk/
https://github.com/RetroPie/RetroPie-Setup/wiki/EmulationStation
https://github.com/RetroPie/RetroPie-Setup/wiki/EmulationStation

xiv

The entry for the Commodore Plus 4 system should look like this:

<system>

 <name>c16</name>

 <fullname>Commodore Plus4</fullname>

 <path>/home/pi/RetroPie/roms/c16</path>

 �<extension>.crt .d64 .g64 .prg .t64 .tap .x64 .zip .vsf .CRT .D64 .G64

.PRG .T64 .TAP .X64 .ZIP .VSF</extension>

 �<command>/opt/retropie/supplementary/runcommand/runcommand.sh 0 _SYS_ c16

%ROM%</command>

 <platform>c16</platform>

 <theme>c16</theme>

</system>

At the time of writing this book, the process is also described in detail on Ian Hill’s

web site at https://ianwilliamhill.co.uk/c16rp/.

�Re-activating the Original Hardware
Re-activating an original Commodore computer is by far the most nostalgic experience.

There are only two drawbacks to this approach. First, the original computers connect

to an analog TV either using an NTSC or PAL signal, so their resolution and update

frequency do not meet today’s ergonomic standards for eye comfort. Also, with most

modern TVs not supporting analog signals anymore, an adapter is needed. The typical

way to connect a Commodore computer to a modern TV is to use the S-Video signal

that is available on most Commodore computers. The second drawback is that loading

and saving programs took a long time in the 1980s. I definitely recommend connecting a

floppy disk unit, for example, the Commodore 1541, which works with the Commodore

16/116, Plus 4, C64, and Commodore 128. Tape recorders will literally take minutes to

even load a small program. A limited amount of hard disks were available at the time.

Fortunately, there is a seemingly ever-growing community of people connecting

modern storage and interfaces (such as USB) to Commodore 8-bit computers. For

example, commercial outlets for hardware adapters that serve this purpose include the

following:

http://www.commodore16.com/commodore16-com-shop/

https://gglabs.us/

http://store.go4retro.com/

Preface

https://ianwilliamhill.co.uk/c16rp/
http://www.commodore16.com/commodore16-com-shop/
https://gglabs.us/
http://store.go4retro.com/

xv

Unfortunately, describing the process of re-activating the original hardware for

the various Commodore systems, modern hardware options, and different screen

combinations could easily fill another book. I therefore recommend checking with local

retro computing user groups, web sites, and forums, including the following:

https://cbm8bit.com/

https://www.instructables.com/howto/commodore/

https://hackaday.com/?s=commodore

Preface

https://cbm8bit.com/
https://www.instructables.com/howto/commodore/
https://hackaday.com/?s=commodore

1
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_1

CHAPTER 1

The Start Screen
At this point, I will assume you are set up and see the following screen. If not, ask a

parent to follow the instructions in the preface.

Congratulations! You are ready to go!

Whenever you start a new chapter in this book, make sure you start at this screen.

This screen is called the startup screen.

One more thing: Do you see the blinking rectangle? This rectangle is called the

cursor. The cursor is where everything happens. Always pay attention to where the

cursor is.

With that, let’s move on to the next chapter.

2

�Summary
Each chapter will have a short summary of what you have learned. In this chapter, you

learned about the start screen and the cursor.

Chapter 1 The Start Screen

3
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_2

CHAPTER 2

Simple Drawing
In this chapter, you will get to know your keyboard. You can use it to move the cursor,

type letters and numbers, and even draw.

�Knowing Your Keyboard
Look at your keyboard. Do you see the symbols above the letters?

You access the right symbols by pressing the SHIFT key and the letter key

at the same time.

4

You access the left symbols by pressing the key and the letter key at the same

time. This odd key is called the Commodore key.

Let’s try a couple of simple examples.

Press SHIFT and A.

What do you see? You should see this symbol: .

Now press RETURN and try this:

	 1.	 Press Commodore and A.

	 2.	 Press Commodore and S.

	 3.	 Press SHIFT and RETURN.

	 4.	 Press Commodore and Q.

	 5.	 Press Commodore and W.

	 6.	 Press SHIFT and RETURN.

	 7.	 Press Commodore and Z.

	 8.	 Press Commodore and X.

Chapter 2 Simple Drawing

5

The result should look like this:

The drawing looks like a window! Try drawing other things this way!

You can also use the arrow keys to move the cursor up and down. They look like this:

The next pages have examples of more drawings. They were made by Mona, a 7-year-

old girl. You can try to copy them on your screen. But even better, experiment and draw

your own pictures.

Chapter 2 Simple Drawing

6

�A Snake
Check out this snake:

Note  You can press RETURN many times to clear the screen. The CLR/HOME key
brings the cursor back into the upper corner.

Chapter 2 Simple Drawing

7

�A Playing Card
Try to make this playing card:

Chapter 2 Simple Drawing

8

�An Island
Check out this island:

�Summary
In this chapter, you practiced using the keyboard. For drawings, you can use SHIFT or

the Commodore key together with another key.

Chapter 2 Simple Drawing

9
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_3

CHAPTER 3

Math
In this chapter, you will do math using the computer.

Start from the beginning with this screen again:

10

Remember, the black blinking rectangle is called the cursor.

Now let’s do some math. Type the following:

PRINT 3-2
Press RETURN.

What do you see?

You see that the computer gave the answer: 1.

Let’s try another one.

Type the following:

PRINT 2*5
Press RETURN.

What do you see?

Chapter 3 Math

11

The symbol * is read as “times.” So, the computer saw “2 times 5.” The computer is

right: 2 times 5 (or 2*5) is 10!

So, you did subtraction and multiplication.

What other math can you do? The symbol + means “plus,” the symbol - means

“minus,” the symbol * means “times,” and the symbol / means “divide by.”

Try it!

�Summary
The computer can solve math sentences when you start them with PRINT.

Chapter 3 Math

13
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_4

CHAPTER 4

Sound
The computer can make sounds. Let’s try that! Make sure you have some speakers

connected and turned on. Let’s start the Commodore 16 again.

14

Now you need to tell the computer how loud it should be. The command is as

follows:

VOL 8
Press RETURN.

8 is the loudest, 1 is the quietest, and 0 means no sound.

It looks like this:

Chapter 4 Sound

15

Then, let’s actually play a sound. The command is SOUND. Try it by typing this:

SOUND 1,266,50
Press RETURN.

It looks like this:

Chapter 4 Sound

16

What happens? If you did not hear anything, check your speakers.

Now try typing this:

SOUND 1,266,200
Press RETURN.

It looks like this:

Chapter 4 Sound

17

What happened? Do you know why?

The last number is how long the sound is played.

Now try typing this:

SOUND 1,666,200
Press RETURN.

It looks like this:

What happened? Do you know why?

The middle number is the tone pitch. Try this:

SOUND 1,100,200
Press RETURN.

Then type this:

SOUND 1,200,200
Press RETURN.

Then type this:

SOUND 1,400,200
Press RETURN.

Finally, type this:

SOUND 1,800,200
Press RETURN.

Chapter 4 Sound

18

See how the tone changes?

One more thing. Computers can also fart!

Type this:

SOUND 3,266,10
Press RETURN.

Did you hear the computer fart?

If you make the first number a 3, you get noise instead of a tone.

Try it: How can you change the length of the noise? How can you change the pitch of

the noise?

�Summary
In this chapter you learned the VOL and SOUND commands and experimented with

sounds of different lengths and types.

Chapter 4 Sound

19
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_5

CHAPTER 5

Colors
Let’s add some color!

You just have to press the Commodore key and a number key at the same time.

Remember, the Commodore key looks like this:

The number keys look like this:

Do you see the BLK, WHT, RED, CYI? These are short versions of the words for the

colors black, white, red, and cyan (a bright blue). So, if you press the Commodore key

and a number together, the cursor will change into this color.

20

Press Commodore and 3 together and then type MONA.

It looks like this:

Chapter 5 Colors

21

Now you can draw in color. Try it!

Also try other colors by pressing the Commodore key and another number.

Another way to change colors is with the COLOR command.

Type this:

COLOR 0,6
Press RETURN.

It should look like this:

Chapter 5 Colors

22

Now type this:

COLOR 4,6
Press RETURN.

It should look like this:

Found the trick?

The COLOR command takes two numbers. The first number is the part of the screen

you want to change: 0 specifies the background, 1 specifies the letters, and 4 specifies the

border. Then, the colors are numbered just like the letters on the keyboard.

1 = black, 2 = white, 3 = red, 4 = cyan, 5 = purple, 6 = green,

7 = blue, 8 = yellow, 9 = orange, 10 = brown, 11 = yellow/greenish,

12 = pink, 13 = blue-greenish, 14 = light blue, 15 = dark blue,

and 16 = light green.

Chapter 5 Colors

23

Now try to set the background to light blue and the border to yellow!

It should look like this:

�Summary
In this chapter, you learned key combinations to change the color, and you used the

COLOR command.

Chapter 5 Colors

25
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_6

CHAPTER 6

Graphics
So far, you have drawn by hand. Now you will let the computer draw!

Type this:

GRAPHIC 2,1
Press RETURN.

The result looks like this:

26

You have switched the computer into the graphics mode.

Now, you can type this:

BOX 1,0,0,100,100
Press RETURN.

Take a look at the result:

A box! But the command BOX takes so many numbers!

How does this work?

Let’s take a look again. The command was as follows:

BOX 1,0,0,100,100
The first number of BOX is 1. A 1 means draw in black, and a 0 means draw in white.

The second number is 0. This number tells the computer how far to the right the

upper-left corner of the box should be. 0 means all the way to the left, and 320 is all the

way to the right.

The third number is also 0. This number tells the computer how far to the bottom the

upper-left corner of the box should be. 0 means all the way up, and 160 is all the way to

the bottom.

Chapter 6 Graphics

27

The fourth number is 100. This number tells the computer how far to the right the

lower-right corner of the box should be. 0 means all the way to the left, 320 is all the way

to the right, and 100 is somewhere in between.

The fifth number is 100. This number tells the computer how far to the bottom the

lower-right corner of the box should be. 0 means all the way up, 160 is all the way to the

bottom, and 100 is somewhere in between.

Complicated? Let’s play with it!

Try this:

BOX 1,101,0,201,100
Press RETURN.

Look at the result shown here:

Chapter 6 Graphics

28

This command added a second box next to the first one.

What are the numbers?

The first number is 1 again, for drawing in black.

The second number is 101. Remember the third number of the first box was 100? The

third number of the first box was how far right the bottom corner of the first box is. You

want to start your new box just right of that, so you add 1, as in 100+1=101.

The third number is 0 again, just like in the first box. This is so that the upper-left

corner of the second box starts at the same height as the first one.

The fourth number is 201. The fourth number indicates how far to the right the

lower-right corner of the box should be. Well, the first box ended at 100. You want the

second box to have the same size. So, you add 100 to the start of the second box, which is

101. 100+101=201.

The fifth number is 100 again because you want the lower-right corner of the box to

be at the same height level as the lower-right corner of the first box.

Let’s try one more:

BOX 1,202,0,302,100
Press RETURN.

Look at the result:

Chapter 6 Graphics

29

Can you explain it?

Let’s try one last one:

BOX 1,0,101,302,150
Press RETURN.

Look at the result and explain it!

Here is the result:

Chapter 6 Graphics

30

There are many other graphics commands that do cool things. It would take many

pages to explain them, so it’s best if you experiment with them on your own. You will

need basic addition and subtraction. The first number always indicates draw in black (1)

or draw in white (0). Draw in white can be used to erase. The second number always

indicates how far to the right. The third number always indicates how far to the bottom.

Try another command.

Type this:

PAINT 1,1,1
Press RETURN.

The PAINT command colors a structure.

This is the result:

Chapter 6 Graphics

31

Let’s fill the third rectangle.

Type this:

PAINT 1,203,1
Press RETURN.

This is the result:

Can you fill the other rectangles too?

There’s one more command to play with!

Type this:

CIRCLE 1, 150, 125, 150, 25
Press RETURN.

What is the result?

�Summary
You learned that the computer can draw boxes and circles automatically. Numbers tell

the computer the position on the screen.

Chapter 6 Graphics

33
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_7

CHAPTER 7

Errors
This chapter explains something less fun than what you’ve been doing so far. It talks

about “errors.” You will see errors at the most unexpected times. They will appear to slow

you down. They can be frustrating too. But they are only here to help you.

Errors are the way the computer tells you it does not understand something. When

you see an error, it is best to take a deep breath. Then compare what you see in this book

against what you did. Sometimes you may have to start from the beginning of a chapter

again. It happens to all of us.

There are many types of errors. The following two are the most frequent.

A syntax error is an error that tells you that you spelled a command incorrectly. See

the mistake in the following screen?

34

Yes, PLINT is wrong. It is PRINT. When you correct the spelling, the command will

work without error. See the next screen:

Chapter 7 Errors

35

Another type of error is an illegal quantity error. It might sound complicated. Here is

an example:

Chapter 7 Errors

36

This error tells you that a number is wrong. In this case, COLOR cannot take 200.

When the command is corrected with the right number, it will work, as shown in the

next screen:

As explained earlier, when you see an error, carefully read the command again.

Programming is hard, and sometimes finding errors can take some time. Even

programmers with many years of experience have to deal with them.

�Summary
Errors are there to make us think. You can learn from them.

Chapter 7 Errors

37
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_8

CHAPTER 8

Variables
This chapter talks about how to make the computer remember things. For this chapter,

please start fresh (turn the computer off and on or restart).

The computer memory works with variables. Variables save a message or a number

so that you can use it later.

Try this:

AGE=7 (press RETURN)

PRINT AGE (press RETURN)

38

What happened?

AGE was set to 7. Then you printed AGE. The result is 7.

What if you set AGE=25 and print it?

Here is the result:

Chapter 8 Variables

39

Variables can do more than numbers. They can also store messages.

Type this:

MSG$=“HELLO, MONA” (press RETURN)

PRINT MSG$ (press RETURN)

The result looks like this:

Chapter 8 Variables

40

Just like with numbers, PRINT returns what is stored in the variable. You can do it

again and again!

Type:

PRINT MSG$ (press RETURN)

PRINT MSG$ (press RETURN)

PRINT MSG$ (press RETURN)

The result looks like this:

Chapter 8 Variables

41

You have to store the variable only once, and you can reuse it—until you turn off the

computer or close the Commodore program.

Be careful, though. For messages, you need to add $ to the variable name. Otherwise,

the computer complains with an error!

For example, type this:

MSG=“HELLO, MONA”
Press RETURN.

This will result in an error, as shown here:

Remember, numbers can have any name. Messages need to have a name with $ at the

end. The message itself needs to be in quote marks. It is easy to forget the second quote!

�Summary
You have learned how to store numbers and messages in variables.

Chapter 8 Variables

43
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_9

CHAPTER 9

Math and Variables
Can you do math with variables? Yes, you can!

Try this:

AGE=6 (press RETURN)

PRINT AGE+1 (press RETURN)

44

What happened?

The result is 7 because AGE is 6 and 6+1=7.

What happens when you try this:

PRINT AGE+2 (press RETURN)

PRINT AGE+3 (press RETURN)

AGE stays 6, and 6+2=8 and 6+3=9. No surprise here.

You can check that AGE is still 6 by typing this:

PRINT AGE
Press RETURN.

Here is the result:

Chapter 9 Math and Variables

45

AGE never changed.

Now try this:

AGE=AGE+1 (press RETURN)

PRINT AGE (press RETURN)

See this screen for the result:

Chapter 9 Math and Variables

46

What happened?

Using the = command, AGE was set to AGE+1.

So, AGE is 6. That means AGE+1 is 6+1=7. Using =, you set AGE to 6+1. So, you set

AGE to 7. That’s why the result printed is 7.

Let’s try a different example. Type this:

APPLE=5 (press RETURN)

BANANA=2 (press RETURN)

FRUITS=APPLE+BANANA (press RETURN)

PRINT FRUITS (press RETURN)

Chapter 9 Math and Variables

47

What happened? Well, APPLE is 5. BANANA is 2. FRUITS is then set to

APPLE+BANANA or 5+2. And you know that 5+2=7. Therefore, FRUITS is 7.

Now let’s add pears to the fruits.

PEAR=3 (press RETURN)

FRUITS=FRUITS+PEAR (press RETURN)

PRINT FRUITS (press RETURN)

What do you think the result is?

Chapter 9 Math and Variables

48

What happened? PEAR was set to 3. Then FRUITS was set to the number that FRUITS

stores (7) plus the number that PEAR stores (3). So, 7+3=10. This is the same as setting

FRUITS to APPLE+BANANA+PEAR (5+2+3=10).

Let’s check:

Yay! See what else you can do with variables. Try also +, -, * and /.

Note  Choose your variable names so that the first two letters don’t overlap.
BANANA and BARBEQUE are the same variable because the both start with BA.
BANANA and BBQ are fine (BA and BB). Also, variable names cannot start with a
number or be a command. For example, PRINT=1 will give an error.

�Summary
You can use variables to store the result of math. You can also use variables in a math

sentence.

Chapter 9 Math and Variables

49
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_10

CHAPTER 10

A Program
In this chapter, you will understand what a program is and even write your first one. As

usual, start with this screen:

50

Remember, the black blinking rectangle is called the cursor.

Let’s type a program. It begins with line numbers. Type this:

10 PRINT “HELLO MONA”
Press RETURN.

Then type this:

20 GOTO 10
Press RETURN.

The screen looks like this:

Chapter 10 A Program

51

Then type this:

RUN
Press RETURN.

What happens?

Congratulations! You just ran your first program.

Now press RUN/STOP ESC to stop it.

It looks like this:

Chapter 10 A Program

52

Type LIST and press RETURN to see your program again.

It looks like this:

You can now use the arrow keys to move the cursor and

change the program.

Chapter 10 A Program

53

Press UP four times to go to line 10. Then press RIGHT 16 times to put the cursor in

front of MONA. The M is now blinking.

It looks like this:

Chapter 10 A Program

54

Now type this:

PAPA
Press RETURN.

The 2 is now blinking.

It looks like this:

Chapter 10 A Program

55

Now press the DOWN arrow three times. The cursor is blinking under READY.

It looks like this:

Chapter 10 A Program

56

Now type RUN again.

Press RETURN.

What happens?

This!

Congratulations! You ran your second program.

You can stop it the same way by pressing RUN STOP/ESC.
Try more things by repeating the steps from the earlier pages.

Type LIST to see your program.

Use the arrow keys, and type new letters to change the program.

Press RETURN to enter it into the computer.

Go below READY, and type RUN and press RETURN to start it again.

If you want to write a new program, type NEW and then press RETURN.

Chapter 14 contains many examples of programs to play with.

�Summary
So, what is a program? A program is like a cooking recipe. It is a list of commands. You

can run a program over and over again after typing it in only once.

Chapter 10 A Program

57
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_11

CHAPTER 11

Questions
Can computers ask questions in a program? Yes.

In a program, the computer can ask questions and store the answer in a variable.

The command for that is INPUT. INPUT also needs a variable name. For example, typing

INPUT AGE will ask for a number and store the number in the variable AGE.

Make sure you are at the startup screen. Type the following program:

10 PRINT “HOW OLD IS MONA”; (press RETURN)

20 INPUT AGE (press RETURN)

30 PRINT “MONA IS”; (press RETURN)

40 PRINT AGE; (press RETURN)

50 PRINT “YEARS OLD.” (press RETURN)

Usually, the computer jumps to the next line after a PRINT command. The

semicolon (;) makes the computer stay on the same line.

58

The program looks like this on the computer:

Chapter 11 Questions

59

Type RUN and press RETURN to start the program. The computer will ask for Mona’s

age. You can type in any number and press RETURN. After that, the computer will show

you that it saved the number.

It should look like this:

Chapter 11 Questions

60

Try RUN and press RETURN again. Now enter a different number. See how the

output changes?

What happened? The INPUT command in line 20 asks for a number and stores it

as variable AGE. After you enter a number, lines 30, 40, and 50 piece together the final

output sentence. Of course, line 40 is the one outputting the number.

Let’s try another example. Type this:

10 PRINT “HOW MANY APPLES”; (press RETURN)

20 INPUT APPLE (press RETURN)

30 PRINT “HOW MANY BANANAS”; (press RETURN)

40 INPUT BANANA (press RETURN)

50 FRUITS=APPLE+BANANA (press RETURN)

60 PRINT “WE HAVE”; (press RETURN)

70 PRINT FRUITS; (press RETURN)

80 PRINT “FRUITS.” (press RETURN)

Chapter 11 Questions

61

Type RUN and press RETURN to start the program. The computer will ask how many

apples (lines 10 and 20). You can type in any number and press RETURN. After that, the

computer will ask how many bananas (lines 30 and 40). You can type in any number and

press RETURN. Then, the computer will add the numbers in APPLE and BANANA into

the variable FRUITS (line 50). It will then output the result in a sentence (lines 60, 70,

and 80). Take a look:

Is this familiar?

Can you add pears to the program? Hint: You can add lines 45 and 46, and you need

to change line 50.

�Summary
The INPUT command allows you to ask question to the user. The response is stored in a

variable.

Chapter 11 Questions

63
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_12

CHAPTER 12

Counting
It’s time you give the computer a lot more work! For example, let’s make the computer

count for you. This chapter introduces FOR and NEXT.

Make sure you are at the startup screen. Type the following:

10 FOR I=1 TO 10 (press RETURN)

20 PRINT I (press RETURN)

30 NEXT I (press RETURN)

Type RUN and press RETURN to start the program.

64

How does this work?

Line 10 says this:

FOR I=1 TO 10

The variable called I is set to 1 with I=1. So, I=1. Let’s skip the other stuff for now.

Line 20 says this:

PRINT I

Well, that just means print the number stored in I. You have done that many times

before, for example when you used PRINT AGE.

Line 30 then says this:

NEXT I

The NEXT command exactly does what you think it does. It basically says, “Next

number, please!” The computer sets the next number for I. What is the next number?

Good question! Remember we skipped some stuff in line 10? Well, let’s go back.

FOR I=1 TO 10

While I starts off as 1 with I=1, the line also says 1 TO 10. So, it’s like having ten

people in a restaurant with the numbers 1 to 10. The next number after 1 is therefore 2.

You then go to line 20 to print I again, which now is 2. Then you go to line 30 again,

where it says, “Next I, please!” This makes I=3 and returns you to line 10. The game goes

on and on and on until you have served all people in the restaurant…ahem…until I=10.

Once I is 10, the “Next I, please!” in line 30 will find out that there is no next and therefore

will not jump back to line 10 anymore. Let’s check this. Type this:

40 PRINT“DONE” (press RETURN)

Chapter 12 Counting

65

Type RUN and press RETURN to start the program. You should see this:

Chapter 12 Counting

66

That’s exactly what you should expect. The computer counts to 10 and then prints

DONE because NEXT I finds it is finished.

The entire program looks like this now:

How would you change the program to count to 100?

Type this:

10 FOR I=1 TO 100 (press RETURN)

Type RUN and press RETURN to start the program. You will see it counting to 100

and then saying DONE.

Here is one more example of really complicated math—something where you really

need a computer because it would take way too long to do it by hand. Let’s add all the

numbers from 1 to 100!

Type this program:

10 SUM=0 (press RETURN)

20 FOR I=1 TO 100 (press RETURN)

30 SUM=SUM+I (press RETURN)

40 NEXT I (press RETURN)

50 PRINT “1+2+3+…+100=”; (press RETURN)

60 PRINT SUM (press RETURN)

Chapter 12 Counting

67

Type RUN and press RETURN to start the program.

What’s the answer?

How would you change the program to sum the numbers 1 to 200?

How would you change the program to multiply all numbers from 1 to 10?

�Summary
You learned to use FOR and NEXT. These two commands can save you an immense

amount of work.

Chapter 12 Counting

69
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_13

CHAPTER 13

What If?
Sometimes you want to check things. For example, you might want to check a response

to a question. This chapter shows how.

As usual, make sure you are at the startup screen. Type the following program:

10 PRINT“HOW OLD IS MONA”; (press RETURN)

20 INPUT AGE (press RETURN)

30 IF AGE<7 THEN PRINT"TOO LOW" (press RETURN)

40 IF AGE>7 THEN PRINT"TOO HIGH" (press RETURN)

50 IF AGE=7 THEN PRINT"CORRECT" (press RETURN)

Type RUN and press RETURN to start the program. The program will ask for Mona’s

age (lines 10 and 20). You can then enter any number. If the number is smaller than 7, it

will say TOO LOW (line 30). If the number is greater than 7, it will say TOO HIGH (line 40),

and if the number is exactly 7, it will say CORRECT (line 50).

70

It all looks like this:

The command that makes that happen is called IF THEN, and it almost works like

human language.

Between IF and THEN is a condition. The conditions checks if a variable is

smaller than (<), equal to (=), greater than (>),smaller than or equal to (<=), or

greater than or equal to (>=) another number or variable.

After THEN is a command that will be executed if the condition is true. If you

need more than one command after THEN, you can separate them with colon (:). For

example, if you want to have the person try guessing Mona’s age again without having to

say RUN, you can change lines 30 and 40.

Type this:

30 IF AGE<7 THEN PRINT“TOO LOW”:GOTO 10 (press RETURN)

40 IF AGE>7 THEN PRINT“TOO HIGH”:GOTO 10 (press RETURN)

Chapter 13 What If?

71

The command GOTO is really just a misspelled “go to”. We already used it in

Chapter 10. It will jump to the line number given. That is, GOTO 10 will jump to line 10.

Type RUN and press RETURN to start the program. The program now looks like this:

�Summary
You learned about IF THEN. Using IF THEN and GOTO together is a powerful

combination.

Chapter 13 What If?

73
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_14

CHAPTER 14

More Programs
This chapter presents programs to type in and play around with. Sometimes you will

not know a command. This is not a problem. Often you just need to run the program to

see what the command does. Other times you need to experiment to try to understand

what the command does. You can experiment by changing the program. For example,

leave the command out and see how the program behaves then. You really cannot break

anything. Also, there are no wrong solutions. Have fun!

The programs A Song, Boxes, and Circles are special. They are taken from the

original Commodore 16 user manual. The programs Piano and Blinking Graphics

are similar to programs that appeared in the original Commodore 16 user manual.

The manual came out in 1984. It is therefore not an exaggeration to call them

historic programs!

Make sure you are at the startup screen. Then type in the following programs and

start them with RUN and press RETURN. If you need to stop, press the ESC/RUN STOP

key (in the upper-right corner). You never have to type in the READY. part.

74

�Animated Hello
Type in the following program, start it with RUN, and press RETURN. To stop, press the

ESC/RUN STOP key (in the upper-right corner).

Note  The command SCNCLR clears the screen. The empty FOR commands in
line 30 and 70 serve as delays.

Chapter 14 More Programs

75

�Ball Animation
Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN. To stop, press the ESC/RUN STOP key (in the upper-right corner).

Tip P ress the LEFT arrow key to get the symbol in the PRINT command in line 70.

Chapter 14 More Programs

76

�Playing with Pitch
Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN. To stop, enter 0.

Chapter 14 More Programs

77

�Pitch Ladder
Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN. To stop, press the ESC/RUN STOP key (in the upper-right corner).

Note  The STEP command in line 20 tells FOR to count in steps of five. In other
words, instead of counting 0, 1, 2, 3, 4, 5, …, it is counting 0, 5, 10, 15, 20, 25,
and so on.

Chapter 14 More Programs

78

�A Song
Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN. To stop, press the ESC/RUN STOP key (in the upper-right corner).

Note  The DATA command stores numbers that can be read in order using the
command READ.

Chapter 14 More Programs

79

�Piano
Make sure you are at the startup screen. Type in the following program, start it with

RUN, and press RETURN. To stop, press the RUN STOP/ESC key. The program is more

complicated, but it’s also pretty cool.

Play Twinkle Twinkle Little Star with these keys: 1, 1, 5, 5, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1, 5, 5,

4, 4, 3, 3, 2, 5, 5, 4, 4, 3, 3, 2, 1, 1, 5, 5, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1.

Chapter 14 More Programs

80

�Boxes
Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN.

Note  The RND command in line 40 gives a random number. So the screen will
look different every time you run the program!

Chapter 14 More Programs

81

�Circles
Make sure you are at the startup screen. If you previously typed in the Boxes program,

all you need to do is type line 60. Otherwise, type in the following program, start it with

RUN, and press RETURN.

Note  The RND command in line 40 gives a random number. So the screen will
look different every time you run the program!

Chapter 14 More Programs

82

�Blinking Graphics
Make sure you are at the startup screen. Type in the following program, start it with

RUN, and press RETURN. To stop, press the RUN STOP/ESC key. The program is more

complicated, but it’s also pretty cool.

Chapter 14 More Programs

83

�A Guessing Game
Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN. To stop, enter 0 as a guess.

�Summary
Have fun!

Chapter 14 More Programs

85
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2

APPENDIX A

�Saving and Loading
Once programs start to become larger and more complicated, you will not want to

type them from scratch every time. You can save programs to permanent storage (for

example, a tape, a disk, or, if you use an emulator, a hard disk). The internal setup and

configuration of your permanent storage depends on the hardware or emulator choices

you made as described in the preface. For example, VICE requires you to open an

(empty) d64 file so a disk drive can be emulated (In the menu, select File ➤ Create and

Attach Disk Image ➤ Unit #8 and then choose a file name ending with .d64).

Once you are set up, knowing the following commands comes in handy. The easiest

way to store a program is using the command SAVE. The command takes a file name and

a disk drive number as a parameter. The following screenshot shows a small program

typed in followed by a SAVE command that is then executed by pressing RETURN.

https://doi.org/10.1007/978-1-4842-4146-2

86

Since you do not see any error message on the screen, you can assume that the

program has been saved. Let’s restart the computer and load the program again. This

is done by the LOAD command, which looks exactly like the SAVE command. The

following screen shot shows the process followed by a LIST command, which shows that

the program has indeed been loaded:

Appendix A Saving and Loading

87

To get a listing of all programs on the disk, for example, to be reminded of the

names of the available programs, type the command LOAD “$”, 8 followed by LIST. The

following screen shot illustrates the way directories were listed in the 1980s (make sure

you are at the start screen):

Caution  When you load a directory, your current program is erased. So don’t
load the directory in an attempt to find out under which name you want to save
your program. Also, tape recorders do not have a directory listing. Trying to load the
directory form tape is a giant waste of time.

�Summary
Loading and saving programs both require the configuration of the emulator or

underlying hardware. On the original Commodore hardware, loading and saving from a

cassette tape was worth it only for more than about 30 lines of code.

Appendix A Saving and Loading

89
© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2

Index

A
Animated Hello, 74
A Song, 78

B
Ball animation, 75
Blinking graphics, 82
Boxes, 80

C
Circles, 81
Colors, 19–23
Cursor, 1

D
Drawing

island, 8
playing card, 7
snake, 6

E
Errors, 33

illegal quantity error, 35–36
syntax error, 33–34

F
FOR and NEXT

commands, 63–67

G
Graphics

command BOX, 26–29
mode, 26
PAINT command, 30
rectangles, 31

Guessing game, 83

H
Historic programs, 73

I, J
IF and THEN commands, 69–71
Illegal quantity error, 35–36
INPUT command, 57, 59–61

K
Keyboard

arrow keys, 5
symbols, 3–4

https://doi.org/10.1007/978-1-4842-4146-2

90

L
Loading and saving

programs, 85–87

M, N, O
Math, 9–11

and variables, 43–48

P, Q, R
Piano, 79
Pitch ladder, 77
Playing with pitch, 76
Program HELLO MONA, 49–56
Programs

animated Hello, 74
A Song, 78
ball animation, 75
blinking graphics, 82
boxes, 80

circles, 81
guessing game, 83
piano, 79
pitch ladder, 77
playing with pitch, 76

S, T, U
Sound, 17

command, 14–15
Commodore 16, 13
noise, 18
speakers, 16
tone pitch, 17

Startup screen, 1
Syntax error, 33–34

V, W, X, Y, Z
Variables, 37–41

and math, 43–48

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: The Start Screen
	Summary

	Chapter 2: Simple Drawing
	Knowing Your Keyboard
	A Snake
	A Playing Card
	An Island
	Summary

	Chapter 3: Math
	Summary

	Chapter 4: Sound
	Summary

	Chapter 5: Colors
	Summary

	Chapter 6: Graphics
	Summary

	Chapter 7: Errors
	Summary

	Chapter 8: Variables
	Summary

	Chapter 9: Math and Variables
	Summary

	Chapter 10: A Program
	Summary

	Chapter 11: Questions
	Summary

	Chapter 12: Counting
	Summary

	Chapter 13: What If?
	Summary

	Chapter 14: More Programs
	Animated Hello
	Ball Animation
	Playing with Pitch
	Pitch Ladder
	A Song
	Piano
	Boxes
	Circles
	Blinking Graphics
	A Guessing Game
	Summary

	Appendix A: Saving and Loading
	Summary

	Index

