Beginning
Programming Using
Retro Computing

. Learn BASIC with a Commodore Emulator
Gerald Friedland

Apress:




Beginning Programming
Using Retro Computing

Gerald Friedland

Apress’



Beginning Programming Using Retro Computing: Learn BASIC with a
Commodore Emulator

Gerald Friedland
Berkeley, CA, USA

ISBN-13 (pbk): 978-1-4842-4145-5 ISBN-13 (electronic): 978-1-4842-4146-2
https://doi.org/10.1007/978-1-4842-4146-2

Library of Congress Control Number: 2018965497

Copyright © 2019 by Gerald Friedland

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-4145-5. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-4146-2

Table of Contents

About the AULNOF ... v
About the Technical REVIEWET .........cccciiiisssssmmmmmmmmmmmsssssssssssssmmsssssssssssssssssessssssssssnnns vii
AckNOWIedgmEeNtS .....ccuuuiemmmmmsssnnnmmsssssnnmessssnnnsessssnnnssssssnsnssssssnsnsessssnnnsssssnnnnsssssnnnnss ix
- T Xi
Chapter 1: The Start Screen........cccuemmminsemnmmmssssnmmmsssnmmsssss——————————————— 1
E 1] 04 OO RSRS 2
Chapter 2: Simple Drawing......ccccussseenmmssssssnnmssssssnsssssssssssssssssssssssssnssssssssnssssssssnnnsssss 3
KNowing YOUr KEYDOAIT ........coeveereriererresenseressesessessessessesessessessssesssssessesssssssessessssssssssessesssssssessenes 3
] - (O 6
A PIAYING CAIU.....ccceieeecirsere e e e e p e e e nnn 7
8 = o 8
SUIMIMAIY....eveerieise e s e s e b e n s e e R e e b e e e e e e R e e e e e e Re e nRe e nen e e nnnan s 8
Chapter 3: Math.........ccoccccmmiiinmmnmmmnssnnmmmssssmmmssssnmesssssnessasss s sassssssssnnnsssss 9
11104 RS 11
Chapter 4: SouNd .........ccccemmmmmnmmmmmmsssssssnrrr s nna s s e e s s s nnn 13
E 1] 4= 7R 18
Chapter 5: COlOrsS ....cuuuusssessssmmmmmmmssssssssssssssssssssssnnsssssssssssssssnnnnssssessssssssnnnnnnsnnsssssssns 19
£ 11114 7 23
Chapter 6: GraphiCs ......ccccrrrsssennrrsssssnnmssssssnssssssssssssssssnssssssssnssssssssnnsssssssnnnessssnnnnsssss 25
1] 1= OSSR SR SRS 31
ChapRer 7: EITOIS .uuicciiissssssssnnssesssssssssssssnnsssssssssssssssnnssesssssssssssnnnnssnsssssssssnnnnnnsessssssnn 33
£ 10T 111 T OSSR 36

iii



TABLE OF CONTENTS

Chapter 8: Variables .......ccccuureenrrnsssssnmmssssnnnsmssssssnsesssssssssssssnsssssssssnssessssnsnsssssnnnnsenss 37
3101 1117 SRS 41
Chapter 9: Math and Variables .........cccuccurismmmssmsmsssssmsssssmsssssssssssssssssssssssssssssssssanss 43
SUIMIMAIY.....eeeeeeecee e e e e e Re e e e e e e e e Re e s ae e se e e e e se e e re e ne e e e nnnneas 48
Chapter 10: A Program .......ccccccccnmsssssssssnmmmmssssssssssssssssesssssssssssssssssssssssssssnssnnsssssssssns 49
SUMIMAIY....ceveerreesese s s e e e s e e e s e s s e e e e e e e e R e e s R e e ne s e e nRe e s e e nenannnsnnnns 56
Chapter 11: QUESHIONS ......cvvssssmsmsnsmss s ————— 57
SUMIMAIY ...ttt e s b e e e e R e e R e e e e e e e Re e be e nr e e e nrn e 61
Chapter 12: Counting......ccussessssssnmsssnnssssanssssanssssansssssnsssssnsssssnnssssnsssssnnssssnnssssnnssssnns 63
11104 RS 67
Chapter 13: What H?.....ccccccmmmmmmmmmmmmssssssnnisssssssssssssssssssssssssssssssssssssssssssssssssssssssnsns 69
£ 11114 7R 71
Chapter 14: More Programs ......ccuseessmsssssssssssssssssssssssssssssssssssssssssssssssssnssssssssnnnsssss 73
ANIMALEU HEI0 ..o e e s 74
Ball ANIMALION.......coceieiecr e e p e e 75
Lo N T I T S 76
o o 8 T o L OO 77
N 0] o OO 78
PIANO0 ...t e E e R e e e n R nan 79
BOXES ..t e e E e e AR e e R e e e e R nan 80
{8 (o OO OSSPSR 81
BINKING GIraAPNICS ....vcerveerercsersenessesesesesessese s sessesesse e s e se s e sss e ses s sessssessssesesssssnsssessssessssssnns 82
A GUESSING GAME ....cveeeerrierrese s srs s s se s e s e e s e e e s s e b e e nenne e nne e nranis 83
SUMIMAIY ..ttt e e b b e e e e e Re e e R e e n e e e Re e Re e nrn e e nrn e 83
Appendix A: Saving and LOAdiNg .......ccccermmmsssmnnmmsssssnnmmssssssssssssssssssssssssnsssssssnnsssssnnns 85
E 11114 7R 87
INA@X . uetriiissnnnnnnsssnnnnnssssnnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnsssssnnnnssssnnnnsssssnnnnssssn 89

iv



About the Author

Gerald Friedland started programming with the
Commodore 16 at the age of 7. Ever since then his life has
been dominated by bits and teaching how to juggle them
to others. Today, Gerald has a PhD in computer science
and teaches introductory programming and data science
classes as adjunct professor at the University of California,
Berkeley. Apart from a research career as a computer and

data scientist, with two books and a list of publications in
multimedia and machine learning conferences and journals,
he is also an active contributor in the maker community. His company, Audeme,
produces an offline speech recognition shield for Arduino boards.



About the Technical Reviewer

Massimo Nardone has a master of science degree in
computing science from the University of Salerno, Italy, and
has more than 24 years of experience in the areas of security,
web/mobile development, cloud, and IT architecture. His IT
passions are security and Android.

Specifically, he has worked as a project manager,
software engineer, research engineer, chief security architect,
information security manager, PCI/SCADA auditor, and
senior lead IT security/cloud/SCADA architect.

He has also worked as a visiting lecturer and supervisor

for exercises at the Networking Laboratory of the Helsinki University of Technology
(Aalto University), and he holds four international patents (in the PKI, SIP, SAML, and
proxy areas).

He currently works as the chief information security officer (CISO) for Cargotec Oyj
and is a member of the ISACA Finland Chapter board.

Massimo has reviewed more than 45 IT books for different publishing companies
and is the coauthor of Pro JPA 2 in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8
(Apress, 2018), and Pro Android Games (Apress, 2015).

vii



Acknowledgments

I would like to say a big thank-you to the people in the various Commodore Facebook
groups who encouraged me with in-depth comments on the first draft of this book.
Without their help and encouragement, this book would not be publicly available. If
you like what you see in this book, please make a point of joining one or more of the
following groups: Commodore 16/Plus/4, Commodore 64/128, and Commodore PET,
VIC-20,16, Plus/4,64,128. Interact with super-nice people like Petri Stenberg, Trevor,
Mattias Olli, Patrick Bakker, Anders Persson, Chris Snowden, and others. A special
thanks goes to Marti Hoogterp for doing an amazing early review of the book.

I would also like to thank the staff at Apress, most notably Aaron Black, Jessica Vakili,

and James Markham.
I also need to thank my daughter, Mona, for using the book and giving me

suggestions. Finally, this book would not have been possible without my mother buying

a Commodore 16 from Aldi in Germany in 1986. Thank you, mum!

ix



Preface

I created this book as a birthday present to my 7-year-old daughter. It introduced
programming to her using an emulation of the Commodore 16/Plus 4 system. The
system’s BASIC 3.5 is an effective programming system that was used to teach hundreds
of thousands of children in the 1980s, the so-called 8-bit generation. The educational
principle of these computers and this book is that children at that age are fascinated to
see that words they write have the power to do things like play sounds, draw graphics,
or do their math homework. BASIC 3.5 is a simple programming system that minimizes
distraction, and therefore the parental interaction needed, while maximizing feedback
and therefore the learning progress for the child.

I taught myself programming with a Commodore 16 computer at very young age.
When my daughter finally turned 7, about the age when I started, I wanted her to start to
learn programming as well. I researched the market for elementary school programming
tools and could not find anything that I liked. None of the modern tools I found were
“turn on and program” like the 8-bit Commodore computers. Furthermore, many
teaching portals are online, and having to expose my elementary school child to the
Internet caused me anxiety. In contrast, once the emulator is in full-screen mode, the
learner is immersed in this environment without distraction.

Following this concept, this book was written to be understandable with the
reading and math skills of a child in second grade. The only exceptions are this preface
containing setup instructions and the appendix.

Chapter 1 and the following chapters assume that a Commodore 16/116, Plus 4,
or 128 is ready to go. The appendix describes several ways of setting up such a system
in today’s technical infrastructure and also how to load and save programs. The latter
was left out of the main part of the book because of its complexity and the potential for
damage (e.g., overwriting of files).

Whether you want your kid to follow the same path as my daughter or you'd love to
catch up on what you missed in the 1980s or you are interested in learning fundamental
programming concepts with a system that has passed the test of time, this book intends

xi



PREFACE

to make the basics of programming so easy that an elementary school child can self-
study with it. From there, the transition to a modern, more complex programming
language, like Python, is much easier.

Enjoy!

Setting Up

This book contains examples that can be run with Commodore BASIC 3.5. This version
of BASIC was originally available on the Commodore 16, Plus 4, and 116. The examples
in this book will also work on the Commodore 128, which came with BASIC 7.0. The
popular Commodore 64 came with BASIC 2.0, which lacks most of the graphic and
sound functionality and cannot be used with this book. The appendix contains more
details on how to set up your Commodore BASIC 3.5 experience. There are essentially
two ways to time warp back into the 1980s: using an emulator or re-activating the
original hardware. This appendix will outline both of them.

Using an Emulator

Whatever emulation option you choose, you will most likely want the original
Commodore keyboard. The easiest way to get a Commodore keyboard feeling is to
use a modern keyboard with stickers. They are, among other locations, available here:
http://www.4keyboard.com.

While there are small differences between Commodore keyboards, the Commodore
64 version of the stickers will work. The following image shows the arrangement of the

Commodore stickers on a modern keyboard that was used for this book:

xii


http://www.4keyboard.com

PREFACE

At the time of writing this book, several emulators are usable without any software
installation. For example, a browser-based Commodore 128 emulator is available at
https://vice.janicek.co/c128/

The aforementioned online emulator is based on VICE, which is the most popular
Commodore emulator. VICE is developed as open source and is available at http://
vice-emu.sourceforge.net/.

VICE can be used offline on any PC or Mac and even on your Android cell phone.
The part of the emulator used to write this book is called xplus4.

To get close to the full experience, I recommend you install VICE on a dedicated
computer, for example, on a Raspberry PI. The following images show a Raspberry Pi
with a casing and a controller, available at various locations:

More information on how to build a Raspberry PI dedicated to Commodore

emulation can be found at the home page of the Retro Pie project: https://retropie.
org.uk/.

While Retro Pie installs VICE, by default the GUI makes only the Commodore 64
emulator visible. To enable BASIC 3.5, the Commodore Plus 4 emulation needs to be
used. There are two ways of doing that.

o Start the Plus 4 emulation directly from a command line using this

command:
/opt/retropie/emulators/vice/bin/xplus4

o Start the emulator from a GUI, after enabling the Plus 4 emulation
in the file es_systems.cfg. The file is an XML configuration file and
how to edit it is described here:

https://github.com/RetroPie/RetroPie-Setup/wiki/
EmulationStation

xiii


https://vice.janicek.co/c128/
http://vice-emu.sourceforge.net/
http://vice-emu.sourceforge.net/
https://retropie.org.uk/
https://retropie.org.uk/
https://github.com/RetroPie/RetroPie-Setup/wiki/EmulationStation
https://github.com/RetroPie/RetroPie-Setup/wiki/EmulationStation

PREFACE
The entry for the Commodore Plus 4 system should look like this:

<system>
<name>c16</name>
<fullname>Commodore Plus4</fullname>
<path>/home/pi/RetroPie/roms/c16</path>
<extension>.crt .d64 .g64 .prg .t64 .tap .x64 .zip .vsf .CRT .D64 .G64
.PRG .T64 .TAP .X64 .ZIP .VSF</extension>
<command>/opt/retropie/supplementary/runcommand/runcommand.sh 0 _SYS_ c16
%ROM%< /command>
<platform>c16</platform>
<theme>c16</theme>

</system>

At the time of writing this book, the process is also described in detail on Ian Hill’s
web site at https://ianwilliamhill.co.uk/c16zxp/.

Re-activating the Original Hardware

Re-activating an original Commodore computer is by far the most nostalgic experience.
There are only two drawbacks to this approach. First, the original computers connect
to an analog TV either using an NTSC or PAL signal, so their resolution and update
frequency do not meet today’s ergonomic standards for eye comfort. Also, with most
modern TVs not supporting analog signals anymore, an adapter is needed. The typical
way to connect a Commodore computer to a modern TV is to use the S-Video signal
that is available on most Commodore computers. The second drawback is that loading
and saving programs took a long time in the 1980s. I definitely recommend connecting a
floppy disk unit, for example, the Commodore 1541, which works with the Commodore
16/116, Plus 4, C64, and Commodore 128. Tape recorders will literally take minutes to
even load a small program. A limited amount of hard disks were available at the time.

Fortunately, there is a seemingly ever-growing community of people connecting
modern storage and interfaces (such as USB) to Commodore 8-bit computers. For
example, commercial outlets for hardware adapters that serve this purpose include the
following:

http://www.commodore16.com/commodore16-com-shop/

https://gglabs.us/

http://store.godretro.com/

Xiv


https://ianwilliamhill.co.uk/c16rp/
http://www.commodore16.com/commodore16-com-shop/
https://gglabs.us/
http://store.go4retro.com/

PREFACE

Unfortunately, describing the process of re-activating the original hardware for
the various Commodore systems, modern hardware options, and different screen
combinations could easily fill another book. I therefore recommend checking with local
retro computing user groups, web sites, and forums, including the following:
https://cbm8bit.com/
https://www.instructables.com/howto/commodore/
https://hackaday.com/?s=commodore


https://cbm8bit.com/
https://www.instructables.com/howto/commodore/
https://hackaday.com/?s=commodore

CHAPTER 1

The Start Screen

At this point, I will assume you are set up and see the following screen. If not, ask a
parent to follow the instructions in the preface.

COMMODORE .3 68671 BYTES FREE
3-PLUS-1

READY .

Congratulations! You are ready to go!

Whenever you start a new chapter in this book, make sure you start at this screen.
This screen is called the startup screen.

One more thing: Do you see the blinking rectangle? This rectangle is called the
cursor. The cursor is where everything happens. Always pay attention to where the
cursor is.

With that, let’s move on to the next chapter.

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_1



CHAPTER 1  THE START SCREEN

Summary

Each chapter will have a short summary of what you have learned. In this chapter, you
learned about the start screen and the cursor.



CHAPTER 2

Simple Drawing

In this chapter, you will get to know your keyboard. You can use it to move the cursor,
type letters and numbers, and even draw.

Knowing Your Keyboard

Look at your keyboard. Do you see the symbols above the letters?

SHIFT
You access the right symbols by pressing the SHIFT key - and the letter key

at the same time.

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_2



CHAPTER 2  SIMPLE DRAWING

You access the left symbols by pressing the key and the letter key at the same

time. This odd key is called the Commodore key.

Let’s try a couple of simple examples.

Press SHIFT and A.

What do you see? You should see this symbol: #.
Now press RETURN and try this:

1. Press Commodore and A.
2. Press Commodore and S.
3. Press SHIFT and RETURN.
4. Press Commodore and Q.
5. Press Commodore and W.
6. Press SHIFT and RETURN.
7. Press Commodore and Z.

8. Press Commodore and X.



CHAPTER 2  SIMPLE DRAWING

The result should look like this:

COMMODORE
F-PLUS-1

BASIC VU3.5 68671 BYTES FREE
ON KEY F1

The drawing looks like a window! Try drawing other things this way!
You can also use the arrow keys to move the cursor up and down. They look like this:

The next pages have examples of more drawings. They were made by Mona, a 7-year-
old girl. You can try to copy them on your screen. But even better, experiment and draw
your own pictures.



CHAPTER 2  SIMPLE DRAWING

A Snake

Check out this snake:

VAU AUt alabavalalabalaiaialaiaVaWaiyl

O000000000000000000O0

Note You can press RETURN many times to clear the screen. The CLR/HOME key
brings the cursor back into the upper corner.




CHAPTER 2  SIMPLE DRAWING

A Playing Card

Try to make this playing card:




CHAPTER 2  SIMPLE DRAWING

An Island

Check out this island:

Summary

In this chapter, you practiced using the keyboard. For drawings, you can use SHIFT or
the Commodore key together with another key.



CHAPTER 3

Math

In this chapter, you will do math using the computer.
Start from the beginning with this screen again:

COMMODORE .3 BB6T1 BYTES FREE
3-PLUS-1

READY .

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_3



CHAPTER3  MATH

10

Remember, the black blinking rectangle is called the cursor.
Now let’s do some math. Type the following:

PRINT 3-2

Press RETURN.

What do you see?

.3 68671 BYTES FREE

You see that the computer gave the answer: 1.
Let’s try another one.

Type the following:

PRINT 2*5

Press RETURN.

What do you see?



=]

(—{=]

w uno
19

m

Zm

E

bt

=5

Lk
Fi

il

" X

(o I L Ty
D

N D

=)

Q=D
2 XU I

< =< =< I
r
¥
)

)
m
>
=

Tryit!

Summary

The computer can solve math sentences when you start them with PRINT.

CHAPTER3  MATH

.3 68671 BYTES FREE

The symbol * is read as “times.” So, the computer saw “2 times 5" The computer is
right: 2 times 5 (or 2*5) is 10!

So, you did subtraction and multiplication.

What other math can you do? The symbol + means “plus,” the symbol - means
“minus,” the symbol * means “times,” and the symbol / means “divide by.”

11



CHAPTER 4

Sound

The computer can make sounds. Let’s try that! Make sure you have some speakers
connected and turned on. Let’s start the Commodore 16 again.

COMMODORE
3-PLUS—-1

BnA U3.5 68671 BYTES FREE
N Fi

0
READY .

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_4

13



CHAPTER 4  SOUND

Now you need to tell the computer how loud it should be. The command is as
follows:

VOL 38

Press RETURN.

8is the loudest, 1 is the quietest, and 0 means no sound.

It looks like this:

.3 68671 BYTES FREE

14



CHAPTER 4  SOUND

Then, let’s actually play a sound. The command is SOUND. Try it by typing this:
SOUND 1,266,50

Press RETURN.

It looks like this:

.3 68671 BYTES FREE

15



CHAPTER 4  SOUND

What happens? If you did not hear anything, check your speakers.
Now try typing this:

SOUND 1,266,200

Press RETURN.

It looks like this:

.3 68671 BYTES FREE

16



CHAPTER 4  SOUND

What happened? Do you know why?

The last number is how long the sound is played.
Now try typing this:

SOUND 1,666,200

Press RETURN.

It looks like this:

=)
oI

< P€C D€ D€ € I

gi.ﬁ 68671 BYTES FREE

om wh
<

R
v
R
5
R
5
R
5

ST S S 2

om QM om
=2 ZIT =ET

A
m
I
=

What happened? Do you know why?
The middle number is the tone pitch. Try this:
SOUND 1,100,200

Press RETURN.

Then type this:

SOUND 1,200,200

Press RETURN.

Then type this:

SOUND 1,400,200

Press RETURN.

Finally, type this:

SOUND 1,800,200

Press RETURN.

17



CHAPTER 4  SOUND

See how the tone changes?

One more thing. Computers can also fart!

Type this:

SOUND 3,266,10

Press RETURN.

Did you hear the computer fart?

If you make the first number a 3, you get noise instead of a tone.

Try it: How can you change the length of the noise? How can you change the pitch of
the noise?

Summary

In this chapter you learned the VOL and SOUND commands and experimented with
sounds of different lengths and types.

18



CHAPTER 5

Colors

Let’s add some color!

You just have to press the Commodore key and a number key at the same time.

Remember, the Commodore key looks like this:
The number keys look like this:

1 BLk

Do you see the BLK, WHT, RED, CYI? These are short versions of the words for the
colors black, white, red, and cyan (a bright blue). So, if you press the Commodore key
and a number together, the cursor will change into this color.

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_5

19



CHAPTER5 COLORS

Press Commodore and 3 together and then type MONA.
It looks like this:

.3 68671 BYTES FREE

20



CHAPTERS5 COLORS

Now you can draw in color. Try it!
Also try other colors by pressing the Commodore key and another number.
Another way to change colors is with the COLOR command.

Type this:

COLOR 0,6

Press RETURN.

It should look like this:

21



CHAPTER5 COLORS

Now type this:
COLOR 4,6

Press RETURN.

It should look like this:

FE.S 68671 BYTES FREE

Found the trick?

The COLOR command takes two numbers. The first number is the part of the screen
you want to change: 0 specifies the background, 1 specifies the letters, and 4 specifies the
border. Then, the colors are numbered just like the letters on the keyboard.

1 =black, 2 =white, 3 =red, 4 = cyan, 5 = purple, 6 = green,

7 =blue, 8 =yellow, 9 = orange, 10 = brown, 11 = yellow/greenish,
12 = pink, 13 = blue-greenish, 14 = light blue, 15 = dark blue,

and 16 = light green.

22



CHAPTERS5 COLORS

Now try to set the background to light blue and the border to yellow!
It should look like this:

.3 68671 BYTES FREE

@
b~
I

om Sm Om Om wh
F> F2 F2 F2
QL QU Q0 Q0 I

< W€ WL WL WL I
L Lo
L] L
ee) =7}

m
>
2

HD OO0 OO0 Om ONX

Summary

In this chapter, you learned key combinations to change the color, and you used the
COLOR command.

23



CHAPTER 6

Graphics

So far, you have drawn by hand. Now you will let the computer draw!
Type this:
GRAPHIC 2,1
Press RETURN.
The result looks like this:

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_6

25



CHAPTER6  GRAPHICS

You have switched the computer into the graphics mode.
Now, you can type this:

B0OX1,0,0,100,100

Press RETURN.

Take a look at the result:

A box! But the command BOX takes so many numbers!

How does this work?

Let’s take a look again. The command was as follows:

B0OX1,0,0,100,100

The first number of BOX is 1. A 1 means draw in black, and a 0 means draw in white.

The second number is 0. This number tells the computer how far to the right the
upper-left corner of the box should be. 0 means all the way to the left, and 320 is all the
way to the right.

The third number is also 0. This number tells the computer how far to the bottom the

upper-left corner of the box should be. 0 means all the way up, and 160 is all the way to
the bottom.

26



CHAPTER6  GRAPHICS

The fourth number is 100. This number tells the computer how far to the right the
lower-right corner of the box should be. 0 means all the way to the left, 320 is all the way
to the right, and 100 is somewhere in between.

The fifth number is 100. This number tells the computer how far to the bottom the
lower-right corner of the box should be. 0 means all the way up, 160 is all the way to the
bottom, and 100 is somewhere in between.

0,0

100, 100

Complicated? Let’s play with it!
Try this:

BOX 1,101,0,201,100

Press RETURN.

Look at the result shown here:

READY .
BOX 1.161i,8,281,160

READY .

27



CHAPTER6  GRAPHICS

This command added a second box next to the first one.

What are the numbers?

The first number is 1 again, for drawing in black.

The second number is 101. Remember the third number of the first box was 100? The
third number of the first box was how far right the bottom corner of the first box is. You
want to start your new box just right of that, so you add 1, as in 100+1=101.

The third number is 0 again, just like in the first box. This is so that the upper-left
corner of the second box starts at the same height as the first one.

The fourth number is 201. The fourth number indicates how far to the right the
lower-right corner of the box should be. Well, the first box ended at 100. You want the
second box to have the same size. So, you add 100 to the start of the second box, which is
101. 100+101=201.

The fifth number is 100 again because you want the lower-right corner of the box to
be at the same height level as the lower-right corner of the first box.

Let’s try one more:

B0OX 1,202,0,302,100

Press RETURN.

Look at the result:

28



CHAPTER6  GRAPHICS

Can you explain it?

Let’s try one last one:
B0OX1,0,101,302,150

Press RETURN.

Look at the result and explain it!
Here is the result:

READY .
BOX 1.,6,181,382,158

READY .

29



CHAPTER6  GRAPHICS

There are many other graphics commands that do cool things. It would take many
pages to explain them, so it’s best if you experiment with them on your own. You will
need basic addition and subtraction. The first number always indicates draw in black (1)
or draw in white (0). Draw in white can be used to erase. The second number always
indicates how far to the right. The third number always indicates how far to the bottom.
Try another command.

Type this:

PAINT 1,1,1

Press RETURN.

The PAINT command colors a structure.

This is the result:

Bx Tx
m
>
=]

30



CHAPTER6  GRAPHICS

Let’s fill the third rectangle.
Type this:

PAINT 1,203,1

Press RETURN.

This is the result:

Can you fill the other rectangles too?
There’s one more command to play with!
Type this:

CIRCLE 1, 150, 125, 150, 25

Press RETURN.

What is the result?

Summary

You learned that the computer can draw boxes and circles automatically. Numbers tell
the computer the position on the screen.

31



CHAPTER 7

Errors

This chapter explains something less fun than what you've been doing so far. It talks
about “errors.” You will see errors at the most unexpected times. They will appear to slow
you down. They can be frustrating too. But they are only here to help you.

Errors are the way the computer tells you it does not understand something. When
you see an error, it is best to take a deep breath. Then compare what you see in this book
against what you did. Sometimes you may have to start from the beginning of a chapter
again. It happens to all of us.

There are many types of errors. The following two are the most frequent.

A syntax error is an error that tells you that you spelled a command incorrectly. See
the mistake in the following screen?

COMMODORE BASIC V3.5 68671 BYTES FREE
3-PLUS—-1 ON KEY F1

READY .

PLINT 3-2

2SYNTAX ERROR

READY .

33
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_7



CHAPTER 7  ERRORS

Yes, PLINT is wrong. It is PRINT. When you correct the spelling, the command will
work without error. See the next screen:

.3 68671 BYTES FREE

DL =D

C
3
RE
PL
2?5
RE
PR
i

34



CHAPTER 7  ERRORS

Another type of error is an illegal quantity error. It might sound complicated. Here is
an example:

35



CHAPTER 7  ERRORS

This error tells you that a number is wrong. In this case, COLOR cannot take 200.
When the command is corrected with the right number, it will work, as shown in the
next screen:

As explained earlier, when you see an error, carefully read the command again.

Programming is hard, and sometimes finding errors can take some time. Even
programmers with many years of experience have to deal with them.

Summary

Errors are there to make us think. You can learn from them.

36



CHAPTER 8

Variables

This chapter talks about how to make the computer remember things. For this chapter,
please start fresh (turn the computer off and on or restart).

The computer memory works with variables. Variables save a message or a number
so that you can use it later.

Try this:

AGE=7 (press RETURN)

PRINT AGE (press RETURN)

.2 68671 BYTES FREE

37
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_8



CHAPTER 8  VARIABLES

What happened?

AGE was set to 7. Then you printed AGE. The result s 7.
What if you set AGE=25 and print it?

Here is the result:

.2 68671 BYTES FREE

=]
ne

=]
k]

ne =3

=2 M2

e I
€ =L NL =HL =C I
=
&
m

(4,

R
A
R
P
R
o
R
F

NAOM QM 1AM QM wWo
>
-7
m

=D MD
=2

~
m
=
2

38



CHAPTER 8

Variables can do more than numbers. They can also store messages.
Type this:

MSG$=“HELLO, MONA” (press RETURN)

PRINT MSG$ (press RETURN)

The result looks like this:

SIC V3.5 68671 BYTES FREE
KEY F1

VARIABLES

39



CHAPTER 8  VARIABLES

Just like with numbers, PRINT returns what is stored in the variable. You can do it
again and again!

Type:

PRINT MSG$ (press RETURN)

PRINT MSG$ (press RETURN)

PRINT MSG$ (press RETURN)

The result looks like this:

0 .3 68671 BYTES FREE

=1
ne

""HELLO, HONA""

< rx

L]

FEIP FI0 FEIC FIC oo 93

C
3
RE
MS
RE
PR
HE
RE
PR
HE
RE
PR
HE
RE
PR
HE

Fe=d F=D F=D =D QD
L]

2= 322 23 23

QN QW oW oWn

=0 O X0 IO

> % DR Dw

L]

L D=C O=<C O=C Q=

)
m
>
=

40



CHAPTER 8  VARIABLES

You have to store the variable only once, and you can reuse it—until you turn off the

computer or close the Commodore program.

Be careful, though. For messages, you need to add $ to the variable name. Otherwise,

the computer complains with an error!
For example, type this:
MSG=“HELLO, MONA”

Press RETURN.

This will result in an error, as shown here:

Il =<

L]

L]

L]

< Q=< O=<C QO=-<C Q=

e rFIe rIo rIo rIo oo
<.
m

DL DD =D =D F=D> =D OD

=)
<m

EXv TN TITUX ITO ITO ITO IN
M= ¢iM MXM Mom mom mom om

"*"HELLO, MONA""

=17]
- 4{-7]
=41

L
I I XX II
Qum Qun on

0 X0 Z0
Qo 2 22 2D

r
r

MISMATCH ERROR

Remember, numbers can have any name. Messages need to have a name with $ at the

end. The message itself needs to be in quote marks. It is easy to forget the second quote!

Summary

You have learned how to store numbers and messages in variables.

41



CHAPTER 9

Math and Variables

Can you do math with variables? Yes, you can!
Try this:
AGE=6 (press RETURN)
PRINT AGE+1 (press RETURN)

=D M
2

e I I1e I0
- u-

2

@

m

R
A
R
P
R
A
R
P
R
A
R
P

=D M =D MD

=AM @M NDM OM =1"M Gm
xz0

= =L ML =L N =L =G

x
m
=
=

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_9

43



CHAPTER9  MATH AND VARIABLES

What happened?

The result is 7 because AGE is 6 and 6+1=7.

What happens when you try this:

PRINT AGE+2 (press RETURN)

PRINT AGE+3 (press RETURN)

AGE stays 6, and 6+2=8 and 6+3=9. No surprise here.
You can check that AGE is still 6 by typing this:
PRINT AGE

Press RETURN.

Here is the result:

ﬁl:

@AM WAM WAM =AM GmM NOm

=D M U=

-

> > D
& & 9@
m m m
+ + +
WwoON

=D

R
A
R
P
R
P
R
P
R
P

=
o
m

A
m
=
=

44



CHAPTER9  MATH AND VARIABLES

AGE never changed.

Now try this:

AGE=AGE+1 (press RETURN)
PRINT AGE (press RETURN)
See this screen for the result:

ﬂ al
L L T =
e X9 I IU IO

o)
m
+
e

T DX "W "W WA

=2 M2

2
L =l DL el el =l =

>
=1
m

R
Ir
E
R
8
E
R
9
E
R
6
E
G
E
R
T

| b
m
X
=

45



CHAPTER9  MATH AND VARIABLES

What happened?

Using the = command, AGE was set to AGE+1.

So, AGE is 6. That means AGE+1 is 6+1=7. Using =, you set AGE to 6+1. So, you set
AGE to 7. That’s why the result printed is 7.

Let’s try a different example. Type this:

APPLE=5 (press RETURN)

BANANA=2 (press RETURN)

FRUITS=APPLE+BANANA (press RETURN)

PRINT FRUITS (press RETURN)

46



CHAPTER9  MATH AND VARIABLES

What happened? Well, APPLE is 5. BANANA is 2. FRUITS is then set to
APPLE+BANANA or 5+2. And you know that 5+2=7. Therefore, FRUITS is 7.

Now let’s add pears to the fruits.

PEAR=3 (press RETURN)

FRUITS=FRUITS+PEAR (press RETURN)

PRINT FRUITS (press RETURN)

What do you think the result is?

3-
l
M

S=APPLE+BANANA

=3 S ZED

FRUITS

1€ == == Z-C

wl

R
B
R
F
R
P
R
P
R
F
R
P

F=OM DM MM =10mM OmM DM

Q=2 > DD

47



CHAPTER9  MATH AND VARIABLES

What happened? PEAR was set to 3. Then FRUITS was set to the number that FRUITS
stores (7) plus the number that PEAR stores (3). So, 7+3=10. This is the same as setting
FRUITS to APPLE+BANANA+PEAR (5+2+3=10).

Let’s check:

-
~

S5=APPLE+BANANA

-
¥
T FRUITS
s

X
=D O

T MW TAM MW WX
=DM OM =DM DM MM =10m

S=2 O D=2 C2 22D
m.
I

FRUITS+PEAR

FRUITS

(4,1
Il

APFPLE+BANANA+FPEAR

X0 =T ZI0 =0 [0 FEDQ -

R I e

FRUITS

x
m
=
2

Yay! See what else you can do with variables. Try also +, -, *and /.

Note Choose your variable names so that the first two letters don’t overlap.
BANANA and BARBEQUE are the same variable because the both start with BA.
BANANA and BBQ are fine (BA and BB). Also, variable names cannot start with a
number or be a command. For example, PRINT=1 will give an error.

Summary

You can use variables to store the result of math. You can also use variables in a math
sentence.

48



CHAPTER 10

A Program

In this chapter, you will understand what a program is and even write your first one. As
usual, start with this screen:

COMMODORE B
3—-PLUS-1 ON

READY .

i.ﬁ 68671 BYTES FREE

SIC V
KEY F

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_10

49



CHAPTER 10 A PROGRAM

Remember, the black blinking rectangle is called the cursor.

Let’s type a program. It begins with line numbers. Type this:
10 PRINT “HELLO MONA”

Press RETURN.

Then type this:

20GOTO 10

Press RETURN.

The screen looks like this:

50



CHAPTER 10 A PROGRAM

Then type this:

RUN

Press RETURN.
What happens?

CLCCCECC oL ECECE LT
EELL LN L LR EEEREREEE
L L L o o
bab 23 26202 29 253} 2 2 2} 25 2 4 23 242523 2§ 353

b b Lt L B L Bl L L L L DL L e L
IIIIIIIIIIIIIIIIIIIII

Congratulations! You just ran your first program.

Now press RUN/STOP ESC to stop it.

It looks like this:

51



CHAPTER 10 A PROGRAM

Type LIST and press RETURN to see your program again.
It looks like this:

= IIIIIIIIIIIIIII
Z O00000Qo0000000
IIXTIIXITIIIIIIIIX
2222222222 III

[

S T B B R B e e b e
= 2™ =% 0CoLooOOQOODC

INT "HELLO HMONA"
TOD 18

H
H
H
H
H
H
H
H
H
H
H
H
H
H
B
R
L
i
2

@@ =MmMxa mMmmmmmmmmrrrmemm

x
m
-

You can now use the arrow keys to move the cursor and

change the program.

52



CHAPTER 10 A PROGRAM

Press UP four times to go to line 10. Then press RIGHT 16 times to put the cursor in
front of MONA. The M is now blinking.
It looks like this:

IIXTITIITIIIITIIIIX
222222222 TII

= IITIIIIIIIIIIIIX
Z 0000000000000

[

e M B e B i e
o =T

H
H
H
H
H
H
H
H
H
H
H
H
H
H
B
R
L
1
2

22 =M mMmmmmmmmmmmmmm

INT "HELLO [sONA"
TO 18

< om <X ﬂ@ﬁlﬂﬂﬁﬁ@ﬁﬁﬁﬁﬁﬂ

X
m
o
=

53



CHAPTER 10 A PROGRAM

Now type this:

PAPA

Press RETURN.

The 2 is now blinking.

CECE L CCCECCCTTT

EEXLIXIXIIITIIIIIL
@ b2b ) 25 3 2 36 25 3 35 2} 2 24 25 2 =
<
° ] e e ] | e e ] e e e ]
R g ey B
= T L T e | T T e
R bbb b b L b L L L
g SIIIIIIIIXIIIIIX

54



CHAPTER 10 A PROGRAM

Now press the DOWN arrow three times. The cursor is blinking under READY.

It looks like this:

CCCCCCCTCCCC T T
b o o o o o o o o o o o o o o o
Dooooooooooooo2
b2 23 23 2 2 2 24 2 24 23 24 24 25 25 2

e s e || e e e ) e e e
0 o 3 T e

L kb D L b b L L B L L
IIIIIIIIIIIIIII

55



CHAPTER 10 A PROGRAM

Now type RUN again.
Press RETURN.
What happens?

This!

TOTTE RO YRR T T NN TR NN TN NN TT
2222222222222 22222 DD
TOTT OO T YRR T T NN T TN T TN NTTTT
2222222222222 2D DD DD

HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL
HEL

Congratulations! You ran your second program.

You can stop it the same way by pressing RUN STOP/ESC.

Try more things by repeating the steps from the earlier pages.

Type LIST to see your program.

Use the arrow keys, and type new letters to change the program.

Press RETURN to enter it into the computer.

Go below READY, and type RUN and press RETURN to start it again.

If you want to write a new program, type NEW and then press RETURN.
Chapter 14 contains many examples of programs to play with.

Summary

So, what is a program? A program is like a cooking recipe. It is a list of commands. You
can run a program over and over again after typing it in only once.

56



CHAPTER 11

Questions

Can computers ask questions in a program? Yes.

In a program, the computer can ask questions and store the answer in a variable.
The command for that is INPUT. INPUT also needs a variable name. For example, typing
INPUT AGE will ask for a number and store the number in the variable AGE.

Make sure you are at the startup screen. Type the following program:

10 PRINT “HOW OLD IS MONA”; (press RETURN)

20 INPUT AGE (press RETURN)

30 PRINT “MONA IS”; (press RETURN)

40 PRINT AGE; (press RETURN)

50 PRINT “YEARS OLD.” (press RETURN)

Usually, the computer jumps to the next line after a PRINT command. The
semicolon (;) makes the computer stay on the same line.

57
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_11



CHAPTER 11 QUESTIONS

The program looks like this on the computer:

ud

TUO=T -
< NIVTX <

MONA"";

NAWNE D
CODOD =M
e e e ) e
zZICX
e

X
m
-
=

58



CHAPTER 11 QUESTIONS

Type RUN and press RETURN to start the program. The computer will ask for Mona’s
age. You can type in any number and press RETURN. After that, the computer will show
you that it saved the number.

It should look like this:

R
L
i
2
3
4
5
R
R
H
M

QOCM QOO0 =M

ZIZZD

x
m
>
<

59



CHAPTER 11 QUESTIONS

Try RUN and press RETURN again. Now enter a different number. See how the
output changes?

What happened? The INPUT command in line 20 asks for a number and stores it
as variable AGE. After you enter a number, lines 30, 40, and 50 piece together the final
output sentence. Of course, line 40 is the one outputting the number.

Let’s try another example. Type this:

10 PRINT “HOW MANY APPLES”; (press RETURN)

20 INPUT APPLE (press RETURN)

30 PRINT “HOW MANY BANANAS”; (press RETURN)

40 INPUT BANANA (press RETURN)

50 FRUITS=APPLE+BANANA (press RETURN)

60 PRINT “WE HAVE”; (press RETURN)

70 PRINT FRUITS; (press RETURN)

80 PRINT “FRUITS.” (press RETURN)

19

Ei.ﬁ 68671 BYTES FREE

co
0ne
(=
=0
m
=0
=
F iy
]
<5

=
o=}

TVTVM=T=TC TI
e | WTDT
XOMD DOV

ANY APPLES";
NY BANANAS";
BANANA

r

SOo0QOIM wWh
ARNOVEDNZEZNC I
e L L =" Lo = [ T
ZXIZI~CECE
===

cS TEETE

== L0
—-{={ D~ EIMI
GnCMID

. b|m+

| [ BT T NAT AT .

60



CHAPTER 11 QUESTIONS

Type RUN and press RETURN to start the program. The computer will ask how many
apples (lines 10 and 20). You can type in any number and press RETURN. After that, the
computer will ask how many bananas (lines 30 and 40). You can type in any number and
press RETURN. Then, the computer will add the numbers in APPLE and BANANA into
the variable FRUITS (line 50). It will then output the result in a sentence (lines 60, 70,
and 80). Take a look:

COMMODORE BASIC V3.3 68671 BYTES FREE
3-PLUS—-1 ON KEY F1
READY .
18 PRINT"'HOW MANY APPLES";
28 INPUT APPLE
38 PRINT"HOW HMaNY BaANANAS'";
48 INPUT BaNAaNn
58 FRUITS=APPLE+BANANA
68 PRINT'"HWE HAVE"';
T8 PRINT FRUITS;
EE"PRIHT"FRUITS.";
HOW MANY APPLES? 5
HOW MANY_ BaANANAS? 2
WE HAVE 7 FRUITS.
EERD?.

Is this familiar?
Can you add pears to the program? Hint: You can add lines 45 and 46, and you need
to change line 50.

Summary

The INPUT command allows you to ask question to the user. The response is stored in a
variable.

61



CHAPTER 12

Counting

It’s time you give the computer a lot more work! For example, let’s make the computer
count for you. This chapter introduces FOR and NEXT.

Make sure you are at the startup screen. Type the following:

10 FORI=1TO 10 (press RETURN)

20 PRINT I (press RETURN)

30 NEXT I (press RETURN)

Type RUN and press RETURN to start the program.

>
zTTT T

gi.S 68671 BYTES FREE

R
i
2
3
R

C
3
E
a
a
a
u
i
2
3
-4
3
&
T
8
9

[
=

63
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_12



CHAPTER 12  COUNTING

How does this work?

Line 10 says this:

FORI=1TO 10

The variable called I is set to 1 with I=1. So, I=1. Let’s skip the other stuff for now.

Line 20 says this:

PRINT I

Well, that just means print the number stored in I. You have done that many times
before, for example when you used PRINT AGE.

Line 30 then says this:

NEXTI

The NEXT command exactly does what you think it does. It basically says, “Next
number, please!” The computer sets the next number for I. What is the next number?
Good question! Remember we skipped some stuff in line 10? Well, let’s go back.

FORI=1TO 10

While I starts off as 1 with I=1, the line also says 1 TO 10. So, it’s like having ten
people in a restaurant with the numbers 1 to 10. The next number after 1 is therefore 2.
You then go to line 20 to print I again, which now is 2. Then you go to line 30 again,

'77

where it says, “Next I, please!” This makes I=3 and returns you to line 10. The game goes
on and on and on until you have served all people in the restaurant...ahem...until I=10.
Once I is 10, the “Next I, please!” in line 30 will find out that there is no next and therefore
will not jump back to line 10 anymore. Let’s check this. Type this:

40 PRINT“DONE” (press RETURN)

64



CHAPTER 12  COUNTING

Type RUN and press RETURN to start the program. You should see this:

DY.
PRINT"DONE"'

2
[
T
8
9
i
E
a
u
:
4
o
6
T
8
9
i8

65



CHAPTER 12  COUNTING

That'’s exactly what you should expect. The computer counts to 10 and then prints
DONE because NEXT I finds it is finished.
The entire program looks like this now:

AL
o
e
0-C
(L]

NT"DONE"

na ZQ
m
<

QOO0 =M QOREOO=IMULKMNRECEOM
TEDTT =0

< AMAQ

.ﬁ LWNE R D
>
=]

How would you change the program to count to 100?

Type this:

10 FOR I=1 TO 100 (press RETURN)

Type RUN and press RETURN to start the program. You will see it counting to 100
and then saying DONE.

Here is one more example of really complicated math—something where you really
need a computer because it would take way too long to do it by hand. Let’s add all the
numbers from 1 to 100!

Type this program:

10 SUM=0 (press RETURN)

20 FORI=1TO 100 (press RETURN)

30 SUM=SUM+I (press RETURN)

40 NEXT I (press RETURN)

50 PRINT “1+2+3+...+100="; (press RETURN)

60 PRINT SUM (press RETURN)

66



CHAPTER 12  COUNTING

N

TOUENTIN =D

£ WAMSoS <

i 36T 0T .
ZE~I |

CM Q00000 =M

R
L
i
2
3
4
b
6
R
R

Type RUN and press RETURN to start the program.

What's the answer?

How would you change the program to sum the numbers 1 to 200?

How would you change the program to multiply all numbers from 1 to 10?

Summary

You learned to use FOR and NEXT. These two commands can save you an immense
amount of work.

67



CHAPTER 13

What If?

Sometimes you want to check things. For example, you might want to check a response
to a question. This chapter shows how.

As usual, make sure you are at the startup screen. Type the following program:

10 PRINT“HOW OLD IS MONA”; (press RETURN)

20 INPUT AGE (press RETURN)

30 IF AGE<7 THEN PRINT"TOO LOW" (press RETURN)

40 IF AGE>7 THEN PRINT"TOO HIGH" (press RETURN)

50 IF AGE=7 THEN PRINT"CORRECT" (press RETURN)

Type RUN and press RETURN to start the program. The program will ask for Mona’s
age (lines 10 and 20). You can then enter any number. If the number is smaller than 7, it
will say TOO LOW (line 30). If the number is greater than 7, it will say TOO HIGH (line 40),
and if the number is exactly 7, it will say CORRECT (line 50).

69
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_13



CHAPTER 13 WHAT IF?

It all looks like this:
LIST
18 PRINT'""HOHW OLD IS MONA"'';
28 INPUT AGE
38 IF AGE<XY THEN PRINT"TOO LOW':GOTO 18
48 IF AGE>TY THEN PRINT'"'TOO HIGH"'':GOTO 16
58 IF AGE=T THEN PRINT''CORRECT"
READY .
RUN
HOW OLD IS MOMNA? B
TOD LOH
HOW OLD IS MOMNA? 8
TOD HIGH
HOW OLD IS MOHNA? 7
CORRECT
READY.
||

The command that makes that happen is called IF THEN, and it almost works like
human language.

Between IF and THEN is a condition. The conditions checks if a variable is
smaller than (<), equal to (=), greater than (>),smaller than or equal to (<=), or
greater than or equal to (>=) another number or variable.

After THEN is a command that will be executed if the condition is true. If you
need more than one command after THEN, you can separate them with colon (:). For
example, if you want to have the person try guessing Mona’s age again without having to
say RUN, you can change lines 30 and 40.

Type this:

30 IF AGE<7 THEN PRINT“TOO LOW”:GOTO 10 (press RETURN)

40 IF AGE>7 THEN PRINT“TOO HIGH”:GOTO 10 (press RETURN)

70



CHAPTER 13 WHAT IF?

The command GOTO is really just a misspelled “go to” We already used it in

Chapter 10. It will jump to the line number given. That is, GOTO 10 will jump to line 10.

Type RUN and press RETURN to start the program. The program now looks like this:

COMMODORE BASIC
3-PLUS—-1 ON KLY
READY .
18 PRINT'"'HOW OLD
28 INPUT AGE
38 IF AGELTY THEN
48 IF AGE>T THEN
gH“IF AGE=7 THEN
HOW OLD IS MOMNA?
TOD LOM
READY.
RUN
HOW OLD IS MONA?
TOD HIGH
READY .
RUN
HOW OLD IS MOMA?
CORRECT
READY.
|
Summary

You learned about IF THEN. Using IF THEN and GOTO together is a powerful

combination.

71



CHAPTER 14

More Programs

This chapter presents programs to type in and play around with. Sometimes you will
not know a command. This is not a problem. Often you just need to run the program to
see what the command does. Other times you need to experiment to try to understand
what the command does. You can experiment by changing the program. For example,
leave the command out and see how the program behaves then. You really cannot break
anything. Also, there are no wrong solutions. Have fun!

The programs A Song, Boxes, and Circles are special. They are taken from the
original Commodore 16 user manual. The programs Piano and Blinking Graphics
are similar to programs that appeared in the original Commodore 16 user manual.
The manual came out in 1984. It is therefore not an exaggeration to call them
historic programs!

Make sure you are at the startup screen. Then type in the following programs and
start them with RUN and press RETURN. If you need to stop, press the ESC/RUN STOP
key (in the upper-right corner). You never have to type in the READY. part.

73
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2_14



CHAPTER 14  MORE PROGRAMS

Animated Hello

Type in the following program, start it with RUN, and press RETURN. To stop, press the
ESC/RUN STOP key (in the upper-right corner).

m

-z -r

o3> or
"

] G 20 b 2 G 0 et 2R
O= ZEO=- XD
i e O [
el 2= 2%
=3z =X
(=]
o
o

< omMOROMORN
=]

i
2
3
4
b
6
?
8
9
R
R

SM 0000000

zD>
BT SZTT0ZToNn

Note The command SCNCLR clears the screen. The empty FOR commands in
line 30 and 70 serve as delays.

74



CHAPTER 14  MORE PROGRAMS

Ball Animation

Make sure you are at the startup screen. Type in the following program, start it with RUN,
and press RETURN. To stop, press the ESC/RUN STOP key (in the upper-right corner).

i
2
3
4
b
[
?
8
R
R

M S0o0ooD

zD
< MAMOARWOC
H=DC ==X E

BT Z7zTm7TTn

Tip Press the LEFT arrow key to get the symbol in the PRINT command in line 70.

75



CHAPTER 14  MORE PROGRAMS

Playing with Pitch

Make sure you are at the startup screen. Type in the following program, start it with RUN,
and press RETURN. To stop, enter 0.

i1 AND 18i5"

QN====TTC
D=~

= £t = 4+
2l AV={={={0

< QOTMMTMZANO
-

i
2
2
3
3
4
b
6
?
R
R

oM oooovouos

76



CHAPTER 14  MORE PROGRAMS

Pitch Ladder

Make sure you are at the startup screen. Type in the following program, start it with RUN,
and press RETURN. To stop, press the ESC/RUN STOP key (in the upper-right corner).

Note The STEP command in line 20 tells FOR to count in steps of five. In other
words, instead of counting 0,1, 2, 3,4, 5, ..., itis counting 0, 5, 10, 15, 20, 25,
and so on.

77



CHAPTER 14  MORE PROGRAMS

A Song

Make sure you are at the startup screen. Type in the following program, start it with RUN,
and press RETURN. To stop, press the ESC/RUN STOP key (in the upper-right corner).

DOUDINATCY TI

2D2IDMOMOOC I
co
ne
=)
-2

>

=== =X D
O -

Ot X

COoQOOOOOM Wo
D2IIDHEO

R
1
2
3
4
b
6
T
8
9
R

Note The DATA command stores numbers that can be read in order using the
command READ.

78



CHAPTER 14  MORE PROGRAMS

Piano

Make sure you are at the startup screen. Type in the following program, start it with
RUN, and press RETURN. To stop, press the RUN STOP/ESC key. The program is more
complicated, but it’s also pretty cool.

KE\’S 1..8 TO PLaY"

=RCERTTN
=~XD X=X

< LOONI=DTMOMMORN

HEN GOTO 86

=
20001
=="C> DD =T IO
IO0X | DAVDE XK=
ALLATI XEI X

i
2
3
4
b
6
8
9
i
i
i
1
i
i
R
R

SM OULAWNEOOOOOOODD

Play Twinkle Twinkle Little Star with these keys: 1, 1, 5,5, 6, 6,5, 4,4, 3,3,2,2,1,5,5,
4,4,3,3,2,5,5,4,4,3,3,2,1,1,5,5,6,6,5,4,4,3,3,2,2, 1.

79



CHAPTER 14  MORE PROGRAMS

Boxes

Make sure you are at the startup screen. Type in the following program, start it with RUN,
and press RETURN.

ZT00Q
D W e
O D= KN

OMIZTNDRO0
DAHHDT D
o -

I erOIRN
=l A
Ob DR

< POMOQIAOD

i
2
3
4
b
[
?
8
9
R
R

SM 0000000

I
<

Note The RND command in line 40 gives a random number. So the screen will
look different every time you run the program!

80



CHAPTER 14  MORE PROGRAMS

Circles

Make sure you are at the startup screen. If you previously typed in the Boxes program,
all you need to do is type line 60. Otherwise, type in the following program, start it with
RUN, and press RETURN.

STEOTDOO0
DRAVD || DT
b [ =~

‘
I FrRINn
= -

< WOM=D0 WOO

i
2
3
4
b
6
?
8
9
R
R

SM 0000000

=2
<

Note The RND command in line 40 gives a random number. So the screen will
look different every time you run the program!

81



CHAPTER 14  MORE PROGRAMS

Blinking Graphics

Make sure you are at the startup screen. Type in the following program, start it with

RUN, and press RETURN. To stop, press the RUN STOP/ESC key. The program is more

complicated, but it’s also pretty cool.

COLOR 98,2

@
o 90 oo
QNOOE -
o] =
" on o
e lunlinlin]Tplas)
=MoL
(=] "
Co00Q- @
et i I @
L] -
[o=lTplinlonlinlin] o]
- e IO o
- I =R [
M- QODDIND=C -
» SDe=NR0Nn e MO0
QOO s » s s DM |-
= AMMMmNMI K XE X
[+ ge i 4 - =0 Q4
oLoeITITIIIT O JXK-C
L ECCCCCCX IQLIOOONK
OO NOOL EDLOD
(B[ L IR ] T T T [ | PR
oelvnlin]invnlin]
OOOEDI-E-OOE-NNNTE
v €3 0 L 0 €0 o o 0 T v e e e e )

NEXT M
NEXT HM

ie6:
COLOR 1.,1.,7

RUN

82



CHAPTER 14  MORE PROGRAMS

A Guessing Game

Make sure you are at the startup screen. Type in the following program, start it with RUN,

and press RETURN. To stop, enter 0 as a guess.

=] || VAZEE
ZEZTID + KA bt it

Qi =0, (D [+'4+°4+4
[MIN=4=4"1 - [JFHFNIN.N.N.§
(L} o N MR LT
ooo
velinlinlunlinlonliplinlinlinlin B [4¥ ]
= N T U D O D GO Ty e el o

Summary

Have fun!

83



APPENDIX A

Saving and Loading

Once programs start to become larger and more complicated, you will not want to

type them from scratch every time. You can save programs to permanent storage (for
example, a tape, a disk, or, if you use an emulator, a hard disk). The internal setup and
configuration of your permanent storage depends on the hardware or emulator choices
you made as described in the preface. For example, VICE requires you to open an
(empty) d64 file so a disk drive can be emulated (In the menu, select File » Create and
Attach Disk Image » Unit #8 and then choose a file name ending with .d64).

Once you are set up, knowing the following commands comes in handy. The easiest
way to store a program is using the command SAVE. The command takes a file name and
a disk drive number as a parameter. The following screenshot shows a small program
typed in followed by a SAVE command that is then executed by pressing RETURN.

SAVE ""HELLOWORLD", 8
NG HELLOWORLD

Wxwn
m>
>c
=t
L

85
© Gerald Friedland 2019

G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2


https://doi.org/10.1007/978-1-4842-4146-2

APPENDIXA  SAVING AND LOADING

Since you do not see any error message on the screen, you can assume that the
program has been saved. Let’s restart the computer and load the program again. This
is done by the LOAD command, which looks exactly like the SAVE command. The
following screen shot shows the process followed by a LIST command, which shows that
the program has indeed been loaded:

19
==
ne

1Q

BASIC V3.5 68671 BYTES FREE
N KEY F1

""HELLOWORLD" , 8
ING FOR HELLOWORLD

o232 DI
0T =H00xn D9 TI
- ZX
-7}

20 =MOoMm oM Wwh
e

N FOra ro

T ""HELLO HWORLD"
ie

M
L
¥
C
I
¥
R
(1)
h 4

X
m
o

86



APPENDIXA  SAVING AND LOADING

To get a listing of all programs on the disk, for example, to be reminded of the
names of the available programs, type the command LOAD “$”, 8 followed by LIST. The
following screen shot illustrates the way directories were listed in the 1980s (make sure
you are at the start screen):

COMMODORE BASIC V3.5 668671 BYTES FREE
3-PLUS-1 ON KEY F1

READY .

LOAD"S", B

SEARCHING FOR %

LOADING

READY.

LIST

B -

i G

663 BLOCKS FREE.
READY .
|

Caution When you load a directory, your current program is erased. So don’t
load the directory in an attempt to find out under which name you want to save
your program. Also, tape recorders do not have a directory listing. Trying to load the
directory form tape is a giant waste of time.

Summary

Loading and saving programs both require the configuration of the emulator or
underlying hardware. On the original Commodore hardware, loading and saving from a
cassette tape was worth it only for more than about 30 lines of code.

87



Index

A F

Animated Hello, 74 FOR and NEXT
A Song, 78 commands, 63-67

B G

Ball animation, 75 Graphics
Blinking graphics, 82 command BOX, 26-29
Boxes, 80 mode, 26
PAINT command, 30
rectangles, 31
C Guessing game, 83
Circles, 81
Colors, 19-23
Cursor, 1 H

Historic programs, 73

D

Drawing |, J
island, 8 IF and THEN commands, 69-71
playing card, 7 Illegal quantity error, 35-36
snake, 6 INPUT command, 57, 59-61

E K

Errors, 33 Keyboard
illegal quantity error, 35-36 arrow keys, 5
syntax error, 33-34 symbols, 3-4

© Gerald Friedland 2019
G. Friedland, Beginning Programming Using Retro Computing,
https://doi.org/10.1007/978-1-4842-4146-2


https://doi.org/10.1007/978-1-4842-4146-2

INDEX

L

Loading and saving
programs, 85-87

Math, 9-11
and variables, 43-48

PQR

Piano, 79

Pitch ladder, 77
Playing with pitch, 76

Program HELLO MONA, 49-56

Programs
animated Hello, 74
A Song, 78
ball animation, 75
blinking graphics, 82
boxes, 80

90

circles, 81

guessing game, 83
piano, 79

pitch ladder, 77
playing with pitch, 76

S, T,U
Sound, 17
command, 14-15
Commodore 16, 13
noise, 18
speakers, 16
tone pitch, 17
Startup screen, 1
Syntax error, 33-34

VW, X, Y, Z
Variables, 37-41
and math, 43-48



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: The Start Screen
	Summary

	Chapter 2: Simple Drawing
	Knowing Your Keyboard
	A Snake
	A Playing Card
	An Island
	Summary

	Chapter 3: Math
	Summary

	Chapter 4: Sound
	Summary

	Chapter 5: Colors
	Summary

	Chapter 6: Graphics
	Summary

	Chapter 7: Errors
	Summary

	Chapter 8: Variables
	Summary

	Chapter 9: Math and Variables
	Summary

	Chapter 10: A Program
	Summary

	Chapter 11: Questions
	Summary

	Chapter 12: Counting
	Summary

	Chapter 13: What If?
	Summary

	Chapter 14: More Programs
	Animated Hello
	Ball Animation
	Playing with Pitch
	Pitch Ladder
	A Song
	Piano
	Boxes
	Circles
	Blinking Graphics
	A Guessing Game
	Summary

	Appendix A: Saving and Loading
	Summary

	Index



